Skip to main content

Autoimmune Ovarian Disease in Day 3-Thymectomized Mice: The Neonatal Time Window, Antigen Specificity of Disease Suppression, and Genetic Control

  • Chapter
CD4+CD25+ Regulatory T Cells: Origin, Function and Therapeutic Potential

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 293))

Abstract

Discovery of the CD4+CD25+ T cells has stemmed from investigation of the AOD in the d3tx mice. Besides CD4+CD25+ T cell depletion, d3tx disease induction requires effector T cell activation prompted by lymphopenia. This is supported by other neonatal AOD models in which T cell-mediated injury has been found to be triggered by immune complex or Ag immunization. In addition, there is growing evidence that support a state of neonatal propensity to autoimmunity, which depends on concomitant endogenous antigenic stimulation, concomitant nematode infection, resistance to CD4+CD25+ T cell regulation, and participation of the neonatal innate system. The suppression of d3tx disease by polyclonal CD4+CD25+ T cells appears to be dependent on endogenous Ag and the persistence of regulatory T cells. Thus, suppression of AOD occurs in the ovarian LN, and AOD emerges upon ablation of the input regulatory T cells; and in AIP, the hormone-induced expression of prostate Ag in the CD4+CD25+ T cell donors rapidly enhances the capacity to suppress disease over Ag negative donors. Finally, genetic analysis of AOD and its component phenotypes has uncovered seven Aod loci. As the general themes that emerged, significant epistatic interactions among the loci play a role in controlling disease susceptibility, the majority of the Aod loci are linked to susceptibility loci of other autoimmune diseases, and the genetic intervals encompass candidate genes that are differentially expressed between CD4+CD25+ T cells and other T cells. The candidate genes include Pdcd1, TNFR superfamily genes, H2, Il2, Tgfb, Nalp5 or Mater, an oocyte auto Ag that reacts with autoantibody in sera of d3tx mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abiola O, Angel JM, Avner P, Bachmanov AA, Belknap JK, Bennett B, Blankenhorn EP, Blizard DA, Bolivar V, Brockmann GA, Buck KJ, Bureau JF, Casley WL, Chesler EJ, Cheverud JM, Churchill GA, Cook M, Crabbe JC, Crusio WE, Darvasi A, de Haan G, Dermant P, Doerge RW, Elliot RW, Farber CR, Flaherty L, Flint J, Gershenfeld H, Gibson JP, Gu J, Gu W, Himmelbauer H, Hitzemann R, Hsu HC, Hunter K, Iraqi FF, Jansen RC, Johnson TE, Jones BC, Kempermann G, Lammert F, Lu L, Manly KF, Matthews DB, Medrano JF, Mehrabian M, Mittlemann G, Mock BA, Mogil JS, Montagutelli X, Morahan G, Mountz JD, Nagase H, Nowakowski RS, O’Hara BF, Osadchuk AV, Paigen B, Palmer AA, Peirce JL, Pomp D, Rosemann M, Rosen GD, Schalkwyk LC, Seltzer Z, Settle S, Shimomura K, Shou S, Sikela JM, Siracusa LD, Spearow JL, Teuscher C, Threadgill DW, Toth LA, Toye AA, Vadasz C, Van Zant G, Wakeland E, Williams RW, Zhang HG, Zou F (2003) The nature and identification of quantitative trait loci: a community’s view. Nat Rev Genet 4:911–916

    PubMed  Google Scholar 

  • Adkins B (1999) T-cell function in newborn mice and humans. Immunol Today 20:330–335

    Article  PubMed  CAS  Google Scholar 

  • Adkins B (2000) Development of neonatal Th1/Th2 function. Int Rev Immunol 19:157–171

    Article  PubMed  CAS  Google Scholar 

  • Agersborg SS, Garza KM, Tung KS (2001) Intestinal parasitism terminates self tolerance and enhances neonatal induction of autoimmune disease and memory. Eur J Immunol 31:851–859

    Article  PubMed  CAS  Google Scholar 

  • Alard P, Thompson C, Agersborg SS, Thatte J, Setiady Y, Samy E, Tung KS (2001) Endogenous oocyte antigens are required for rapid induction and progression of autoimmune ovarian disease following day-3 thymectomy. J Immunol 166:4363–4369

    PubMed  CAS  Google Scholar 

  • Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395–1401

    Article  PubMed  CAS  Google Scholar 

  • Annacker O, Pimenta-Araujo R, Burlen-Defranoux O, Barbosa TC, Cumano A, Bandeira A (2001) CD25+CD4+T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol 166:3008–3018

    PubMed  CAS  Google Scholar 

  • Ansari MJ, Salama AD, Chitnis T, Smith RN, Yagita H, Akiba H, Yamazaki T, Azuma M, Iwai H, Khoury SJ, Auchincloss H Jr, Sayegh MH (2003) The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 198:63–69

    Article  PubMed  CAS  Google Scholar 

  • Asano M, Toda M, Sakaguchi N, Sakaguchi S (1996) Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Medicine 184:387–396

    Article  CAS  Google Scholar 

  • Assarsson E, Kambayashi T, Schatzle JD, Cramer SO, von Bonin A, Jensen PE, Ljunggren HG, Chambers BJ (2004) NK cells stimulate proliferation of T and NK cells through 2B4/CD48 interactions. J Immunol 173:174–180

