Skip to main content

Graph Clustering Using the Weighted Minimum Common Supergraph

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2726))

Abstract

Graphs are a powerful and versatile tool useful for representing patterns in various subfields of science and engineering. In many applications, for example, in pattern recognition and computer vision, it is required to measure the similarity of objects for clustering similar patterns. In this paper a new structural method, the Weighted Minimum Common Supergraph (WMCS), for representing a cluster of patterns is proposed. Using this method it becomes easy to extract the common information shared in the patterns of a cluster and separate this information from noise and distortions that usually affect graphs representing real objects. Moreover, experimental results show that WMCS is suitable for performing graph clustering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone, M. Vento: A Comparison of Algorithms for Maximum Common Subgraph on Randomly Connected Graphs SSPR/SPR2002, pp 123–132. 2002.

    Google Scholar 

  2. H. Bunke, M. Vento, Benchmarking of Graph Matching Algorithms, Proc. 2nd Workshop on Graph-based Representations, Haindorf, pp. 109–114, 1999.

    Google Scholar 

  3. H. Bunke, X. Jiang, A. Kandel, On the Minimum Common Supergraph of two Graphs, Computing 65, No. 1, pp. 13–25, 2000.

    MATH  MathSciNet  Google Scholar 

  4. R.O. Duda, P.E. Hart, D.G. Stork. Pattern Classification, II Ed., Wiley-Interscience Publication. 2000.

    Google Scholar 

  5. M. Hagenbuchner, A.C. Tsoi, The Traffic Policeman Benchmark. European Symposium on Artificial Neural Networks, Michel Verleysen, D-Facto, pp. 63–68, April, 1999.

    Google Scholar 

  6. C. De Mauro, M. Diligenti, M. Gori, M. Maggini, Similarity Learning for Graph-Based Image Representations. Proceedings of the 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, pp. 250–259. 2001.

    Google Scholar 

  7. R. Englert, R. Glantz, Towards the Clustering of Graphs. Proceedings of the 2nd IAPRTC15 Workshop on Graph-based Representations in Pattern Recognition, pp. 125–133. 1999.

    Google Scholar 

  8. S. Günter, H. Bunke, Self-organizing Map for Clustering in the Graph Domain, Pattern Recognition Letters 23, pp. 401–417. Accepted for Publication.

    Google Scholar 

  9. P. Foggia, C. Sansone, M. Vento, A Database of Graphs for Isomorphism and Sub-Graph Isomorphism Benchmarking, Proc. of the 3rd IAPR TC-15 International Workshop on Graph-based Representations, Italy, pp. 176–187, 2001.

    Google Scholar 

  10. B. Luo, A. Robles-Kelly, A. Torsello, R.C. Wilson, E. R. Hancock, Clustering Shock Trees. Proceedings of the 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, pp. 217–228. 2001.

    Google Scholar 

  11. B. Luo, R.C. Wilson, E. R. Hancock, Spectral Feature Vectors for Graph Clustering. Proceeding of the Joint IAPR International Workshops SSPR and SPR, pp. 83–93. 2002.

    Google Scholar 

  12. J.J. McGregor, Backtrack Search Algorithms and the Maximal Common Subgraph Problem, Software Practice and Experience, Vol. 12, pp. 23–34, 1982.

    Article  MATH  Google Scholar 

  13. D. Seong, H. S. Kim, K.H. Park, Incremental clustering of attributed graphs. IEEE Transactions on Systems, Man and Cybernetics. Vol. 23-5, pp. 1399–1411. 1993.

    Article  Google Scholar 

  14. A. Sanfeliu, F. Serratosa, R. Alquezar, Clustering of attributed graphs and unsupervised synthesis of function-described graphs. Proceedings of 15th International Conference on Pattern Recognition, pp. 1022–1025. 2000.

    Google Scholar 

  15. A. Sanfeliu, F. Serratosa, R. Alquezar, Synthesis of Function-Described Graphs and Clustering of Attributed Graphs. International Journal of Pattern Recognition and Artificial-Intelligence, Vol.16, No.6, pp. 621–655. 2002.

    Article  Google Scholar 

  16. A.K.C. Wong, J. Constant, M.L. You, Random Graphs, in Syntactic and Structural Pattern Recognition-Theory and Applications 4:197–234, H. Bunke and A. Sanfeliu (Eds.), World Sci. Pub. Co., 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bunke, H., Foggia, P., Guidobaldi, C., Vento, M. (2003). Graph Clustering Using the Weighted Minimum Common Supergraph. In: Hancock, E., Vento, M. (eds) Graph Based Representations in Pattern Recognition. GbRPR 2003. Lecture Notes in Computer Science, vol 2726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45028-9_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-45028-9_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40452-1

  • Online ISBN: 978-3-540-45028-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics