Skip to main content

Evolutionary Trends in Body Size

  • Conference paper
Deciphering Growth

Summary

An organism’s body size tells us a lot about how it makes a living, suggesting that body size is a key parameter in evolution. We outline three large-scale trends in body size evolution. Bergmann’s Rule is the tendency for warm-blooded species at high latitudes to be larger than their close relatives nearer the equator. The Island Rule is the trend for small species to become larger, and large species smaller, on islands. Cope’s Rule, which we discuss in much more detail, is the tendency for lineages to increase in size over evolutionary time. Trends are best studied by combining data on evolutionary relationships among species with fossil information on how characters have changed through time. After highlighting some methodological pitfalls that can trap unwary researchers, we summarise evidence that Cope’s Rule, while not being by any means universal, has operated in some very different animal groups — from microfauna (single-celled Foraminifera) to megafauna (dinosaurs) - and we discuss the possibility that natural selection and clade selection may pull body size in opposite directions. Despite size’s central importance, there is little evidence that body size differences among related groups affect their evolutionary success: careful comparisons rarely reveal any correlation between size and present-day diversity. We end by touching on human impacts, which are often more severe on larger species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agapow P-M, Isaac NJB (2002) MacroCAIC: revealing correlates of species richness by comparative analysis. Div Dist 8: 41–43

    Google Scholar 

  • Alroy J (1998) Cope’s Rule and the dynamics of body mass evolution in North American fossil mammals. Science 280: 731–734

    Article  PubMed  CAS  Google Scholar 

  • Alroy J (2000) Understanding the dynamics of trends within evolving lineages. Paleobiology 26: 319–329

    Google Scholar 

  • Arnold AJ, Kelly DC, Parker WC (1995) Causality and Cope’s Rule: evidence from the planktonic Foraminifera. J Paleontol 69: 203–210

    Google Scholar 

  • Ashton KG (2001) Are ecological and evolutionary rules being dismissed prematurely? Div Dist 7: 289–295

    Google Scholar 

  • Avise JC, Johns GC (1999) Proposal for a standardized temporal scheme of biological classification for extant species. Proc Natl Acad Sci USA 96: 7358–7363

    PubMed  CAS  Google Scholar 

  • Baillie JEM (2001) Persistence and vulnerability of island endemic birds. Ph.D. thesis, University of London

    Google Scholar 

  • Barraclough TG, Nee S, Harvey PH (1998a) Sister-group analysis in identifying correlates of diversification-Comment. Evol Ecol 12: 751–754

    Google Scholar 

  • Barraclough TG, Vogler AP, Harvey PH (1998b) Revealing the factors that promote speciation. Phil Trans R Soc Lond B 353: 241–249

    Article  Google Scholar 

  • Bennett PM, Owens IPF (1997) Variation in extinction risk among birds: chance or evolutionary predisposition? Proc R Soc Lond B 264: 401–408

    Google Scholar 

  • Bergmann C (1847) Ueber die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Gottinger studien 3: 595–708

    Google Scholar 

  • Brown JH, West GB, Eds. (2000) Scaling in biology. Oxford, Oxford University Press

    Google Scholar 

  • Brown P, Sutikna T, Morwood MJ, Soejono RP, Jatmiko, Saptomo EW, Due RA (2004) A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature 431: 1043–1044

    Google Scholar 

  • Charnov EL (1991) Evolution of life history variation among female mammals. Proc Natl Acad Sci USA 88: 1134–1137

    PubMed  CAS  Google Scholar 

  • Cope ED (1896) The primary factors in organic evolution. Open Court Publishing Co., Chicago

    Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer, Sunderland MA

    Google Scholar 

  • Cunningham CW, Omland KW, Oakley TH (1998) Reconstructing ancestral character states: a critical reappraisal. Trends Ecol Evol 13: 361–366

    Article  Google Scholar 

  • Damuth J (1993) Cope’s rule, the island rule, and the scaling of mammalian population density. Nature 365: 748–750

