Skip to main content

Rotavirus Genome Replication and Morphogenesis: Role of the Viroplasm

  • Chapter
Reoviruses: Entry, Assembly and Morphogenesis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 309))

Abstract

The rotaviruses, members of the family Reoviridae, are icosahedral triple-layered viruses with genomes consisting of 11 segments of double-stranded (ds)RNA. A characteristic feature of rotavirus-infected cells is the formation of large cytoplasmic inclusion bodies, termed viroplasms. These dynamic and highly organized structures serve as viral factories that direct the packaging and replication of the viral genome into early capsid assembly intermediates. Migration of the intermediates to the endoplasmic reticulum (ER) initiates a budding process that culminates in final capsid assembly. Recent information on the development and organization of viroplasms, the structure and function of its components, and interactive pathways linking RNA synthesis and capsid assembly provide new insight into how these microenvironments serve to interface the replication and morphogenetic processes of the virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afrikanova I, Miozzo MC, Giambiagi S, Burrone O (1996) Phosphorylation generates different forms of rotavirus NSP5. J Gen Virol 77:2059–2065

    PubMed  CAS  Google Scholar 

  2. Afrikanova I, Fabbretti E, Miozzo MC, Burrone OR (1998) Rotavirus NSP5 phosphorylation is up-regulated by interaction with NSP2. J Gen Virol 79:2679–2686

    PubMed  CAS  Google Scholar 

  3. Altenburg BC, Graham DY, Estes MK (1980) Ultrastructural study of rotavirus replication in cultured cells. J Gen Virol 46:75–85

    PubMed  CAS  Google Scholar 

  4. Aponte C, Poncet D, Cohen J (1996) Recovery and characterization of a replicase complex in rotavirus-infected cells by using a monoclonal antibody againstNSP2. J Virol 70:985–991

    PubMed  CAS  Google Scholar 

  5. Au KS, Chan WK, Burns JW, Estes MK (1989) Receptor activity of rotavirus nonstructural glycoprotein NS28. J Virol 63:4553–4562

    PubMed  CAS  Google Scholar 

  6. Berois M, Sapin C, Erk I, Poncet D, Cohen J (2003) Rotavirus nonstructural protein NSP5 interacts with major core protein VP2. J Virol 77:1757–1763

    Article  PubMed  CAS  Google Scholar 

  7. Blackhall J, Fuentes A, Hansen K, Magnusson G (1997) Serine protein kinase activity associated with rotavirus phosphoprotein NSP5. J Virol 71:138–144

    PubMed  CAS  Google Scholar 

  8. Blackhall J, Munoz M, Fuentes A, Magnusson G (1998) Analysis of rotavirus nonstructural protein NSP5 phosphorylation. J Virol 72:6398–6405

    PubMed  CAS  Google Scholar 

  9. Brenner C, Bieganowski P, Pace HC, Huebner K (1999) The histidine triad superfamily of nucleotide-binding proteins. J Cell Physiol 181:179–187

    Article  PubMed  CAS  Google Scholar 

  10. Charpilienne A, Lepault J, Rey F, Cohen J (2002) Identification of rotavirus VP6 residues located at the interface with VP2 that are essential for capsid assembly and transcriptase activity. J Virol 76:7822–7831

    Article  PubMed  CAS  Google Scholar 

  11. Chen D, Patton JT (1998) Rotavirus RNA replication requires a single-stranded 3′ end for efficient minus-strand synthesis. J Virol 72:7387–7396

    PubMed  CAS  Google Scholar 

  12. Chen D, Patton JT (2000) De novo synthesis of minus strand RNA by the rotavirus RNA polymerase in a cell-free system involves a novel mechanism of initiation. RNA 6:1455–1467

    Article  PubMed  CAS  Google Scholar 

  13. Chen D, Luongo CL, Nibert ML, Patton JT (1999) Rotavirus open cores catalyze 5′-capping and methylation of exogenous RNA: evidence that VP3 is a methyltransferase. Virology 265:120–130

    Article  PubMed  CAS  Google Scholar 

  14. Delmas O, Gardet A, Chwetzoff S, Breton M, Cohen J, Colard O, Sapin C, Trugnan G (2004) Different ways to reach the top of a cell. Analysis of rotavirus assembly and targeting in human intestinal cells reveals an original raft-dependent, Golgi-independent apical targeting pathway. Virology 327:157–161

    Article  PubMed  CAS  Google Scholar 

  15. Eichwald C, Vascotto F, Fabbretti E, Burrone OR (2002) Rotavirus NSP5: mapping phosphorylation sites and kinase activation and viroplasm localization domains. J Virol 76:3461–3470

    Article  PubMed  CAS  Google Scholar 

  16. Eichwald C, Rodriguez JF, Burrone OR (2004) Characterization of rotavirus NSP2/NSP5 interactions and dynamics of viroplasm formation. J Gen Virol 85:625–634

    Article  PubMed  CAS  Google Scholar 

  17. Eichwald C, Jacob G, Muszynski B, Allende JE, Burrone OR (2004) Uncoupling substrate and activation functions of rotavirus NSP5: phosphorylation of Ser-677 by casein kinase 1 is essential for hyperphosphorylation. Proc Natl Acad Sci U S A 101:16304–16309

    Article  PubMed  CAS  Google Scholar 

  18. Fabbretti E, Afrikanova I, Vascotto F, Burrone OE (1999) Two non-structural rotavirus proteins, NSP2 and NSP5, form viroplasm-like structures in vivo. J Gen Virol 80:333–339

    PubMed  CAS  Google Scholar 

  19. Gallegos CO, Patton JT (1989) Characterization of rotavirus replication intermediates: a model for the assembly of single-shelled particles. Virology 172:616–627

    Article  PubMed  CAS  Google Scholar 

  20. Gascon I, Gutierrez C, Salas M (2000) Structural and functional comparative study of the complexes formed by viral φ29, Nf and GA-1 SSB proteins with DNA. J Mol Biol 296:989–999

    Article  PubMed  CAS  Google Scholar 

  21. Gonzalez RA, Espinosa R, Romero P, Lopez S, Arias CF (2000)Relative localization of viroplasmic and endoplasmic reticulum-resident rotavirus proteins in infected cells. Arch Virol 145:1963–1973

    Article  PubMed  CAS  Google Scholar 

  22. Gonzalez SA, Burrone OR (1991) RotavirusNSP6 is modified by addition of single O-linked residues of N-acetylglucosamine. Virology 182:8–16

    Article  PubMed  CAS  Google Scholar 

  23. Gonzalez-Lopez C, Martinez-Costas J, Esteban M, Benavente J (2003) Evidence that avian reovirus sigma A protein is an inhibitor of the double-stranded RNA-dependent protein kinase. J Gen Virol 84:1629–1639

    Article  PubMed  CAS  Google Scholar 

  24. Imai M, Akatani K, Ikegami N, Furuchi Y (1983) Capped and conserved terminal structures in human rotavirus genome double-stranded RNA segments. J Viol 47:125–136

    CAS  Google Scholar 

  25. Jayaram H, Taraporewala Z, Patton JT, Prasad BV (2002) Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold. Nature 417:311–315

    Article  PubMed  CAS  Google Scholar 

  26. Kattoura M, Clapp LL, Patton JT (1992) The rotavirus non-structural protein, NS35, is a nonspecific RNA-binding protein. Virology 191:698–708

    Article  PubMed  CAS  Google Scholar 

  27. Kattoura MD, Chen X, Patton JT (1994) The rotavirus RNA-binding protein NS35 (NSP2) forms 10S multimers and interacts with the viral RNA polymerase. Virology 202:803–813

    Article  PubMed  CAS  Google Scholar 

  28. Kim Y, Chang KO, Kim WY, Saif LJ (2002) Production of hybrid double-or triple-layered virus-like particles of group A and C rotaviruses using a baculovirus expression system. Virology 302:1–8

    Article  PubMed  CAS  Google Scholar 

  29. Labbe M, Baudoux P, Charpilienne A, Poncet D, Cohen J (1994) Identification of the nucleic acid binding domain of the rotavirus VP2 protein. J Gen Virol 75:3423–3430

    PubMed  CAS  Google Scholar 

  30. Lawton JA, Estes MK, Prasad BV(1997) Three-dimensional visualization of mRNA release from actively transcribing rotavirus particles. Nat Struct Biol 4:118–121

    Article  PubMed  CAS  Google Scholar 

  31. Lawton JA, Zeng CQ, Mukherjee S, Cohen J, Estes MK, Prasad BV (1997) Three-dimensional structural analysis of recombinant rotavirus-like particles with intact and amino-terminal-deleted VP2: implications for the architecture of the VP2 capsid layer. J Virol 71:7353–7360

    PubMed  CAS  Google Scholar 

  32. Lopez T, Camacho M, Zayas M, Najera R, Sanchez R, Arias CF, Lopez S (2005) Silencing the morphogenesis of rotavirus. J Virol 79:184–192

    Article  PubMed  CAS  Google Scholar 

  33. Lui M, Mattion NM, Estes MK (1992) Rotavirus VP3 expressed in insect cells possesses guanylyltransferase activity. Virology 188:77–84

