Skip to main content

The Structural Interactions Between T Cell Receptors and MHC-Peptide Complexes Place Physical Limits on Self-Nonself Discrimination

  • Chapter
Molecular Mimicry: Infection-Inducing Autoimmune Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 296))

Abstract

The activation and expansion of T cells in an antimicrobial immune response is based on the ability of T cell receptors (TCR) to discriminate between MHC-bound peptides derived from different microbial agents as well as self-proteins. However, the specificity of T cells is constrained by the limited number of peptide side chains that are available for TCR binding. By considering the structural requirements for peptide binding to MHC molecules and TCR recognition of MHC-peptide complexes, we demonstrated that human T cell clones could recognize a number of peptides from different organisms that were remarkably distinct in their primary sequence. These peptides were particularly diverse at those sequence positions buried in pockets of the MHC binding site, whereas a higher degree of similarity was present at a limited number of peptide residues that created the interface with the TCR. These T cell clones had been isolated from multiple sclerosis patients with human myelin basic protein, demonstrating that activation of such autoreactive T cells by microbial peptides with sufficient structural similarity may contribute to the disease process. Similar findings have now been made for a variety of human and murine T cell clones, indicating that specificity and cross-reactivity are inherent properties of TCR recognition. The observations that particular TCR are highly sensitive to changes at particular peptide positions but insensitive to many other changes in peptide sequence are not contradictory, but rather the result of structural interactions in which a relatively flat TCR surface contacts a limited number of side chains from a peptide that is deeply embedded in the MHC binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alam S.M., Travers P.J., Wung J.L., Nasholds W., Redpath S., Jameson S.C., Gascoigne N.R. 1996. T-cell-receptor affinity and thymocyte positive selection. Nature 381, 616–620

    Article  PubMed  CAS  Google Scholar 

  • Ausubel L.J., Kwan C.K., Sette A., Kuchroo V., Hafler D.A. 1996. Complementary mutations in an antigenic peptide allow for crossreactivity of autoreactive T-cell clones. Proc. Natl. Acad. Sci. U S A 93, 15317–15322

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj V., Kumar V., Geysen H.M., Sercarz E.E. 1993. Degenerate recognition of a dissimilar antigenic peptide by myelin basic protein-reactive T cells. Implications for thymic education and autoimmunity. J. Immunol. 151, 5000–5010

    PubMed  CAS  Google Scholar 

  • Brehm M.A., Pinto A.K., Daniels K.A., Schneck J.P., Welsh R.M., Selin L.K. 2002. T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens. Nat. Immunol. 3, 627–634

    PubMed  CAS  Google Scholar 

  • Brown J.H., Jardetzky T.S., Gorga J.C., Stern L.J., Urban R.G., Strominger J.L., Wiley D.C. 1993. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364, 33–39

    Article  PubMed  CAS  Google Scholar 

  • Burrows S.R., Khanna R., Burrows J.M., Moss D.J. 1994. An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) cross-reactive with a single Epstein-Barr virus CTL epitope: implications for graft-versus-host disease. J. Exp. Med. 179, 1155–1161

    Article  PubMed  CAS  Google Scholar 

  • Chicz R.M., Urban R.G., Gorga J.C., Vignali D.A., Lane W.S., Strominger J.L. 1993. Specificity and promiscuity among naturally processed peptides bound to HLADR alleles. J. Exp. Med. 178, 27–47

    Article  PubMed  CAS  Google Scholar 

  • Datta A.K., Feighny R.J., Pagano J.S. 1980. Induction of Epstein-Barr virus-associated DNA polymerase by 12-O-tetradecanoylphorbol-13-acetate. Purification and characterization. J. Biol. Chem. 255, 5120–5125

    PubMed  CAS  Google Scholar 

  • Ding Y.H., Smith K.J., Garboczi D.N., Utz U., Biddison W.E., Wiley D.C. 1998. Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids. Immunity 8, 403–411

    Article  PubMed  CAS  Google Scholar 

  • Dutoit V., Rubio-Godoy V., Pittet M.J., Zippelius A., Dietrich P.Y., Legal F.A., Guillaume P., Romero P., Cerottini J.C., Houghten R.A., Pinilla C., Valmori D. 2002. Degeneracy of antigen recognition as the molecular basis for the high frequency of naive A2/Melan-a peptide multimer(+) CD8(+) T cells in humans. J. Exp. Med. 196, 207–216

    Article  PubMed  CAS  Google Scholar 

  • Evavold B.D., Sloan-Lancaster J., Wilson K.J., Rothbard J.B., Allen P.M. 1995. Specific T cell recognition of minimally homologous peptides: evidence for multiple endogenous ligands. Immunity 2, 655–663

    Article  PubMed  CAS  Google Scholar 

  • Fujinami R.S., Oldstone M.B. 1985. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 230, 1043–1045

    PubMed  CAS  Google Scholar 

  • Garboczi D.N., Ghosh P., Utz U., Fan Q.R., Biddison W.E., Wiley D.C. 1996. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141

    Article  PubMed  CAS  Google Scholar 

  • Garcia K.C., Degano M., Pease L.R., Huang M., Peterson P.A., Teyton L., Wilson I.A. 1998. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279, 1166–1172

    Article  PubMed  CAS  Google Scholar 

  • Gautam A.M., Liblau R., Chelvanayagam G., Steinman L., Boston T. 1998. Aviral peptide with limited homology to a self peptide can induce clinical signs of experimental autoimmune encephalomyelitis. J. Immunol. 161, 60–64

    PubMed  CAS  Google Scholar 

  • Gautam A.M., Lock C.B., Smilek D.E., Pearson C.I., Steinman L., McDevitt H.O. 1994. Minimum structural requirements for peptide presentation by major histocompatibility complex class II molecules: implications in induction of autoimmunity. Proc. Natl. Acad. Sci. U S A 91, 767–771

    PubMed  CAS  Google Scholar 

  • Grogan J.L., Kramer A., Nogai A., Dong L., Ohde M., Schneider-Mergener J., Kamradt T. 1999. Cross-reactivity of myelin basic protein-specific T cells with multiple microbial peptides: experimental autoimmune encephalomyelitis induction in TCR transgenic mice. J. Immunol. 163, 3764–3770

    PubMed  CAS  Google Scholar 

  • Hagerty D.T., Allen P.M. 1995. Intramolecular mimicry. Identification and analysis of two cross-reactive T cell epitopes within a single protein. J. Immunol. 155, 2993–3001

    PubMed  CAS  Google Scholar 

  • Hahn M., Nicholson M.J., Pyrdol J., and Wucherpfennig K.W. 2005. Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor. Nat. Immunol 6, 490–496.

    Article  PubMed  CAS  Google Scholar 

  • Hammer J., Valsasnini P., Tolba K., Bolin D., Higelin J., Takacs B., Sinigaglia F. 1993. Promiscuous and allele-specific anchors in HLA-DR-binding peptides. Cell 74, 197–203

    Article  PubMed  CAS  Google Scholar 

  • Hausmann S., Biddison W.E., Smith K.J., Ding Y.H., Garboczi D.N., Utz U., Wiley D.C., Wucherpfennig K.W. 1999b. Peptide recognition by two HLA-A2/Tax11-19-specific T cell clones in relationship to their MHC/peptide/TCR crystal structures. J. Immunol. 162, 5389–5397

    PubMed  CAS  Google Scholar 

  • Hausmann S., Martin M., Gauthier L., Wucherpfennig K.W. 1999a. Structural features of autoreactive TCR that determine the degree of degeneracy in peptide recognition. J. Immunol. 162, 338–344

    PubMed  CAS  Google Scholar 

  • Hemmer B., Fleckenstein B.T., Vergelli M., Jung G., McFarland H., Martin R., Wiesmuller K.H. 1997. Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J. Exp. Med. 185, 1651–1659

    Article  PubMed  CAS  Google Scholar 

  • Hennecke J., Carfi A., and Wiley D.C. 2000. Structure of a covalently stabilized complex of a human αβ T-cell receptor, influenza HA peptide and MHC class II molecule, HLA-DR1. Embo J 19, 5611–5624.

    Article  PubMed  CAS  Google Scholar 

  • Hunt D.F., Michel H., Dickinson T.A., Shabanowitz J., Cox A.L., Sakaguchi K., Appella E., Grey H.M., Sette A. 1992. Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. Science 256, 1817–1820

    PubMed  CAS  Google Scholar 

  • Ignatowicz L., Kappler J., Marrack P. 1996. The repertoire of T cells shaped by a single MHC/peptide ligand. Cell 84, 521–529

    Article  PubMed  CAS  Google Scholar 

  • Ignatowicz L., Rees W., Pacholczyk R., Ignatowicz H., Kushnir E., Kappler J., Marrack P. 1997. T cells can be activated by peptides that are unrelated in sequence to their selecting peptide. Immunity 7, 179–186

    Article  PubMed  CAS  Google Scholar 

  • Jameson S.C., Hogquist K.A., Bevan M.J. 1994. Specificity and flexibility in thymic selection. Nature 369, 750–752

    Article  PubMed  CAS  Google Scholar 

  • Lang H.L., Jacobsen H., Ikemizu S., Andersson C., Harlos K., Madsen L., Hjorth P., Sondergaard L., Svejgaard A., Wucherpfennig K., Stuart D.I., Bell J.I., Jones E.Y., Fugger L. 2002. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat. Immunol. 3, 940–943

    Article  PubMed  CAS  Google Scholar 

  • Lenz D.C., Lu L., Conant S.B., Wolf N.A., Gerard H.C., Whittum-Hudson J.A., Hudson A.P., Swanborg R.H. 2001. A Chlamydia pneumoniae-specific peptide induces experimental autoimmune encephalomyelitis in rats. J. Immunol. 167, 1803–1808

    PubMed  CAS  Google Scholar 

  • Loftus D.J., Castelli C., Clay T.M., Squarcina P., Marincola F.M., Nishimura M.I., Parmiani G., Appella E., Rivoltini L. 1996. Identification of epitope mimics recognized by CTL reactive to the melanoma/melanocyte-derived peptide MART-1(27–35). J. Exp. Med. 184, 647–657

