Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 703))

  • 4123 Accesses

Abstract

An algorithm to compute classical trajectories using boundary value formulation is presented and discussed. It is based on an optimization of a functional of the complete trajectory. This functional can be the usual classical action, and is approximated by discrete and sequential sets of coordinates. In contrast to initial value formulation, the pre-specified end points of the trajectories are useful for computing rare trajectories. Each of the boundary-value trajectories ends at desired products. A difficulty in applying boundary value formulation is the high computational cost of optimizing the whole trajectory in contrast to the calculation of one temporal frame at a time in initial value formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Verlet (1967) Computer experiments on classical fluids I. Thermodynamics properties of Lennard Jones molecules. Phys. Rev. 98, p. 159

    Google Scholar 

  2. D. Chandler (1978) Statistical mechanics of isomerization dynamics in liquids and transition-state approximation. J. Chem. Phys. 68, pp. 2959–2970

    Article  ADS  Google Scholar 

  3. C. Dellago, P. G. Bolhuis, and D. Chandler (1999) On the calculation of reaction rates in the transition path ensemble. J. Chem. Phys. 110, pp. 6617–6625

    Article  ADS  Google Scholar 

  4. L. D. Landau and E. M. Lifshitz (2000) Mechanics, third edition, Butterworth- Heinenann, Oxford, Chap. 1

    Google Scholar 

  5. L. D. Landau and E. M. Lifshitz (2000) Mechanics, third edition, Butterworth- Heinenann, Oxford, pp. 140–142

    Google Scholar 

  6. R. Olender and R. Elber (1996) Calculation of classical trajectories with a very large time step: Formalism and numerical examples. J. Chem. Phys. 105, pp. 9299–9315

    Article  ADS  Google Scholar 

  7. R. Elber, J. Meller and R. Olender (1999) A stochastic path approach to compute atomically detailed trajectories: Application to the folding of C peptide. J. Phys. Chem. B 103, pp. 899–911

    Article  Google Scholar 

  8. K. Siva and R. Elber (2003) Ion permeation through the gramicidin channel: Atomically detailed modeling by the stochastic difference equation. Proteins, Structure, Function and Genetics 50, pp. 63–80

    Article  Google Scholar 

  9. A. Ulitksy and R. Elber (1990) A new technique to calculate the steepest descent paths in flexible polyatomic systems. J. Chem. Phys. 96, p. 1510

    ADS  Google Scholar 

  10. E. Weinan, R. Weiqing, and E. Vanden-Eijnden (2002) String method for the study of rare events. Physical Review B 66, p. 52301

    Article  Google Scholar 

  11. H. Jonsson, G. Mills, and K. W. Jacobsen (1998) Nudge Elastic Band Method for Finding Minimum Energy Paths of Transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations. Edited by B.J. Berne, G. Ciccotti, D.F. Coker, World Scientific, p. 385.

    Google Scholar 

  12. C. Lanczos (1970) The variational principles of mechanics. University of Toronto Press

    Google Scholar 

  13. L. Onsager and S. Machlup (1953) Phys. Rev. 91, p. 1505; ibid. (1953); 91, p. 1512

    Google Scholar 

  14. J. C. M. Uitdehaag, B. A. van der Veen, L. Dijkhuizen, R. Elber, and B. W. Dijkstra (2001) Enzymatic circularization of a malto-octaose linear chain studied by stochastic reaction path calculations on cyclodextrin glycosyltransferase. Proteins Structure Function and Genetics 43, pp. 327–335

    Article  Google Scholar 

  15. K. Siva and R. Elber (2003) Ion permeation through the gramicidin channel: Atomically detailed modeling by the Stochastic Difference Equation. Proteins Structure Function and Genetics 50, pp. 63–80

    Article  Google Scholar 

  16. D. Bai and R. Elber, Calculation of point-to-point short time and rare trajectories with boundary value formulation. J. Chemical Theory and Computation, 2, 484–494(2006)

    Google Scholar 

  17. A. Ghosh, R. Elber, and H. Scheraga (2002) An atomically detailed study of the folding pathways of Protein A with the Stochastic Difference Equation. Proc. Natl. Acad. Sci. 99, pp. 10394–10398

    Article  ADS  Google Scholar 

  18. A. Cárdenas and R. Elber (2003) Kinetics of Cytochrome C Folding: Atomically Detailed Simulations. Proteins, Structure Function and Genetics 51, pp. 245–257

    Article  Google Scholar 

  19. A. Cárdenas and R. Elber (2003) Atomically detailed simulations of helix formation with the stochastic difference equation. Biophysical Journal, 85, pp. 2919–2939

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Elber, R. (2006). Calculation of Classical Trajectories with Boundary Value Formulation. In: Ferrario, M., Ciccotti, G., Binder, K. (eds) Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 1. Lecture Notes in Physics, vol 703. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-35273-2_12

Download citation

Publish with us

Policies and ethics