Skip to main content

High Performance Quantum Cascade Lasers and Their Applications

  • Chapter
  • First Online:
Solid-State Mid-Infrared Laser Sources

Part of the book series: Topics in Applied Physics ((TAP,volume 89))

Abstract

This chapter describes our results on distributed feedback quantum cascade lasers in the wavelength range around 5 μm and around 10 μm. We present two different gain region designs; one with three quantum wells and one with a double phonon resonance. Several fabrication techniques are also presented and analysed in terms of fabrication simplicity, performance, yield, and reliability. We will outline typical results for all devices and also show some interesting applications. In light of this, the chapter is organized as follows: We start with a brief introduction; in Sect. 2, the advantages and drawbacks of the different gain regions are outlined; Sect. 3 deals with the fabrication technology which was required to build these lasers; in Sect. 4, we present the measurement results on the devices; and finally, Sect. 5 describes two examples of interesting applications in the fields of optical spectroscopy and optical data transmission. The chapter ends with a brief conclusion and an outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A. L. Hutchinson, A.Y. Cho: Quantum cascade laser, Science 264, 553–556 (1994)

    Article  ADS  Google Scholar 

  2. J. Faist, F. Capasso, C. Sirtori, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, S. Chu, A.Y. Cho: High power mid-infrared (λ ∼ 5 μm) quantum cascade lasers operating above room temperature, Appl. Phys. Lett.68, 3680–3682 (1996)

    Article  ADS  Google Scholar 

  3. C. Sirtori, J. Faist, F. Capasso, D.L. Sivco, A.L. Hutchinson, S. Chu, A.Y. Cho: Continuous wave operation of mid-infrared (7.4-8.6 μm) quantum cascade lasers up to 110 K temperature, Appl. Phys. Lett. 68, 1745–1747 (1996)

    Article  ADS  Google Scholar 

  4. R. F. Kazarinov, R. A. Suris: Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice, Sov. Phys. Semicond. 5, 707–709 (1971)

    Google Scholar 

  5. T. Ando, A.B. Fowler, F. Stern: Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54, 437–446 (1982)

    Article  ADS  Google Scholar 

  6. L. C. West, S. J. Eglash: First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well, Appl. Phys. Lett. 46, 1156–1158 (1985)

    Article  ADS  Google Scholar 

  7. R. Ferreira, G. Bastard: Evaluation of some scattering times for electrons in unbiased and biased single-and multiple-quantum-well structures, Phys. Rev. B 40, 1074–1086 (1989)

    Article  ADS  Google Scholar 

  8. F. Capasso, K. Mohammed, A.Y. Cho: Resonant tunneling through double barriers, perpendicular quantum transport phenomena in superlattices, and their device applications, IEEE J. Quantum Electron. 22, 1853–1869 (1986)

    Article  ADS  Google Scholar 

  9. A. Cho: Molecular Beam Epitaxy (AIP, Woodbury, NW 1994)

    Google Scholar 

  10. H. Morkoc, C. Hopkins, C. A. Evans, Jr., A.Y. Cho: Chromium and tellurium redistribution in GaAs and Al0.3Ga0.7As grown by molecular beam epitaxy, J. Appl. Phys. 51, 5986–5991 (1980)

    Article  ADS  Google Scholar 

  11. M.Y. Yen, B.F. Levine, C.G. Bethea, K.K. Choi, A.Y. Cho: Molecular beam epitaxial growth and optical properties of InAs1 x Sb x in 8-12 μm wavelength range, Appl. Phys. Lett. 50, 927–929 (1987)

    Article  ADS  Google Scholar 

  12. R.R. Saxena, J.E. Fouquet, V.M. Sardi, R.L. Moon: High quality InP layers grown by organometallic vapor phase epitaxy using tertiarybutylphosphine and phosphine, Appl. Phys. Lett. 53, 304–306 (1988)

    Article  ADS  Google Scholar 

  13. T.Y. Wang, K.L. Fry, A. Persson, E.H. Reihlen, G.B. Stringfellow: Atomic steps in thin GaInAs/lnP quantum-well structures grown by organometallic vapor phase epitaxy, J. Appl. Phys. 63, 2674–2680 (1988)

    Article  ADS  Google Scholar 

  14. J. Faist, F. Capasso, C. Sirtori, D.L. Sivco, A.L. Hutchinson, A.Y. Cho: Continuous wave operation of a vertical transition quantum cascade laser above T = 80 K, Appl. Phys. Lett. 67, 3057–3059 (1995)

    Article  ADS  Google Scholar 

  15. C. Gmachl, A. Tredicucci, F. Capasso, A.L. Hutchinson, D.L. Sivco, J. N. Baillargeon, A. Y. Cho: High-power λ ∼ 8 μm quantum cascade laser with near optimum performance, Appl. Phys. Lett. 72, 3130–3132 (1998)