    Article  Google Scholar 

  34. Malmgaard L (2004) Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res 24:439–454

    Article  PubMed  CAS  Google Scholar 

  35. Mancini EJ, Kainov DE, Grimes JM, Tuma R, Bamford DH, Stuart DI (2004) Atomic snapshots of an RNA packaging motor reveal conformational changes linking ATP hydrolysis to RNA translocation. Cell 118:743–755

    Article  PubMed  CAS  Google Scholar 

  36. Mansell EA, Ramig RF, Patton JT (1994) Temperature-sensitive lesions in the capsid proteins of the rotavirus mutants tsF and tsG that affect virion assembly. Virology 204:69–81

    Article  PubMed  CAS  Google Scholar 

  37. Maass DR, Atkinson PH (1990) Rotavirus proteins VP7, NS28, and VP4 form oligomeric structures. J Virol 64:2632–2641

    PubMed  CAS  Google Scholar 

  38. Mattion NM, Mitchell DB, Both GW, Estes MK (1991) Expression of rotavirus proteins encoded by alternative open reading frames of genome segment 11. Virology 181:295–304

    Article  PubMed  CAS  Google Scholar 

  39. McCrae MA, McCorquodale JG (1983) Molecular biology of rotaviruses. V. Terminal structure of viral RNA species. Virology 126:204–212

    Article  PubMed  CAS  Google Scholar 

  40. Mindich L (2004) Packaging, replication and recombination of the segmented genome of bacteriophage phi6 and its relatives. Virus Res 101:83–92

    Article  PubMed  CAS  Google Scholar 

  41. Patton JT (1990) Evidence for equimolar synthesis of double-strand RNA and minus-strand RNA in rotavirus-infected cells. Virus Res 17:199–208

    Article  PubMed  CAS  Google Scholar 

  42. Patton JT (1996) Rotavirus VP1 alone specifically binds to the 3′-end of viral mRNA but the interaction is not sufficient to initiate minus-strand synthesis. J Virol 70:7940–7947

    PubMed  CAS  Google Scholar 

  43. Patton JT, Chen D (1999) RNA-binding and capping activities of proteins in rotavirus open cores. J Virol 73:1382–1391

    PubMed  CAS  Google Scholar 

  44. Patton JT, Gallegos CO (1990) Rotavirus RNA replication: single-strand RNA extends from the replicase particle. J Gen Virol 71:1087–1094

    Article  PubMed  CAS  Google Scholar 

  45. Patton JT, Wentz M, Xiaobo J, Ramig RF (1996) Cis-acting signals that promote genome replication in rotavirus mRNA. J Virol 70:3961–3971

    PubMed  CAS  Google Scholar 

  46. Patton JT, Jones MT, Kalbach AN, He Y-W, Xiaobo J (1997) Rotavirus RNA polymerase requires the core shell protein to synthesize the double-stranded RNA genome. J Virol 71:9618–9626

    PubMed  CAS  Google Scholar 

  47. Pesavento JB, Lawton JA, Estes MK, Prasad BVV (2001) The reversible condensation and expansion of the rotavirus genome. Proc Natl Acad Sci USA 98:1381–1386

    Article  PubMed  CAS  Google Scholar 

  48. Petrie B L, Greenberg HB, Graham DY, Estes MK (1984) Ultrastructural localization of rotavirus antigens using colloidal gold. Virus Res 1:133–152

    Article  PubMed  CAS  Google Scholar 

  49. Poncet D, Lindenbaum P, L’Haridon R, Cohen J (1997) In vivo and in vitro phosphorylation of rotavirus NSP5 correlates with its localization in viroplasms. J Virol 71:34–41

    PubMed  CAS  Google Scholar 

  50. Prasad BVV, Wang GJ, Clerx JPM, Chiu W (1988) Three-dimensional structure of rotavirus. J Mol Biol 199:269–275

    Article  PubMed  CAS  Google Scholar 

  51. Prasad BVV, Rothnagel R, Zeng CQ-Y, Jakana J, Lawton JA, Chiu W, Estes MK (1996) Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus. Nature 382:471–473

    Article  PubMed  CAS  Google Scholar 

  52. Raghunathan S, Kozlov AG, Lohman TM, Waksman G (2000) Structure of the DNA binding domain of the E. coli SSB bound to ssDNA. Nat Struct Biol 7:648–652

    Article  PubMed  CAS  Google Scholar 

  53. Ramig RF, Petrie BL (1984) Characterization of temperature-sensitive mutants of simian rotavirus SA11: protein synthesis and morphogenesis. J Virol 49:665–673

    PubMed  CAS  Google Scholar 

  54. Sapin C, Colard O, Delmas O, Tessier C, Breton M, Enouf V, Chwetzoff S, Ouanich J, Cohen J, Wolf C, Trugnan G (2002) Rafts promote assembly and atypical targeting of a nonenveloped virus, rotavirus, in Caco-2 cells. J Virol 76:4591–4602