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125: 1–15

    Article  Google Scholar 

  • Fordham BG (1986) Miocene-Pleistocene planktic Foraminifers from DSDP sites 208 and 77, and phylogeny and classification of Cenozoic species. Evolutionary Monographs 6: 1–200

    Google Scholar 

  • Freckleton RP, Harvey PH, Page M (2003) Bergmann’s Rule and body size in mammals. Am Nat 161: 821–825

    Article  PubMed  Google Scholar 

  • Garland T, Midford PE, Ives AR (1999) An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. Am Zoolog 39: 374–388

    Google Scholar 

  • Gaston KJ, Blackburn TM, Spicer JI (1998) Rapoport’s rule: time for an epitaph? Trends Ecol Evol 13: 70–74

    Google Scholar 

  • Gittleman JL, Purvis A (1998) Body size and species richness in primates and carnivores. Proc R Soc Lond B 265: 113–119

    CAS  Google Scholar 

  • Gould SJ (1997) Cope’s rule as psychological artefact. Nature 385: 199–200

    Article  CAS  Google Scholar 

  • Hone DWE, Keesey TM, Pisani D, Purvis A (2005) Macroevolutionary trends in the Dinosauria: Cope’s Rule. J Evol Biol 18: 587–595

    Article  PubMed  CAS  Google Scholar 

  • Isaac NJB, Agapow P-M, Harvey PH, Purvis A (2003) Phylogenetically nested comparisons for testing correlates of species-richness: a simulation study of continuous variables. Evolution 57: 18–26

    PubMed  Google Scholar 

  • Jablonski D (1997) Body-size evolution in Cretaceous molluscs and the status of Cope’s rule. Nature 385: 250–252

    Article  CAS  Google Scholar 

  • Katzourakis A, Purvis A, Azmeh S, Rotheray G, Gilbert F (2001) Macroevolution of hoverflies (Diptera: Syrphidae): the effect of using higher-level taxa in studies of biodiversity, and correlates of species richness. J Evol Biol 14: 219–227

    Article  Google Scholar 

  • Kingsolver JG, Pfennig DW (2004) Individual-level selection as a cause of Cope’s Rule of phyletic size increase. Evolution 58: 1608–1612

    PubMed  Google Scholar 

  • Kozlowski J, Weiner J (1997) Interspecific allometries are byproducts of body size optimization. Am Nat 149

    Google Scholar 

  • Law R (2001) Phenotypic and genetic changes due to selective exploitation. In: Reynolds JD, Mace GM, Redford KH, Robinson JG (eds) Conservation of exploited species. Cambridge University Press, Cambridge, pp 323–342

    Google Scholar 

  • Lister AM (1996) Dwarfing in island elephants and deer: processes in relation to time of isolation. Symp Zool Soc Lond 69: 277–292

    Google Scholar 

  • Lomolino MV (1985) Body sizes of mammals on islands: the island rule re-examined. Am Nat 125: 310–316

    Article  Google Scholar 

  • Lomolino MV, Channell R, Perault DR, Smith GA (2001) Downsizing Nature: Anthropogenic dwarfing of species and ecosystems. In: Lockwood JL, McKinney ML (eds) Biotic homogenization. Kluwer Academic/Plenum Publishers, New York, pp 223–243

    Google Scholar 

  • Meiri S, Dayan T (2003) On the validity of Bergmann’s rule. J Biogeog 30: 331–351

    Google Scholar 

  • Millar JS, Zammuto RM (1983) Life histories of mammals: an analysis of life tables. Ecology 64: 631–635

    Google Scholar 

  • Mitter C, Farrell B, Wiegmann B (1988) The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am Nat 132: 107–128

    Article  Google Scholar 

  • Nee S, Mooers AØ, Harvey PH (1992) The tempo and mode of evolution revealed from molecular phylogenies. Proc Natl Acad Sci, USA 89: 8322–8326

    PubMed  CAS  Google Scholar 

  • Nee S, Barraclough TG, Harvey PH (1996) Temporal changes in biodiversity: detecting patterns and identifying causes. In: Gaston KJ (eds) Biodiversity: a biology of numbers and difference. Blackwell, Oxford, pp 230–252