    Article  ADS  Google Scholar 

  16. J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A.L. Hutchinson, A.Y. Cho: High-power continuous-wave quantum cascade lasers, IEEE J. Quantum Electron. 34, 336–343 (1998)

    Article  ADS  Google Scholar 

  17. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, A. Y. Cho: Pulsed and continuous-wave operation of long wavelength infrared (λ = 9.3 μm) quantum cascade lasers, IEEE J. Quantum Electron. 33, 89–93 (1997)

    Article  ADS  Google Scholar 

  18. C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J.N. Baillargeon, S. Chu, A.Y. Cho: Continuous-wave and high-power pulsed operation of index-coupled distributed quantum cascade laser at λ ∼ 8.5 μm, Appl. Phys. Lett. 72, 1430–1432 (1998)

    Article  ADS  Google Scholar 

  19. J. Faist, C. Sirtori, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho: High-power long-wavelength (λ = 11.5 μm) quantum cascade lasers operating above room temperature, IEEE Photon. Technol. Lett. 10, 1100–1102 (1998)

    Article  ADS  Google Scholar 

  20. C. Gmachl, A.M. Sergent, A. Tredicucci, F. Capasso, A.L. Hutchinson, D.L. Sivco, J. N. Baillargeon, S. Chu, A.Y. Cho: Improved CW operation of quantum cascade lasers with epitaxial-side heat-sinking, IEEE Photon. Technol. Lett. 11, 1369–1371 (1999)

    Article  ADS  Google Scholar 

  21. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D.L. Sivco, J.N. Baillargeon, A.Y. Cho: Distributed feedback quantum cascade lasers, Appl. Phys. Lett. 70, 2670–2672 (1997)

    Article  ADS  Google Scholar 

  22. C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D.L. Sivco, S. Chu, A. Y. Cho: Complex-coupled quantum cascade distributed-feedback laser, IEEE Photon. Technol. Lett. 9, 1090–1092 (1997)

    Article  ADS  Google Scholar 

  23. C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle: GaAs/AlxGa1-xAs quantum cascade lasers, Appl. Phys. Lett. 73, 3486–3488 (1998)

    Article  ADS  Google Scholar 

  24. C. Gmachl, F. Capasso, E. Narimanov, J. U. Nöckel, D. Stone, J. Faist, D.L. Sivco, A. Y. Cho: High-power directional emission from microlasers with chaotic resonators, Science 280, 1556–1564 (1998)

    Article  ADS  Google Scholar 

  25. C. Gmachl, H. M. Ng, A.Y. Cho: Intersubband absorption in degenerately doped GaN/AlxGa1-xN coupled double quantum wells, Appl. Phys. Lett. 79, 1590–1592 (2001)

    Article  ADS  Google Scholar 

  26. D. Hofstetter, L. Diehl, J. Faist, W. J. Schaff, J. Hwang, L.F. Eastman, C. Zellweger: Midinfrared intersubband absorption on AlGaN/GaN-based high-electron-mobility transistors, Appl. Phys. Lett. 80, 2991–2994 (2002)

    Article  ADS  Google Scholar 

  27. R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A.L. Hutchinson, D.L. Sivco, A.Y. Cho: High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers, IEE Electron. Lett. 37, 102–103 (2001)

    Article  Google Scholar 

  28. S. Blaser, D. Hofstetter, M. Beck, J. Faist: Free-space optical data link using Peltier-cooled quantum cascade laser, IEE Electron. Lett. 37, 778–780 (2001)

    Article  Google Scholar 

  29. D. Hofstetter, M. Beck, J. Faist, M. Nägele, M.W. Sigrist: Photoacoustic spec-troscopy with quantum cascade distributed-feedback lasers, Opt. Lett. 26, 887–889 (2001)

    Google Scholar 

  30. B.A. Paldus, T.G. Spence, R.N. Zare, J. Oomens, F. Harren, D.H. Parker, C. Gmachl, F. Capasso, D.L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A.Y. Cho: Photoacoustic spectroscopy using quantum-cascade lasers, Opt. Lett. 24, 178–180 (1999)

    Article  ADS  Google Scholar 

  31. B. Ishaug, W. Hwang, J. Um, B. Guo, H. Lee, C. Lin: Continuous-wave operation of a 5.2 μm quantum-cascade laser up to 210 K, Appl. Phys. Lett. 79, 1745–1747 (2001)

    Article  ADS  Google Scholar 

  32. D. Hofstetter, M. Beck, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior: Continuous wave operation of a 9.3 μm quantum cascade laser on a Peltier cooler, Appl. Phys. Lett. 78, 1964–1966 (2001)