    Article  PubMed  CAS  Google Scholar 

  55. Saunders LR, Barber GN (2003) The dsRNA binding protein family: critical roles, diverse cellular functions. FASEB J 17:961–983

    Article  PubMed  CAS  Google Scholar 

  56. Schuck P, Taraporewala Z, McPhie P, Patton JT (2001) Rotavirus nonstructural protein NSP2 self-assembles into octamers that undergo ligand-induced conformational changes. J Biol Chem 276:9679–9687

    Article  PubMed  CAS  Google Scholar 

  57. Silvestri LS, Taraporewala ZF, Patton JT (2004) Rotavirus replication: plus-sense templates for double-stranded RNA synthesis are made in viroplasms. J Virol 78:7763–7774

    Article  PubMed  CAS  Google Scholar 

  58. Taraporewala ZF, Patton JT (2001) Identification and characterization of the helix-destabilizing activity of rotavirus nonstructural protein NSP2. J Virol 75:4519–4527

    Article  PubMed  CAS  Google Scholar 

  59. Taraporewala Z, Chen D, Patton JT (1999) Multimers formed by the rotavirus nonstructural protein NSP2 bind to RNA and have nucleoside triphosphatase activity. J Virol 73:9934–9943

    PubMed  CAS  Google Scholar 

  60. Taraporewala ZF, Schuck P, Ramig RF, Patton JT (2002) Analysis of a rotavirus temperature-sensitive mutant indicates that NSP2 octamers are the functional form of the protein. J Virol 76:7082–7093

    Article  PubMed  CAS  Google Scholar 

  61. Torres-Vega MA, González RA, Duarte M, Poncet D, López S, Arias CF (2000) The C-terminal domain of rotavirus NSP5 is essential for its multimerization, hyperphosphorylation and interaction with NSP6. J Gen Virol 81:821–830

    PubMed  CAS  Google Scholar 

  62. Tortorici MA, Broering TJ, Nibert ML, Patton JT (2003) Template recognition and formation of initiation complexes by the replicase of a segmented double-stranded RNA virus. J Biol Chem 278:32673–32682

    Article  PubMed  CAS  Google Scholar 

  63. Taylor JA, O’Brien JA, Yeager M (1996) The cytoplasmic tail of NSP4, the endoplasmic reticulum-localized nonstructural glycoprotein of rotavirus, contains distinct virus binding and coiled coil domains. EMBO J 15:4469–4476

    PubMed  CAS  Google Scholar 

  64. Valenzuela S, Pizarro J, Sandino AM, Vasquez M, Fernandez J, Hernandez O, Patton J, Spencer E (1991) Photoaffinity labeling of rotavirus VP1 with 8-azido-ATP: identification of the viral RNA polymerase. J Virol 65:3964–3967

    PubMed  CAS  Google Scholar 

  65. Vasquez-Del Carpio R, Gonzalez-Nilo FD, Jayaram H, Spencer E, Venkataram Prasad BV, Patton JT, Taraporewala ZF (2004) Role of the histidine triad-like motif in nucleotide hydrolysis by the rotavirus RNA-packaging protein NSP2. J Biol Chem 279:10624–10633

    Article  CAS  Google Scholar 

  66. Vende P, Taraporewala ZF, Patton, JT (2002) RNA-binding activity of the rotavirus phosphoprotein NSP5 includes affinity for double-stranded RNA. J Virol 76:5291–5299

    Article  PubMed  CAS  Google Scholar 

  67. Welch SK, Crawford SE, Estes MK (1989) Rotavirus SA11 genome segment 11 protein is a nonstructural phosphoprotein. J Virol 63:3974–3982

    PubMed  CAS  Google Scholar 

  68. Zeng CQ, Wentz MJ, Cohen J, Estes MK, Ramig RF (1996) Characterization and replicase activity of double-layered and single-layered rotavirus-like particles expressed from baculovirus recombinants. J Virol 70:2736–2742

    PubMed  CAS  Google Scholar 

  69. Zeng CQ-Y, Estes MK, Charpilienne A, Cohen J (1998) The N terminus of rotavirus VP2 is necessary for encapsidation of VP1 and VP3. J Virol 72:201–208

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Patton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patton, J.T., Silvestri, L.S., Tortorici, M.A., Vasquez-Del Carpio, R., Taraporewala, Z.F. (2006). Rotavirus Genome Replication and Morphogenesis: Role of the Viroplasm. In: Roy, P. (eds) Reoviruses: Entry, Assembly and Morphogenesis. Current Topics in Microbiology and Immunology, vol 309. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30773-7_6

Download citation

Publish with us

Policies and ethics