    PubMed  CAS  Google Scholar 

  • Bode W, Huber R (2000) Structural basis of the endoproteinase-protein inhibitor interaction. Biochim Biophys Acta 1477:241–252

    PubMed  CAS  Google Scholar 

  • Boulard O, Damotte D, Deruytter N, Fluteau G, Carnaud C, Garchon HJ (2002a) An interval tightly linkedtobut distinct from the H2 complex controls both overt diabetes (Idd16) and chronic experimental autoimmune thyroiditis (Ceat1) in nonobese diabetic mice. Diabetes 51:2141–2147

    PubMed  CAS  Google Scholar 

  • Boulard O, Fluteau G, Eloy L, Damotte D, Bedossa P, Garchon HJ (2002b) Genetic analysis of autoimmune sialadenitis in nonobese diabetic mice: a major susceptibility region on chromosome 1. J Immunol 168:4192–4201

    PubMed  CAS  Google Scholar 

  • Brekelmans P, van Soest P, Voerman J, Platenburg PP, Leenen PJ, van Ewijk W (1994) Transferrin receptor expression as a marker of immature cycling thymocytes in the mouse. Cell Immunol 159:331–339

    Article  PubMed  CAS  Google Scholar 

  • Butterfield RJ, Sudweeks JD, Blankenhorn EP, Korngold R, Marini JC, Todd JA, Roper RJ, Teuscher C (1998) New genetic loci that control susceptibility and symptoms of experimental allergic encephalomyelitis in inbred mice. J Immunol 161:1860–1867

    PubMed  CAS  Google Scholar 

  • Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG (2001) B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol 2:1126–1132

    Article  PubMed  CAS  Google Scholar 

  • Canto E, Vidal S, Rodriguez-Sanchez JL (2003) HK-ATPase expression in the susceptible BALB/c and the resistant DBA/2 strains of mice to autoimmune gastritis. Autoimmunity 36:275–283

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4+. J Exp Med 198:1875–1886

    Article  PubMed  CAS  Google Scholar 

  • Chesnut K, She JX, Cheng I, Muralidharan K, Wakeland EK (1993) Characterizations of candidate genes for IDD susceptibility from the diabetes-prone NOD mouse strain. Mamm. Genome 4:549–554

    Article  PubMed  CAS  Google Scholar 

  • Chin RK, Lo JC, Kim O, Blink SE, Christiansen PA, Peterson P, Wang Y, Ware C, Fu YX (2003) Lymphotoxin pathway directs thymic Aire expression. Nat Immunol 4:1121–1127

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, Simon-Stoos K, Puck JM (2002) Hypo-active variant of IL-2 and associated decreased T cell activation contribute to impaired apoptosis in autoimmune prone MRL mice. Eur J Immunol 32:677–685

    Article  PubMed  CAS  Google Scholar 

  • Claeys D, Saraga E, Rossier BC, Kraehenbuhl JP (1997) Neonatal injection of native proton pump antigens induces autoimmune gastritis in mice. Gastroenterology 113:1136–1145

    Article  PubMed  CAS  Google Scholar 

  • Dakic A, Shao QX, D’Amico A, O’Keeffe M, Chen WF, Shortman K, Wu L (2004) Development of the dendritic cell system during mouse ontogeny. J Immunol 172:1018–1027

    PubMed  CAS  Google Scholar 

  • Deshmukh US, Lewis JE, Gaskin F, Kannapell CC, Waters ST, Lou YH, Tung KS, Fu SM (1999) Immune responses to Ro60 and its peptides in mice. I. The nature of the immunogen and endogenous autoantigen determine the specificities of the induced autoantibodies. J Exp Med 189:531–540

    Article  PubMed  CAS  Google Scholar 

  • Dussault I, Miller SC (1995) Suppression of natural killer cell activity in infant mice occurs after target cell binding. Nat Immun 14:35–43

    PubMed  CAS  Google Scholar 

  • Encinas JA, Wicker LS, Peterson LB, Mukasa A, Teuscher C, Sobel R, Weiner HL, Seidman CE, Seidman JG, Kuchroo VK (1999) QTL influencing autoimmune diabetes and encephalomyelitis map to a 0.15-cM region containing Il2. Nat Genet 21:158–160

    PubMed  CAS  Google Scholar 

  • Fehervari Z, Sakaguchi S (2004) Development and function of CD25+CD4+ regulatory T cells. Curr Opin Immunol 16:203–208

    Article  PubMed  CAS  Google Scholar 

  • Ferlazzo G, Morandi B, D’Agostino A, Meazza R, Melioli G, Moretta A, Moretta L (2003) The interaction between NK cells and dendritic cells in bacterial infections results in rapid induction of NK cell activation and in the lysis of uninfected dendritic cells. Eur J Immunol 33:306–313

    Article  PubMed  CAS  Google Scholar 

  • Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Munz C (2002) Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195:343–351

    Article  PubMed  CAS  Google Scholar 

  • Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, Perricaudet M, Tursz T, Maraskovsky E, Zitvogel L (1999) Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5:405–411

    PubMed  CAS  Google Scholar 

  • Fischer A, Malissen B (1998) Natural and engineered disorders of lymphocyte development. Science 280:237–243