    Article  ADS  Google Scholar 

  33. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior: Continuous-wave operation of a mid-infrared semiconductor laser at room-temperature, Science 295, 301–305 (2002)

    Article  ADS  Google Scholar 

  34. H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, C. Sirtori: 300 K operation of a GaAs-based quantum-cascade laser at λ ∼ 9 μm, Appl. Phys. Lett. 75, 3529–3531 (2001)

    Article  ADS  Google Scholar 

  35. S. Anders, W. Schrenk, E. Gornik, G. Strasser: Room-temperature emission of GaAs/AlGaAs superlattice quantum-cascade lasers at 12.6 μm, Appl. Phys. Lett. 80, 1864–1866 (2002)

    Article  ADS  Google Scholar 

  36. W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, E. Gornik: GaAs/AlGaAs distributed feedback quantum cascade lasers, Appl. Phys. Lett. 76, 253–255 (2000)

    Article  ADS  Google Scholar 

  37. R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A. Giles, G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi: Terahertz heterostructure-semiconductor laser, Nature 417, 156–159 (2002)

    Article  ADS  Google Scholar 

  38. M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie: Low threshold terahertz quantum cascade lasers, Appl. Phys. Lett. 81, 1381–1383 (2002)

    Article  ADS  Google Scholar 

  39. D. Hofstetter, J. Faist, M. Beck, A. Müller, U. Oesterle: Demonstration of high-performance 10.16 μm quantum cascade distributed feedback lasers fabricated without epitaxial regrowth, Appl. Phys. Lett. 75, 665–667 (1999)

    Article  ADS  Google Scholar 

  40. G.A. Evans, D.P. Bour, N.W. Carlson, J. M. Hammer, M. Lurie, J.K. Butler, S.L. Palfrey, R. Amantea, L.A. Carr, F. Z. Hawrylo, E. A. James, J. B. Kirk, S.K. Liew, W. F. Reichert: Coherent, monolithic two-dimensional strained In-GaAs/GaAs quantum well laser arrays using grating surface emission, Appl. Phys. Lett. 55, 2721–2723 (1989)

    Article  ADS  Google Scholar 

  41. P. Repond, T. Marty, M.W. Sigrist: A continuously tunable CO2 laser for photoacoustic detection of trace gases, Helv. Phys. Acta 65, 828–829 (1992)

    Google Scholar 

  42. M. Nägele, D. Hofstetter, J. Faist, M. W. Sigrist: Low power quantum-cascade laser photoacoustic spectrometer for trace-gas monitoring, Analytical Sci. 17, 497–499 (2001)

    Google Scholar 

  43. P. Hess: Principles of photoacoustic and photothermal detection of gases, in Principles and Perspectives of Photothermal and Photoacoustic Phenomena IV, ed. by A. Mandelis (Elsevier, New-York 1992) Chap. 4

    Google Scholar 

  44. R. Köhler, C. Gmachl, A. Tredicucci, F. Capasso, D.L. Sivco, S. Chu, A. Y. Cho: Single-mode tunable pulsed, and continuous wave quantum-cascade distributed feedback lasers at λ ∼ 4.6-4.7 μm, Appl. Phys. Lett. 76, 1092–1094 (2000)

    Article  ADS  Google Scholar 

  45. D. Hofstetter, T. Aellen, M. Beck, J. Faist: High average power first-order distributed feedback quantum cascade lasers, IEEE Photon. Technol. Lett. 12, 1610–1612 (2000)

    Article  ADS  Google Scholar 

  46. J. Faist, F. Capasso, D.L. Sivco, A.L. Hutchinson, S. Chu, A.Y. Cho: Short wavelength (λ ∼ 3.4 μm) quantum cascade laser based on strained compensated InGaAs/AlInAs, Appl. Phys. Lett. 72, 680–682 (1998)

    Article  ADS  Google Scholar 

  47. G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, A.Y. Cho: High-power infrared (8-micrometer wavelength) superlattice lasers, Science 276, 773–776 (1997)

    Article  Google Scholar 

  48. A. Tahraoui, A. Matlis, S. Slivken, J. Diaz, M. Razeghi: High-performance quantum cascade lasers (λ ∼ 11 μm) operating at high temperature (T ≥425 K), Appl. Phys. Lett. 78, 416–418 (2001)

    Article  ADS  Google Scholar 

  49. S. Bernegger, M.W. Sigrist: CO-laser photoacoustic spectroscopy of gases and vapours for trace gas analysis, Infrared Phys. 30, 375–429 (1990)

    Article  ADS  Google Scholar 

  50. B. Mizaikoff, C.S. Murthy, M. Kraft, V. Pustogow, A. Müller, D. Hofstetter, J. Faist, N. Croitoru: Novel mid-infrared gas sensors based on hollow waveguides and quantum cascade lasers, in Proc. PITTCON 2000 (New Orleans, LA 2000)