    Article  PubMed  CAS  Google Scholar 

  • Mason D. 1998. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404

    Article  PubMed  CAS  Google Scholar 

  • Misko I.S., Cross S.M., Khanna R., Elliott S.L., Schmidt C., Pye S.J., Silins S.L. 1999. Crossreactive recognition of viral, self, and bacterial peptide ligands by human class I-restricted cytotoxic T lymphocyte clonotypes: implications for molecular mimicry in autoimmune disease. Proc. Natl. Acad. Sci. U S A 96, 2279–2284

    Article  PubMed  CAS  Google Scholar 

  • Mokhtarian F., Zhang Z., Shi Y., Gonzales E., Sobel R.A. 1999. Molecular mimicry between a viral peptide and amyelin oligodendrocyte glycoprotein peptide induces autoimmune demyelinating disease in mice. J. Neuroimmunol. 95, 43–54

    Article  PubMed  CAS  Google Scholar 

  • Olson J.K., Croxford J.L., Calenoff M.A., Dal Canto M.C., Miller S.D. 2001. A virus-induced molecular mimicry model of multiple sclerosis. J. Clin. Invest. 108, 311–318

    Article  PubMed  CAS  Google Scholar 

  • Olson J.K., Eagar T.N., Miller S.D. 2002. Functional activation of myelin-specific T cells by virus-induced molecular mimicry. J. Immunol. 169, 2719–2726

    PubMed  CAS  Google Scholar 

  • Panoutsakopoulou V., Sanchirico M.E., Huster K.M., Jansson M., Granucci F., Shim D.J., Wucherpfennig K.W., Cantor H. 2001. Analysis of the relationship between viral infection and autoimmune disease. Immunity 15, 137–147

    Article  PubMed  CAS  Google Scholar 

  • Reay P.A., Kantor R.M., Davis M.M. 1994. Use of global amino acid replacements to define the requirements for MHC binding and T cell recognition of moth cytochrome c (93–103). J. Immunol. 152, 3946–3957

    PubMed  CAS  Google Scholar 

  • Rees J.H., Soudain S.E., Gregson N.A., Hughes R.A. 1995. Campylobacter jejuni infection and Guillain-Barre syndrome. N. Engl. J. Med. 333, 1374–1379

    Article  PubMed  CAS  Google Scholar 

  • Sebzda E., Wallace V.A., Mayer J., Yeung R.S., Mak T.W., Ohashi P.S. 1994. Positive and negative thymocyte selection induced by different concentrations of a single peptide. Science 263, 1615–1618

    PubMed  CAS  Google Scholar 

  • Smith K.J., Pyrdol J., Gauthier L., Wiley D.C., Wucherpfennig K.W. 1998. Crystal structure of HLA-DR2 (DRA*0101, DRB1*1501) complexed with a peptide from human myelin basic protein. J. Exp. Med. 188, 1511–1520

    PubMed  CAS  Google Scholar 

  • Sone T., Tsukamoto K., Hirayama K., Nishimura Y., Takenouchi T., Aizawa M., Sasazuki T. 1985. Two distinct class II molecules encoded by the genes within HLA-DR subregion of HLA-Dw2 and Dw12 can act as stimulating and restriction molecules. J. Immunol. 135, 1288–1298

    PubMed  CAS  Google Scholar 

  • Stern L.J., Brown J.H., Jardetzky T.S., Gorga J.C., Urban R.G., Strominger J.L., Wiley D.C. 1994. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368, 215–221

    PubMed  CAS  Google Scholar 

  • Ufret-Vincenty R.L., Quigley L., Tresser N., Pak S.H., Gado A., Hausmann S., Wucherpfennig K.W., Brocke S. 1998. In vivo survival of viral antigen-specific T cells that induce experimental autoimmune encephalomyelitis. J. Exp. Med. 188, 1725–1738

    Article  PubMed  CAS  Google Scholar 

  • Wucherpfennig K.W., Sette A., Southwood S., Oseroff C., Matsui M., Strominger J.L., Hafler D.A. 1994a. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J. Exp. Med. 179, 279–290

    Article  PubMed  CAS  Google Scholar 

  • Wucherpfennig K.W., Strominger J.L. 1995. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705

    Article  PubMed  CAS  Google Scholar 

  • Wucherpfennig K.W., Zhang J., Witek C., Matsui M., Modabber Y., Ota K., Hafler D.A. 1994b. Clonal expansion and persistence of human T cells specific for an immunodominant myelin basic protein peptide. J. Immunol. 152, 5581–5592

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wucherpfennig, K.W. (2005). The Structural Interactions Between T Cell Receptors and MHC-Peptide Complexes Place Physical Limits on Self-Nonself Discrimination. In: Oldstone, M.B. (eds) Molecular Mimicry: Infection-Inducing Autoimmune Disease. Current Topics in Microbiology and Immunology, vol 296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30791-5_2

Download citation

Publish with us

Policies and ethics