    PubMed  CAS  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  PubMed  CAS  Google Scholar 

  • Forsthuber T, Yip HC, Lehmann PV (1996) Induction of TH1 and TH2 immunity in neonatal mice. Science 271:1728–1730

    PubMed  CAS  Google Scholar 

  • Fourneau JM, Bach JM, van Endert PM, Bach JF (2004) The elusive case for a role of mimicry in autoimmune diseases. Mol Immunol 40:1095–1102

    Article  PubMed  CAS  Google Scholar 

  • Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ (2002) Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J Exp Med 196:851–857

    Article  PubMed  CAS  Google Scholar 

  • Garza KM, Agersborg SS, Baker E, Tung KS (2000) Persistence of physiological self antigen is required for the regulation of self tolerance. J Immunol 164:3982–3989

    PubMed  CAS  Google Scholar 

  • Garza KM, Griggs ND, Tung KS (1997) Neonatal injection of an ovarian peptide induces autoimmune ovarian disease in female mice: requirement of endogenous neonatal ovaries. Immunity 6:89–96

    Article  PubMed  CAS  Google Scholar 

  • Gavin MA, Clarke SR, Negrou E, Gallegos A, Rudensky A (2002) Homeostasis and anergy of CD4(+)CD25(+) suppressor T cells in vivo. Nat Immunol 3:33–41

    PubMed  CAS  Google Scholar 

  • Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G (2002) Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 195:327–333

    Article  PubMed  CAS  Google Scholar 

  • Gershon RK, Kondo K (1970) Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18:723–737

    PubMed  CAS  Google Scholar 

  • Gleeson PA, Toh BH, van Driel IR (1996) Organ-specific autoimmunity induced by lymphopenia. Immunol Rev 149:97–125

    PubMed  CAS  Google Scholar 

  • Graca L, Thompson S, Lin CY, Adams E, Cobbold SP, Waldmann H (2002) Both CD4(+)CD25(+) and CD4(+)CD25(−) regulatory cells mediate dominant transplantation tolerance. J Immunol 168:5558–5565

    PubMed  CAS  Google Scholar 

  • Hackett J Jr, Tutt M, Lipscomb M, Bennett M, Koo G, Kumar V (1986) Origin and differentiation of natural killer cells. II. Functional and morphologic studies of purified NK-1.1+ cells. J Immunol 136:3124–3131

    PubMed  Google Scholar 

  • Hattori M, Yamato E, Itoh N, Senpuku H, Fujisawa T, Yoshino M, Fukuda M, Matsumoto E, Toyonaga T, Nakagawa I, Petruzzelli M, McMurray A, Weiner H, Sagai T, Moriwaki K, Shiroishi T, Maron R, Lund T (1999) Cutting edge: homologous recombination of the MHC class I K region defines new MHC-linked diabetogenic susceptibility gene(s) in nonobese diabetic mice. J Immunol 163:1721–1724

    PubMed  CAS  Google Scholar 

  • Hori S, Haury M, Lafaille JJ, Demengeot J, Coutinho A (2002) Peripheral expansion of thymus-derived regulatory cells in anti-myelin basic protein T cell receptor transgenic mice. Eur J Immunol 32:3729–3735

    PubMed  CAS  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  PubMed  CAS  Google Scholar 

  • Hsieh CS, deRoos P, Honey K, Beers C, Rudensky AY (2002) A role for cathepsin L and cathepsin S in peptide generation for MHC class II presentation. J Immunol 168:2618–2625

    PubMed  CAS  Google Scholar 

  • Ikegami H, Fujisawa T, Makino S, Ogihara T (2002) Genetic dissection of type 1 diabetes susceptibility gene, Idd3, by ancestral haplotype congenic mapping. Ann N Y Acad Sci 958:325–328

    PubMed  CAS  Google Scholar 

  • Ikegami H, Fujisawa T, Makino S, Ogihara T (2003) Congenic mapping and candidate sequencing of susceptibility genes for Type 1 diabetes in the NOD mouse. Ann N Y Acad Sci 1005:196–204

    Article  PubMed  CAS  Google Scholar 

  • Jamieson AM, Isnard P, Dorfman JR, Coles MC, Raulet DH (2004) Turnover and proliferation of NK cells in steady state and lymphopenic conditions. J Immunol 172:864–870

    PubMed  CAS  Google Scholar 

  • Khattri R, Cox T, Yasayko SA, Ramsdell F (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4:337–342

    Article  PubMed  CAS  Google Scholar 

  • Kojima A, Prehn RT (1981) Genetic susceptibility to post-thymectomy autoimmune diseases in mice. Immunogenetics 14:15–27

    Article  PubMed  CAS  Google Scholar 

  • Kubota A, Kubota S, Lohwasser S, Mager DL, Takei F (1999) Diversity of NK cell receptor repertoire in adult and neonatal mice. J Immunol 163:212–216

    PubMed  CAS  Google Scholar 

  • Lechner O, Lauber J, Franzke A, Sarukhan A, von Boehmer H, Buer J (2001) Fingerprints of anergic T cells. Curr Biol 11:587–595

    Article  PubMed  CAS  Google Scholar 

  • Leibson PJ (2004) The regulation of lymphocyte activation by inhibitory receptors. Curr Opin Immunol 16:328–336

    Article  PubMed  CAS  Google Scholar 

  • Letterio JJ, Roberts AB (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol 16:137–161

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Hoyos M, Carrio R, Merino R, Buelta L, Izui S, Nunez G, Merino J (1996) Constitutive expression of bcl-2 in B cells causes a lethal form of lupus-like autoimmune disease after induction of neonatal tolerance to H-2b alloantigens. J Exp Med 183:2523–2531

    Article  PubMed  CAS  Google Scholar 

  • Lou Y, Ang J, Thai H, McElveen F, Tung KS (1995) A zona pellucida 3 peptide vaccine induces antibodies and reversible infertility without ovarian pathology. J Immunol 155:2715–2720

    PubMed  CAS  Google Scholar 

  • Lou Y, Tung KS (1993) T cell peptide of a self-protein elicits autoantibody to the protein antigen. Implications for specificity and pathogenetic role of antibody in autoimmunity. J Immunol 151:5790–5799

    PubMed  CAS  Google Scholar 

  • Lou YH, McElveen MF, Garza KM, Tung KS (1996) Rapid induction of autoantibodies by endogenous ovarian antigens and activated T cells: implication in autoimmune disease pathogenesis and B cell tolerance. J Immunol 156:3535–3540

    PubMed  CAS  Google Scholar 

  • Lou YH, Park KK, Agersborg S, Alard P, Tung KS (2000) Retargeting T cell-mediated inflammation: a new perspective on autoantibody action. J Immunol 164:5251–5257

    PubMed  CAS  Google Scholar 

  • Lu CY, Unanue ER (1982) Ontogeny of murine macrophages: functions related to antigen presentation. Infect Immun 36:169–175

    PubMed  CAS  Google Scholar 

  • Lyons PA, Armitage N, Argentina F, Denny P, Hill NJ, Lord CJ, Wilusz MB, Peterson LB, Wicker LS, Todd JA (2000) Congenic mapping of the type 1 diabetes locus, Idd3, to a 780-kb region of mouse chromosome 3: identification of a candidate segment of ancestral DNA by haplotype mapping. Genome Res 10:446–453

    Article  PubMed  CAS  Google Scholar 

  • Ma RZ, Gao J, Meeker ND, Fillmore PD, Tung KS, Watanabe T, Zachary JF, Offner H, Blankenhorn EP, Teuscher C (2002) Identification of Bphs, an autoimmune disease locus, as histamine receptor H1. Science 297:620–623

    Article  PubMed  CAS  Google Scholar 

  • Mailliard RB, Son YI, Redlinger R, Coates PT, Giermasz A, Morel PA, Storkus WJ, Kalinski P (2003) Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J Immunol 171:2366–2373

    PubMed  CAS  Google Scholar 

  • Malek TR (2003) The main function of IL-2 is to promote the development of T regulatory cells. J Leukoc Biol 74:961–965

    Article  PubMed  CAS  Google Scholar 

  • Malek TR, Porter BO, Codias EK, Scibelli P, Yu A (2000) Normal lymphoid homeostasis and lack of lethal autoimmunity in mice containing mature T cells with severely impaired IL-2 receptors. J Immunol 164:2905–2914

    PubMed  CAS  Google Scholar 

  • Malek TR, Yu A, Vincek V, Scibelli P, Kong L (2002) CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17:167–178

    Article  PubMed  CAS  Google Scholar 

  • Maloy KJ, Salaun L, Cahill R, Dougan G, Saunders NJ, Powrie F (2003) CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med 197:111–119

    Article  PubMed  CAS  Google Scholar 

  • Matesanz F, Alcina A (1996) Glutamine and tetrapeptide repeat variations affect the biological activity of different mouse interleukin-2 alleles. Eur J Immunol 26:1675–1682

    PubMed  CAS  Google Scholar 

  • Matesanz F, Alcina A (1998) High expression in bacteria and purification of polymorphic mouse interleukin 2 molecules. Cytokine 10:249–253

    Article  PubMed  CAS  Google Scholar 

  • Matesanz F, Fedetz M, Collado-Romero M, Fernandez O, Guerrero M, Delgado C, Alcina A (2001) Allelic expression and interleukin-2 polymorphisms in multiple sclerosis. J Neuroimmunol 119:101–105

    Article  PubMed  CAS  Google Scholar 

  • Matesanz F, Fedetz M, Leyva L, Delgado C, Fernandez O, Alcina A (2004) Effects of the multiple sclerosis associated —330 promoter polymorphism in IL2 allelic expression. J Neuroimmunol 148:212–217

    Article  PubMed  CAS  Google Scholar 

  • McHugh RS, Shevach EM (2002) Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J Immunol 168:5979–5983

    PubMed  CAS  Google Scholar 

  • McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, Byrne MC (2002) CD4(+)CD25(+) immunoregulatoryT cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16:311–323

    Article  PubMed  CAS  Google Scholar 

  • Meeker ND, Hickey WF, Korngold R, Hansen WK, Sudweeks JD, Wardell BB, Griffith JS, Teuscher C (1995) Multiple loci govern the bone marrow-derived immunoregulatory mechanism controlling dominant resistance to autoimmune orchitis. Proc Natl Acad. Sci U S A 92:5684–5688