    Google Scholar 

  51. R. Kästle, M.W. Sigrist: CO-laser photoacoustic spectroscopy on the dimeriza-tion of fatty acid molecules, J. Phys. IV (Paris) Colloque C7, 491–494 (1994)

    Google Scholar 

  52. A. Müller, M. Beck, J. Faist, U. Oesterle: Electrically tunable, room-temperature quantum-cascade lasers, Appl. Phys. Lett. 75, 1509–1511 (1999)

    Article  ADS  Google Scholar 

  53. A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, A. Y. Cho: High performance interminiband quantum cascade lasers with graded superlat-tices, Appl. Phys. Lett. 73, 2101–2103 (1998)

    Article  ADS  Google Scholar 

  54. D. Hofstetter, M. Beck, T. Aellen, J. Faist: High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm, Appl. Phys. Lett. 86, 396–398 (2001)

    Article  ADS  Google Scholar 

  55. C. H. Wu, P. S. Zory, M. A. Emanuel: Contact reflectivity effects on thin p-clad InGaAs single quantum-well lasers, IEEE Photon. Technol. Lett. 6, 1427–1429 (1994)

    Article  ADS  Google Scholar 

  56. R. L. Thornton, W. J. Mosby, H. F. Chung: Surface skimming buried heter-ostructure laser with applications to optoelectronic integration, Appl. Phys. Lett. 59, 513–515 (1991)

    Article  ADS  Google Scholar 

  57. D. Hofstetter, J. Faist, M. Beck, U. Oesterle: Surface-emitting 10.1 μm quantum-cascade distributed feedback lasers, Appl. Phys. Lett. 75, 3769–3771 (1999)

    Article  ADS  Google Scholar 

  58. W. Streifer, R. D. Burnham, D.R. Scifres: Radiation losses and longitudinal mode selection in distributed feedback lasers, IEEE J. Quantum Electron. 12, 737–739 (1976)

    Article  ADS  Google Scholar 

  59. M. Tacke: New developments and applications of tunable IR lead salt lasers, Infrared Phys. Technol. 36, 447–463 (1995)

    Article  ADS  Google Scholar 

  60. G. Springholz, T. Schwarzl, M. Aigle, H. Pascher, W. Heiss: 4.8 μm vertical emitting PbTe quantum-well lasers based on high-finesse EuTe/Pb1-x EuxTe microcavities, Appl. Phys. Lett. 76, 1807–1809 (2000)

    Article  ADS  Google Scholar 

  61. A. Olafsson, M. Hammerich, J. Bülow, J. Henningsen: Photoacoustic detection of NH3 in power plant emission with a CO2 laser, Appl. Phys. B 49, 91–97 (1989)

    Article  ADS  Google Scholar 

  62. P. Repond, M.W. Sigrist: Continuously tunable high pressure CO2 laser for spectroscopic studies on trace gases, IEEE J. Quantum Electron. 32, 1549–1556 (1996)

    Article  ADS  Google Scholar 

  63. D. Richter, D.G. Lancaster, R.F. Curl, W. Neu, F.K. Tittel: Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3, Appl. Phys. B 67, 347–349 (1998)

    Article  ADS  Google Scholar 

  64. R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A.Y. Cho, H. C. Liu: Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities, Science 290, 1739–1742 (2000)

    Article  ADS  Google Scholar 

  65. D. Herriot, H. Kogelnik, R. Kompner: Off-axis paths in spherical mirror interferometers, Appl. Opt. 3, 523–525 (1964)

    Article  ADS  Google Scholar 

  66. A. Karbach, P. Hess: Photoacoustic signal in a cylindrical resonator: Theory and laser experiments for CH4 and C2H6, J. Chem. Phys. 84, 2945–2967 (1986)

    Article  ADS  Google Scholar 

  67. M. Beck, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior: Buried heter-ostructure quantum cascade lasers with a large optical cavity waveguide, IEEE Photon. Technol. Lett. 12, 1450–1452 (2000)

    Article  ADS  Google Scholar 

  68. N. Mustafa, L. Pesquera, C. Cheung, K.A. Stone: Terahertz bandwidth prediction for amplitude modulation response of unipolar intersubband semiconductor lasers, IEEE Photon. Technol. Lett. 11, 527–529 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hofstetter, D., Faist, J. (2003). High Performance Quantum Cascade Lasers and Their Applications. In: Sorokina, I.T., Vodopyanov, K.L. (eds) Solid-State Mid-Infrared Laser Sources. Topics in Applied Physics, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36491-9_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-36491-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00621-3

  • Online ISBN: 978-3-540-36491-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics