Skip to main content

Tight-Binding DFT for Molecular Electronics (gDFTB)

  • Chapter
Introducing Molecular Electronics

Part of the book series: Lecture Notes in Physics ((LNP,volume 680))

Abstract

We present a detailed description of the implementation of the nonequilibrium Green’s function technique on the density-functional-based tightbinding simulation tool (gDFTB). This approach can be used to compute electronic transport in organic and inorganic molecular-scale devices. The tight-binding formulation gives an efficient computational tool able to handle a large number of atoms. The non-equilibrium Green’s functions are used to compute the electronic density self-consistently with the open-boundary conditions naturally encountered in transport problems and the boundary conditions imposed by the potentials at the contacts. The Hartree potential of the density-functional Hamiltonian is obtained by solving the three-dimensional Poisson’s equation involving the non-equilibrium charge density. This method can treat, within a unified framework, coherent and incoherent transport mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Joachim, J.K. Gimzewski, R.R. Schittler, C. Chavy: Electronic transparence of a single C60 molecule, Phys. Rev. Lett. 74, 2102 (1995)

    Article  ADS  Google Scholar 

  2. R.M. Metzger, B. Chen, U. Hopfner, M.V. Lakshmikantham, D. Vuillaume, T. Kawai, X.L. Wu, H. Tachibana, T.V. Hughes, H. Sakurai, J.W. Baldwin, C. Hosch, M.P. Cava, L. Brehmer, C.J. Ashwell: Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide, J. Am. Chem. Soc. 119, 10–455 (1997)

    Article  Google Scholar 

  3. C. Zhou, M.R. Deshpande, M.A. Reed, L. Jones, J.M. Tour: Conductance of a molecular junction, Appl. Phys. Lett. 71, 611 (1997)

    Article  ADS  Google Scholar 

  4. W. Tian, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson, C.P. Kubiak: Conductance spectra of molecular wires, J. Chem. Phys. 109, 2874 (1998)

    Article  ADS  Google Scholar 

  5. C.P. Collier, E.W. Wong, M. Belohradský, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, J.R. Heath: Electronically configurable molecular-based logic gates, Science 285, 391 (1999)

    Article  Google Scholar 

  6. B. Xu, N.J. Tao: Measurement of single-molecule resistance by repeated formation of molecular junctions, Science 301, 1221 (2003)

    Article  ADS  Google Scholar 

  7. J.F. Stoddart, J.R. Heath, R.S. Williams: More on molecular electronics, Science 303, 1136 (2004)

    Google Scholar 

  8. A. Nitzan, M.A. Ratner: Electron transport in molecular wire junctions, Science 300, 1384 (2003)

    Article  ADS  Google Scholar 

  9. A. Pecchia, A. Di Carlo: Atomistic theory of transport in organic and inorganic nanostructures, Rep. Prog. Phys. 67, 1497 (2004)

    Article  ADS  Google Scholar 

  10. T. Frauenheim, G. Seifert, M. Elstner, T. Niehaus, C. Kohler, M. Amkreutz, M. Sternberg, Z. Hajnal, A. Di Carlo, S. Suhai: Atomistic simulations of complex materials: ground-state and excited-state properties, J. Phys.: Condensed Matter 14, 3015 (2002)

    Article  ADS  Google Scholar 

  11. L.V. Keldysh: Diagram Technique for Nonequilibrium Processes, Sov. Phys. JEPT 20, 1018 (1965)

    MathSciNet  Google Scholar 

  12. S. Datta: Electronic Transport in Mesoscopic System (Cambridge University Press, -, 1995)

    Google Scholar 

  13. G. Seifert, H. Eshrig: LCAO-X alpha calculations of transition metal clusters, Phys. Stat. Sol.(b) 127, 573 (1985)

    Article  ADS  Google Scholar 

  14. D. Porezag, M.R. Pederson, T. Frauenheim, T. Köhler: Structure, stability and vibrational properties of polymerized C 60, Phys. Rev. B 52, 14 963 (1995)

    Article  Google Scholar 

  15. G. Seifert, D. Porezag, T. Frauenheim: Calculations of molecules clusters and solids with a simplified LCAO-LDA scheme quantum chemistry, Int. J.Q. Chem. 98, 185 (1996)

    Article  Google Scholar 

  16. M. Elstner, D. Prezag, G. Jugnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifer: Self-consistent charge density tight-binding method for simulation of complex materials properties, Phys. Rev. B 58, 7260 (1998)

    Article  ADS  Google Scholar 

  17. P. Maragakis, R.L. Barnett, E. Kaxiras, M. Elstner, T. Frauenheim: Electronic structure of overstretched dna, Phys. Rev. B 66, 241 104 (2002)

    Article  Google Scholar 

  18. W. Foulkes, R. Haydock: Tight-binding models and density-functional theory, Phys. Rev. B 39, 12–520 (1989)

    Article  Google Scholar 

  19. A. Svizhenko, M.P. Anantram, T.R. Govindan, B. Biegel, R. Venugopal: Two-dimensional quantum mechanical modeling of nanotransistors, J. Appl. Phys. 91, 2343 (2002)

    Article  ADS  Google Scholar 

  20. R.C. Bowen, G. Klimeck, R.K. Lake, W.R. Frensley, T. Moise: Quantitative resonant tunneling diode simulation, J. Appl. Phys. 81, 3207 (1997)

    Article  ADS  Google Scholar 

  21. T.N. Todorov: Tight-binding simulation of current-carrying nanostructures, J. Physics: Condens. Matter 14, 3049 (2002)

    Article  ADS  Google Scholar 

  22. F. Guinea, C. Tejedor, F. Flores, E. Louis: Effective two dimensional hamiltonian at surfaces, Phys. Rev. B 28, 4397 (1983)

    Article  ADS  Google Scholar 

  23. T.N. Todorov, J. Hoekstra, A.P. Sutton: Current-induced forces in atomic scale conductors, Phil. Mag. B 80, 421 (2000)

    Article  ADS  Google Scholar 

  24. S. Datta: Nanoscale device simulation: The green's function formalism, Superlattices and Microstructures 28, 253 (2000)

    Article  ADS  Google Scholar 

  25. H. Haung, A.P. Jauho: Quantum Kinetics in Transport and Optics of Semiconductors, Vol. 123 (Springer Series in Sol. State Sci., -, 1993)

    Google Scholar 

  26. A. Wacker, A.P. Jauho: Quantum transport: the link between standard approaches in superlattices, Phys. Rev. Lett. 80, 369 (1998)

    Article  ADS  Google Scholar 

  27. M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro: Density functional method for nonequilibrium electron transport, Phys. Rev. B 65, 165–401 (2002)

    Article  Google Scholar 

  28. C. Caroli, R. Combescot, P. Nozieres, D. Saint-James: Direct calculation of the tunneling current, J. Phys. C: Solid State Phys. 4, 916 (1971)

    Article  ADS  Google Scholar 

  29. Y. Xue, S. Datta, M.A. Ratner: First-principles based matrix green's function approach to molecular electronic devices: general formalism, Chem. Phys. 281, 151 (2002)

    Article  Google Scholar 

  30. A. Pecchia, M. Gheorghe, A. Di Carlo, P. Lugli: Modulation of the electronic transport properties of carbon nanotubes with adsorbed molecules, Synt. Met. 138, 89 (2002)

    Article  Google Scholar 

  31. J. Taylor, H. Guo, J. Wang: Ab initio modelling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63, 245–407 (2001)

    Google Scholar 

  32. M. Di Ventra, S.T. Pantelides, N.D. Lang: Current-induced forces in molecular wires, Phys. Rev. Lett. 88, 046–801 (2002)

    Google Scholar 

  33. K.J. Schafer, J.D. Garcia, N.H. Kwong: Self-consistent trajectories for surface scattering via classical-quantal coupling, Phys. Rev. B 36, 1872 (1987)

    Article  ADS  Google Scholar 

  34. T.N. Todorov: Time-dependent tight binding, J. Physics: Condens. Matter 13, 10–125 (2001)

    Google Scholar 

  35. A.P. Sutton, M.W. Finnis, D.G. Pettifor, Y. Ohta: The tight-binding bond model, J. Phys. C: Solid State Phys. 21, 35 (1988)

    Article  ADS  Google Scholar 

  36. M. Di Ventra, Y.C. Chen, T.N. Todorov: Are current-induced forces conservative?, Phys. Rev. Lett. 92, 176–803 (2004)

    Google Scholar 

  37. M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, J.M. Tour: Molecular random access memory cell, Appl. Phys. Lett. 78, 3735 (2001)

    Article  ADS  Google Scholar 

  38. J.M. Seminario, A.G. Zacarias, J.M. Tour: Theoretical study of a molecular resonant tunneling diode, J. Am. Chem. Soc. 122, 3015 (2000)

    Article  Google Scholar 

  39. J.M. Seminario, A.G. Zacarias, P.A. Derosa: Analysis of a dinitro based molecular device, J. Chem. Phys. 116, 1671 (2002)

    Article  ADS  Google Scholar 

  40. N. Mingo, K. Makoshi: Calculation of the inelastic scanning tunneling image of acetylene on Cu(100), Phys. Rev. Lett. 84, 3694 (2000)

    Article  ADS  Google Scholar 

  41. K. Stokbro, B.Y.K. Hu, C. Thirstrup, X.C. Xie: First-principles theory of inelastic currents in a scanning tunneling microscope, Phys. Rev. B 58, 8038 (1998)

    Article  ADS  Google Scholar 

  42. E.G. Emberly, G. Kirczenow: Landauer theory, inelastic scattering, and electron transport in molecular wires, Phys. Rev. B 61, 5740 (2000)

    Article  ADS  Google Scholar 

  43. H. Ness, A.J. Fisher: Coherent electron injection and transport in molecular wires: inelastic tunneling and electron-phonon interactions, Chem. Phys. 281, 279 (2002)

    Article  ADS  Google Scholar 

  44. B. Dong, H.L. Cui, X.L. Lei: Photon-phonon-assisted tunneling through a single molecule quantum dot, Phys. Rev. B 68, 205 315 (2004)

    Google Scholar 

  45. M. Galperin, M. Ratner, A. Nitzan: On the line widths of vibrational features in inelastic electron tunneling spectroscopy, Nano Lett. 4, 1605 (2004)

    Article  ADS  Google Scholar 

  46. Y. Yourdshahyan, H.K. Zhang, A.M. Rappe: n-alkyl thiol head-group interactions with the au(111) surface, Phys. Rev. B 63, 081 405R (2001)

    Article  Google Scholar 

  47. J. Gottshlck, B. Hammer: A density functional theory study of the adsorption of sulfur, marcapto, and methylthiolate on Au(111), J. Chem. Phys. 116, 784 (2002)

    Article  ADS  Google Scholar 

  48. W. Wang, T. Lee, I. Kretzschmar, M. Reed: Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer, Nano Lett. 4, 643 (2004)

    Article  ADS  Google Scholar 

  49. R.O. Jones, O. Gunnarsson: The density functional formalism, its applications and prospects, Rev. Mod. Phys. 61, 689 (1989)

    Article  ADS  Google Scholar 

  50. A. Szabo, N.S. Ostlund: Modern Quantum Chemistry (Dover, 1996)

    Google Scholar 

  51. G. Onida, L. Reining, A. Rubio: Electronic excitations: density-functional versus many-body green's function approaches, Rev. Mod. Phys. 74, 601 (2002)

    Article  ADS  Google Scholar 

  52. C.O. Almbladh, U. von Barth: Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues, Phys. Rev. B 31, 3231 (1985)

    Article  ADS  Google Scholar 

  53. J.P. Perdew: Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B 33, 8822 (1986)

    Article  ADS  Google Scholar 

  54. C. Lee, W. Yang, R.G. Parr: Development of the colle-salvetti correlation energy formula into a functional of the electron density, Phys. Rev. B 37, 785 (1987)

    Article  ADS  Google Scholar 

  55. A.D. Becke: Density-functional thermochemistry. the role of exact exchange, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  56. P. Delaney, J.C. Greer: Correlated electron transport in molecular electronics, Phys. Rev. Lett. 93, 036–805 (2004)

    Google Scholar 

  57. L. Hedin: New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem, Phys. Rev. 139, A796 (1965)

    Article  ADS  Google Scholar 

  58. T.A. Niehaus, M. Rohlfing, F. Della Sala, A. Di Carlo, T. Frauenheim: Quasiparticle energies for large molecules: a tight-binding gw approach, To appear on Phys. Rev. B pp. cond-mat/0411 024 (2004)

    Google Scholar 

  59. N.T. Maitra, I. Souza, K. Burke: Current-density functional theory of the response of solids, Phys. Rev. B 68, 045–109 (2003)

    Google Scholar 

  60. A. Pecchia, M. Gheorghe, A. Di Carlo, P. Lugli, T. Niehaus, R. Sholz: Role of thermal vibrations in molecular wire conduction, Phys. Rev. B 68, 235–321 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Di Carlo, A., Pecchia, A., Latessa, L., Frauenheim, T., Seifert, G. (2006). Tight-Binding DFT for Molecular Electronics (gDFTB). In: Cuniberti, G., Richter, K., Fagas, G. (eds) Introducing Molecular Electronics. Lecture Notes in Physics, vol 680. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31514-4_6

Download citation

Publish with us

Policies and ethics