    PubMed  CAS  Google Scholar 

  • Min B, McHugh R, Sempowski GD, Mackall C, Foucras G, Paul WE (2003) Neonates support lymphopenia-induced proliferation. Immunity 18:131–140

    Article  PubMed  CAS  Google Scholar 

  • Mocikat R, Braumuller H, Gumy A, Egeter O, Ziegler H, Reusch U, Bubeck A, Louis J, Mailhammer R, Riethmuller G, Koszinowski U, Rocken M (2003) Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19:561–569

    Article  PubMed  CAS  Google Scholar 

  • Morel L, Tian XH, Croker BP, Wakeland EK (1999) Epistatic modifiers of autoimmunity in a murine model of lupus nephritis. Immunity 11:131–139

    Article  PubMed  CAS  Google Scholar 

  • Morgan DJ, Kurts C, Kreuwel HT, Holst KL, Heath WR, Sherman LA (1999) Ontogeny of T cell tolerance to peripherally expressed antigens. Proc Natl Acad Sci U S A 96:3854–3858

    Article  PubMed  CAS  Google Scholar 

  • Mottet C, Uhlig HH, Powrie F (2003) Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J Immunol 170:3939–3943

    PubMed  CAS  Google Scholar 

  • Muthukkumar S, Goldstein J, Stein KE (2000) The ability of B cells and dendritic cells to present antigen increases during ontogeny. J Immunol 165:4803–4813

    PubMed  CAS  Google Scholar 

  • Nakamura K, Kitani A, Strober W (2001) Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194:629–644

    Article  PubMed  CAS  Google Scholar 

  • Nelson BH (2004) IL-2, regulatory T cells, and tolerance. J Immunol 172:3983–3988

    PubMed  CAS  Google Scholar 

  • Nielsen C, Hansen D, Husby S, Jacobsen BB, Lillevang ST (2003) Association of a putative regulatory polymorphism in the PD-1 gene with susceptibility to type 1 diabetes. Tissue Antigens 62:492–497

    Article  PubMed  CAS  Google Scholar 

  • Nishimura H, Honjo T, Minato N (2000) Facilitation of beta selection and modification of positive selection in the thymus of PD-1-deficient mice. J Exp Med 191:891–898

    PubMed  CAS  Google Scholar 

  • Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151

    Article  PubMed  CAS  Google Scholar 

  • Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N, Honjo T (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319–322

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y, Sakakura T (1969) Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 166:753–755

    PubMed  CAS  Google Scholar 

  • Okazaki T, Iwai Y, Honjo T (2002) New regulatory co-receptors: inducible co-stimulator and PD-1. Curr Opin Immunol 14:779–782

    Article  PubMed  CAS  Google Scholar 

  • Okazaki T, Tanaka Y, Nishio R, Mitsuiye T, Mizoguchi A, Wang J, Ishida M, Hiai H, Matsumori A, Minato N, Honjo T (2003) Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med 9:1477–1483

    Article  PubMed  CAS  Google Scholar 

  • Ortaldo JR, Winkler-Pickett R, Wiegand G (2000) Activating Ly-49D NK receptors: expression and function in relation to ontogeny and Ly-49 inhibitor receptors. J Leukoc Biol 68:748–756

    PubMed  CAS  Google Scholar 

  • Parham P (ed) (2001) Regulatory T cells. Immunol Rev 182

    Google Scholar 

  • Park HB, Paik DJ, Jang E, Hong S, Youn J (2004) Acquisition of anergic and suppressive activities in transforming growth factor-beta-costimulated CD4+. Int Immunol 16:1203–1213

    PubMed  CAS  Google Scholar 

  • Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036

    Article  PubMed  CAS  Google Scholar 

  • Penhale WJ, Farmer A, McKenna RP, Irvine WJ (1973) Spontaneous thyroiditis in thymectomized and irradiated Wistar rats. Clin Exp Immunol 15:225–236

    PubMed  CAS  Google Scholar 

  • Penhale WJ, Irvine WJ, Inglis JR, Farmer A (1976) Thyroiditis in T cell-depleted rats: suppression of the autoallergic response by reconstitution with normal lymphoid cells. Clin Exp Immunol 25:6–16

    PubMed  CAS  Google Scholar 

  • Penhale WJ, Stumbles PA, Huxtable CR, Sutherland RJ, Pethick DW (1990) Induction of diabetes in PVG/c strain rats by manipulation of the immune system. Autoimmunity 7:169–179

    PubMed  CAS  Google Scholar 

  • Piccioli D, Sbrana S, Melandri E, Valiante NM (2002) Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med 195:335–341

    Article  PubMed  CAS  Google Scholar 

  • Piccirillo CA, Letterio JJ, Thornton AM, McHugh RS, Mamura M, Mizuhara H, Shevach EM (2002) CD4(+)CD25(+) Regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med 196:237–246

    Article  PubMed  CAS  Google Scholar 

  • Pluger EB, Boes M, Alfonso C, Schroter CJ, Kalbacher H, Ploegh HL, Driessen C (2002) Specific role for cathepsin S in the generation of antigenic peptides in vivo. Eur J Immunol 32:467–476

    PubMed  CAS  Google Scholar 

  • Podolin PL, Wilusz MB, Cubbon RM, Pajvani U, Lord CJ, Todd JA, Peterson LB, Wicker LS, Lyons PA (2000) Differential glycosylation of interleukin 2, the molecular basis for the NOD Idd3 type 1 diabetes gene? Cytokine 12:477–482

    Article  PubMed  CAS  Google Scholar 

  • Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V, Brookes AJ, Tentler D, Kristjansdottir H, Grondal G, Bolstad AI, Svenungsson E, Lundberg I, Sturfelt G, Jonssen A, Truedsson L, Lima G, Alcocer-Varela J, Jonsson R, Gyllensten UB, Harley JB, Alarcon-Segovia D, Steinsson K, Alarcon-Riquelme ME (2002) A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32:666–669

    Article  PubMed  CAS  Google Scholar 

  • Prokunina L, Padyukov L, Bennet A, de Faire U, Wiman B, Prince J, Alfredsson L, Klareskog L, Alarcon-Riquelme M (2004) Association of the PD-1.3A allele of the PDCD1 gene in patients with rheumatoid arthritis negative for rheumatoid factor and the shared epitope. Arthritis Rheum 50:1770–1773

    PubMed  CAS  Google Scholar 

  • Rhodes DA, Trowsdale J (1999) Genetics and molecular genetics of the MHC. Rev Immunogenet 1:21–31

    PubMed  CAS  Google Scholar 

  • Ridge JP, Fuchs EJ, Matzinger P (1996) Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science 271:1723–1726

    PubMed  CAS  Google Scholar 

  • Roper RJ, Griffith JS, Lyttle CR, Doerge RW, McNabb AW, Broadbent RE, Teuscher C (1999) Interacting quantitative trait loci control phenotypic variation in murine estradiol-regulated responses. Endocrinology 140:556–561

    Article  PubMed  CAS  Google Scholar 

  • Roper RJ, Ma RZ, Biggins JE, Butterfield RJ, Michael SD, Tung KS, Doerge RW, Teuscher C (2002) Interacting quantitative trait loci control loss of peripheral tolerance and susceptibility to autoimmune ovarian dysgenesis after day 3 thymectomy in mice. J Immunol 169:1640–1646

    PubMed  CAS  Google Scholar 

  • Roper RJ, McAllister RD, Biggins JE, Michael SD, Min SH, Tung KS, Call SB, Gao J, Teuscher C (2003) Aod1 controlling day 3 thymectomy-induced autoimmune ovarian dysgenesis in mice encompasses two linked quantitative trait loci with opposing allelic effects on disease susceptibility. J Immunol 170:5886–5891

    PubMed  CAS  Google Scholar 

  • Ruan QG, She JX (2004) Autoimmune polyglandular syndrome type 1 and the autoimmune regulator. Clin Lab Med 24:305–317

    Article  PubMed  Google Scholar 

  • Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I (1993) Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75:253–261

    Article  PubMed  CAS  Google Scholar 

  • Saegusa K, Ishimaru N, Yanagi K, Arakaki R, Ogawa K, Saito I, Katunuma N, Hayashi Y (2002) Cathepsin S inhibitor prevents autoantigen presentation and autoimmunity. J Clin Invest 110:361–369

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T (1985) Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of aTcell subset as a possible cause of autoimmune disease. J Exp Med 161:72–87

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S, Sakaguchi N (1994) Thymus, T cells, and autoimmunity: various causes but a common mechanism of autoimmune disease. In Coutinho A, Kazatchine M (eds) Autoimmunity: physiology and disease. New York: Wiley-Liss, pp 203–227

    Google Scholar 

  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    PubMed  CAS  Google Scholar 

  • Sakaguchi S, Takahashi T, Nishizuka Y (1982) Study on cellular events in post-thymectomy autoimmune oophoritis in mice. II. Requirement of Lyt-1 cells in normal female mice for the prevention of oophoritis. J Exp Med 156:1577–1586

    PubMed  CAS  Google Scholar 

  • Salama AD, Chitnis T, Imitola J, Ansari MJ, Akiba H, Tushima F, Azuma M, Yagita H, Sayegh MH, Khoury SJ (2003) Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 198:71–78

    Article  PubMed  CAS  Google Scholar 

  • Sarzotti M, Robbins DS, Hoffman PM (1996) Induction of protective CTL responses in newborn mice by a murine retrovirus. Science 271:1726–1728

    PubMed  CAS  Google Scholar 

  • Schramm C, Huber S, Protschka M, Czochra P, Burg J, Schmitt E, Lohse AW, Galle PR, Blessing M (2004) TGF(beta) regulates the CD4+CD25+ T-cell pool and the expression of Foxp3 in vivo. Int Immunol 16:1241–1249

    Article  PubMed  CAS  Google Scholar 

  • Schurmans S, Brighouse G, Kramer G, Wen L, Izui S, Merino J, Lambert PH (1991) Transient T and B cell activation after neonatal induction of tolerance to MHC class II or Mls alloantigens. J Immunol 146:2152–2160

    PubMed  CAS  Google Scholar 

  • Seddon B, Mason D (1999) Peripheral autoantigen induces regulatory T cells that prevent autoimmunity. J Exp Med 189:877–882