    Google Scholar 

  • Oakley TH, Cunningham CW (2000) Independent contrasts succeed where ancestor reconstruction fails in a known bacteriophage phylogeny. Evolution 54: 397–405

    PubMed  CAS  Google Scholar 

  • Orme CDL, Isaac NJB, Purvis A (2002a) Are most species small? Not within species-level phylogenies. Proc R Soc Lond B 269: 1279–1287

    Google Scholar 

  • Orme CDL, Quicke DLJ, Cook J, Purvis A (2002b) Body size does not predict species richness among the metazoan phyla. J Evol Biol 15: 235–247

    Article  Google Scholar 

  • Owens IPF, Bennett PM, Harvey PH (1999) Species richness among birds: body size, life history, sexual selection or ecology? Proc R Soc Lond B 266: 933–939

    Article  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401: 877–884

    Article  PubMed  CAS  Google Scholar 

  • Pearson PN (1993) A lineage phylogeny for the Paleogene planktonic foraminifera. Micropaleontology 39: 193–232

    Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge

    Google Scholar 

  • Pisani D, Yates A, Langer MC, Benton MJ (2002) A genus-level supertree of the Dinosauria. Proc R Soc Lond B 269: 915–921

    Google Scholar 

  • Purvis A (1996) Using interspecific phylogenies to test macroevolutionary hypotheses. In: Harvey PH, Leigh Brown AJ, Maynard Smith J, Nee S (eds) New uses for new phylogenies. Oxford Univ. Press, Oxford, pp 153–168

    Google Scholar 

  • Purvis A (2001) Mammalian life histories and responses of populations to exploitation. In: Reynolds JD, Mace GM, Redford KH, Robinson JG (eds) Exploited species. Cambridge University Press, Cambridge, pp 169–181

    Google Scholar 

  • Purvis A, Harvey PH (1996) Miniature mammals: life-history strategies and evolution. Symp Zool Soc Lond 69: 159–174

    Google Scholar 

  • Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc Lond B 267: 1947–1952

    CAS  Google Scholar 

  • Purvis A, Orme CDL, Dolphin K (2003) Why are most species small-bodied? A phylogenetic view. In: Blackburn TM, Gaston KJ (eds) Macroecology: concepts and consequences. Blackwell Science, Oxford, pp 155–173

    Google Scholar 

  • Reynolds JD, Jennings S, Dulvy NK (2001) Life histories of fishes and population responses to exploitation. In: Reynolds JD, Mace GM, Redford KH, Robinson JG (eds) Conservation of exploited species. Cambridge University Press, Cambridge, pp 147–168

    Google Scholar 

  • Schluter D, Price T, Mooers AØ, Ludwig D (1997) Likelihood of ancestor states in adaptive radiation. Evolution 51: 1699–1711

    Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: why is animal size so important? Cambridge University Press, Cambirdge

    Google Scholar 

  • Swofford DL, Maddison WP (1987) Reconstructing ancestral character states under Wagner parsimony. Math Biosci 87: 199–229

    Article  Google Scholar 

  • Van Valen L (1973) Body size and numbers of plants and animals. Evolution 27: 27–35

    Google Scholar 

  • Walker AC (1967) Patterns of extinctions among the subfossil Madagascan lemuroids. In: Martin PS, Wright HEJ (eds) Pleistocene extinctions. Yale University Press, New Haven, pp 425–432

    Google Scholar 

  • Webster AJ, Purvis A (2002) Testing the accuracy of methods for reconstructing ancestral states of continuous characters. Proc R Soc Lond B 269: 143–149

    Article  Google Scholar 

  • Williams GC (1992) Natural selection: domains, levels, challenges. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Purvis, A., Orme, C.D.L. (2005). Evolutionary Trends in Body Size. In: Carel, JC., Kelly, P.A., Christen, Y. (eds) Deciphering Growth. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28902-X_1

Download citation

Publish with us

Policies and ethics