    PubMed  CAS  Google Scholar 

  • Setiady YY, Pramoonjago P, Tung KS (2004) Requirements of NK cells and proinflammatory cytokines in T cell-dependent neonatal autoimmune ovarian disease triggered by immune complex. J Immunol 173:1051–1058

    PubMed  CAS  Google Scholar 

  • Setiady YY, Samy ET, Tung KS (2003) Maternal autoantibody triggers de novo T cell-mediated neonatal autoimmune disease. J Immunol 170:4656–4664

    PubMed  CAS  Google Scholar 

  • Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S (2002) Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3:135–142

    Article  PubMed  CAS  Google Scholar 

  • Silveira PA, Baxter AG, Cain WE, van Driel IR (1999) A major linkage region on distal chromosome 4 confers susceptibility to mouse autoimmune gastritis. J Immunol 162:5106–5111

    PubMed  CAS  Google Scholar 

  • Silveira PA, Wilson WE, Esteban LM, Jordan MA, Hawke CG, van Driel IR, Baxter AG (2001) Identification of the Gasa3 and Gasa4 autoimmune gastritis susceptibility genes using congenic mice and partitioned, segregative and interaction analyses. Immunogenetics 53:741–750

    PubMed  CAS  Google Scholar 

  • Singh RR, Hahn BH, Sercarz EE (1996) Neonatal peptide exposure can prime T cells and, upon subsequent immunization, induce their immune deviation: implications for antibody vs. T cell-mediated autoimmunity. J Exp Med 183:1613–1621

    Article  PubMed  CAS  Google Scholar 

  • Sivakumar PV, Gunturi A, Salcedo M, Schatzle JD, Lai WC, Kurepa Z, Pitcher L, Seaman MS, Lemonnier FA, Bennett M, Forman J, Kumar V (1999) Cutting edge: expression of functional CD94/NKG2A inhibitory receptors on fetal NK1.1+Ly-49-cells: a possible mechanism of tolerance during NK cell development. J Immunol 162:6976–6980

    PubMed  CAS  Google Scholar 

  • Smith H, Lou YH, Lacy P, Tung KS (1992) Tolerance mechanism in experimental ovarian and gastric autoimmune diseases. J Immunol 149:2212–2218

    PubMed  CAS  Google Scholar 

  • Smith H, Sakamoto Y, Kasai K, Tung KS (1991) Effector and regulatory cells in autoimmune oophoritis elicited by neonatal thymectomy. J Immunol 147:2928–2933

    PubMed  CAS  Google Scholar 

  • Sonderstrup G, McDevitt HO (2001) DR, DQ, and you: MHC alleles and autoimmunity. J Clin Invest 107:795–796

    Article  PubMed  CAS  Google Scholar 

  • Sudweeks JD, Todd JA, Blankenhorn EP, Wardell BB, Woodward SR, Meeker ND, Estes SS, Teuscher C (1993) Locus controlling Bordetella pertussis-induced histamine sensitization (Bphs), an autoimmune disease-susceptibility gene, maps distal to T-cell receptor beta-chain gene on mouse chromosome 6. Proc Natl Acad Sci U S A 90:3700–3704

    PubMed  CAS  Google Scholar 

  • Suri-Payer E, Amar AZ, McHugh R, Natarajan K, Margulies DH, Shevach EM (1999) Post-thymectomy autoimmune gastritis: fine specificity and pathogenicity of anti-H/K ATPase-reactive T cells. Eur J Immunol 29:669–677

    Article  PubMed  CAS  Google Scholar 

  • Suri-Payer E, Amar AZ, Thornton AM, Shevach EM (1998) CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol 160:1212–1218

    PubMed  CAS  Google Scholar 

  • Suri-Payer E, Kehn PJ, Cheever AW, Shevach EM (1996) Pathogenesis of post-thymectomy autoimmune gastritis. Identification of anti-H/K adenosine triphosphatase-reactive T cells. J Immunol 157:1799–1805

    PubMed  CAS  Google Scholar 

  • Suto A, Nakajima H, Ikeda K, Kubo S, Nakayama T, Taniguchi M, Saito Y, Iwamoto I (2002) CD4(+)CD25(+) T-cell development is regulated by at least 2 distinct mechanisms. Blood 99:555–560

    Article  PubMed  CAS  Google Scholar 

  • Suvas S, Azkur AK, Kim BS, Kumaraguru U, Rouse BT (2004) CD4(+)CD25(+) regulatory T cells control the severity of viral immunoinflammatory lesions. J Immunol 172:4123–4132

    PubMed  CAS  Google Scholar 

  • Suzuki H, Kundig TM, Furlonger C, Wakeham A, Timms E, Matsuyama T, Schmits R, Simard JJ, Ohashi PS, Griesser H (1995) Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 268:1472–1476

    PubMed  CAS  Google Scholar 

  • Taguchi O, Nishizuka Y (1980) Autoimmune oophoritis in thymectomized mice: T cell requirement in adoptive cell transfer. Clin Exp Immunol 42:324–331

    PubMed  CAS  Google Scholar 

  • Taguchi O, Nishizuka Y (1987) Self tolerance and localized autoimmunity. Mouse models of autoimmune disease that suggest tissue-specific suppressor T cells are involved in self tolerance. J Exp Med 165:146–156

    Article  PubMed  CAS  Google Scholar 

  • Taguchi O, Nishizuka Y, Sakakura T, Kojima A (1980) Autoimmune oophoritis in thymectomized mice: detection of circulating antibodies against oocytes. Clin Exp Immunol 40:540–553

    PubMed  CAS  Google Scholar 

  • Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M, Shimizu J, Sakaguchi S (1998) Immunologic self-tolerance maintained by CD25(+)CD4(+) naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 10:1969–1980

    Article  PubMed  CAS  Google Scholar 

  • Teuscher C (1985) Experimental allergic orchitis in mice. II. Association of disease susceptibility with the locus controlling Bordetella pertussis-induced sensitivity to histamine. Immunogenetics 22:417–425

    PubMed  CAS  Google Scholar 

  • Teuscher C, Bunn JY, Fillmore PD, Butterfield RJ, Zachary JF, Blankenhorn EP (2004) Gender, age and season at immunization uniquely influence the genetic control of susceptibility to histopathological lesions and clinical signs of experimental allergic encephalomyelitis: implications for the genetic of multiple sclerosis. Am J Pathol 16:1593–1602

    Google Scholar 

  • Teuscher C, Wardell BB, Lunceford JK, Michael SD, Tung KS (1996) Aod2, the locus controlling development of atrophy in neonatal thymectomy-induced autoimmune ovarian dysgenesis, co-localizes with Il2, Fgfb, and Idd3. J Exp Med 183:631–637

    Article  PubMed  CAS  Google Scholar 

  • Thorstenson KM, Khoruts A (2001) Generation of anergic and potentially immunoregulatory CD25+CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J Immunol 167:188–195

    PubMed  CAS  Google Scholar 

  • Tong ZB, Nelson LM (1999) A mouse gene encoding an oocyte antigen associated with autoimmune premature ovarian failure. Endocrinology 140:3720–3726

    Article  PubMed  CAS  Google Scholar 

  • Tung KS (1994) Mechanism of self-tolerance and events leading to autoimmune disease and autoantibody response. Clin Immunol Immunopathol 73:275–282

    Article  PubMed  CAS  Google Scholar 

  • Tung KS, Agersborg SS, Alard P, Garza KM, Lou YH (2001) Regulatory T-cell, endogenous antigen and neonatal environment in the prevention and induction of autoimmune disease. Immunol Rev 182:135–148

    Article  PubMed  CAS  Google Scholar 

  • Tung KS, Lou YH, Garza KM, Teuscher C (1997) Autoimmune ovarian disease: mechanism of disease induction and prevention. Curr Opin Immunol 9:839–845

    Article  PubMed  CAS  Google Scholar 

  • Tung KS, Smith S, Teuscher C, Cook C, Anderson RE (1987) Murine autoimmune oophoritis, epididymoorchitis, and gastritis induced by day 3 thymectomy. Immunopathology. Am J Pathol 126:293–302

    CAS  Google Scholar 

  • Wardell BB, Michael SD, Tung KS, Todd JA, Blankenhorn EP, McEntee K, Sudweeks JD, Hansen WK, Meeker ND, Griffith JS (1995) Aod1, the immunoregulatory locus controlling abrogation of tolerance in neonatal thymectomy-induced autoimmune ovarian dysgenesis, maps to mouse chromosome 16. Proc Natl Acad Sci U S A 92:4758–4762

    PubMed  CAS  Google Scholar 

  • Wendell DL, Gorski J (1997) Quantitative trait loci for estrogen-dependent pituitary tumor growth in the rat. Mamm Genome 8:823–829

    Article  PubMed  CAS  Google Scholar 

  • Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW (1995) Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3:521–530

    Article  PubMed  CAS  Google Scholar 

  • Yamagiwa S, Gray JD, Hashimoto S, Horwitz DA (2001) A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol 166:7282–7289

    PubMed  CAS  Google Scholar 

  • Yeung RS, Penninger J, Mak TW (1993) Genetically modified animals and immunodeficiency. Curr Opin Immunol 5:585–594

    Article  PubMed  CAS  Google Scholar 

  • Zelenika D, Adams E, Humm S, Graca L, Thompson S, Cobbold SP, Waldmann H (2002) Regulatory T cells overexpress a subset of Th2 gene transcripts. J Immunol 168:1069–1079

    PubMed  CAS  Google Scholar 

  • Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A 90:10972–10976

    PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhou P, Cao H, Smart M, David C (1993) Molecular basis of genetic polymorphism in major histocompatibility complex-linked proteasome gene (Lmp-2) Proc Natl Acad Sci U S A 90:2681–2684

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tun, K.S.K., Setiady, Y.Y., Samy, E.T., Lewis, J., Teuscher, C. (2005). Autoimmune Ovarian Disease in Day 3-Thymectomized Mice: The Neonatal Time Window, Antigen Specificity of Disease Suppression, and Genetic Control. In: Compans, R., et al. CD4+CD25+ Regulatory T Cells: Origin, Function and Therapeutic Potential. Current Topics in Microbiology and Immunology, vol 293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27702-1_10

Download citation

Publish with us

Policies and ethics