Skip to main content

Poliovirus, Pathogenesis of Poliomyelitis, and Apoptosis

  • Chapter
Role of Apoptosis in Infection

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 289))

Abstract

Poliovirus (PV) is the causal agent of paralytic poliomyelitis, an acute disease of the central nervous system (CNS) resulting in flaccid paralysis. The development of new animal and cell models has allowed the key steps of the pathogenesis of poliomyelitis to be investigated at the molecular level. In particular, it has been shown that PV-induced apoptosis is an important component of the tissue injury in the CNS of infected mice, which leads to paralysis. In this review the molecular biology of PV and the pathogenesis of poliomyelitis are briefly described, and then several models of PV-induced apoptosis are considered; the role of the cellular receptor of PV, CD155, in the modulation of apoptosis is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    PubMed  Google Scholar 

  • Agol VI, Belov GA, Bienz K, Egger D, Kolesnikova MS, Romanova LI, Sladkova LV, Tolskaya EA (2000) Competing death programs in poliovirus-infected cells: commitment switch in the middle of the infectious cycle. J Virol 74:5534–5541

    Article  PubMed  Google Scholar 

  • Aldabe R, Carrasco L (1995) Induction of membrane proliferation by poliovirus proteins 2C and 2BC. Biochem. Biophys. Res Commun 206:64–76

    Article  PubMed  Google Scholar 

  • Ammendolia MG, Tinari A, Calcabrini A, Superti F (1999) Poliovirus infection induces apoptosis in CaCo-2 cells. J Med Virol 59:122–129

    Article  PubMed  Google Scholar 

  • Andino R, Böddeker N, Silvera D, Gamarnik A (1999) Intracellular determinants of picornavirus replication. Trends Microbiol 7:76–82

    Article  PubMed  Google Scholar 

  • Ansardi D, Porter D, Anderson M, Morrow C (1996) Poliovirus assembly and encapsidation of genomic RNA. Adv Virus Res 46:1–68

    Article  PubMed  Google Scholar 

  • Aoki J, Koike S, Ise I, Satoyoshida Y, Nomoto A (1994) Amino acid residues on human poliovirus receptor involved in interaction with poliovirus. J Biol.-Chem. 269:8431–8438

    PubMed  Google Scholar 

  • Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    PubMed  Google Scholar 

  • Baloul L, Lafon M (2003) Apoptosis and rabies virus neuroinvasion. Biochimie 85:777–788

    Article  PubMed  Google Scholar 

  • Banda NK, Bernier J, Kurahara DK, Kurrle R, Haigwood N, Sekaly RP, Finkel T (1992) Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apoptosis. J. Exp. Med. 176:1099–1106

    Article  PubMed  Google Scholar 

  • Barco A, Feduchi E, Carrasco L (2000) Poliovirus protease 3Cpro kills cells by apoptosis. Virology 266:352–360

    Article  PubMed  Google Scholar 

  • Belnap DM, McDermott BM, Filman DJ, Cheng NQ, Trus BL, Zuccola HJ, Racaniello VR, Hogle JM, Steven AC (2000) Three-dimensional structure of poliovirus receptor bound to poliovirus. Proc. Natl. Acad. Sci. USA 97:73–78

    Article  PubMed  Google Scholar 

  • Belov GA, Evstafieva AG, Rubtsov YP, Mikitas OV, Vartapetian AB, Agol VI (2000) Early alteration of nucleocytoplasmic traffic induced by some RNA viruses. Virology 275:244–248

    Article  PubMed  Google Scholar 

  • Belov GA, Romanova LI, Tolskaya EA, Kolesnikova MS, Lazebnik YA, Agol VI (2003) The major apoptotic pathway activated and suppressed by poliovirus. J Virol 77:45–56

    Article  PubMed  Google Scholar 

  • Bernhardt G, Harber J, Zibert A, de Crombrugghe M, Wimmer E (1994) The poliovirus receptor: Identification of domains and amino acid residues critical for virus binding. Virology 203:344–356

    Article  PubMed  Google Scholar 

  • Bienz K, Egger D, Wolff DA (1973) Virus replication, cytopathology, and lysosomal enzyme response of mitotic and interphase HEp-2 cells infected with poliovirus. J Virol 11:565–574

    PubMed  Google Scholar 

  • Blondel B, Duncan G, Couderc T, Delpeyroux F, Pavio N, Colbère-Garapin F (1998) Molecular aspects of poliovirus biology with a special focus on the interactions with nerve cells. J Neurovirol 4:1–26

    PubMed  Google Scholar 

  • Bodian D (1955) Viremia, invasiveness, and the influence of injections. Ann N Y Acad Sci 61:877–882

    PubMed  Google Scholar 

  • Boot HJ, Kasteel DT, Buisman AM, Kimman TG (2003) Excretion of wild-type and vaccine-derived poliovirus in the feces of poliovirus receptor-transgenic mice. J Virol 77:6541–6545

    Article  PubMed  Google Scholar 

  • Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N, Vitale M, Moretta L, Lopez M, Moretta A (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198:557–567

    Article  PubMed  Google Scholar 

  • Brack K, Frings W, Dotzauer A, Vallbracht A (1998) A cytopathogenic, apoptosis-in-ducing variant of hepatitis A virus. J Virol 72:3370–3376

    PubMed  Google Scholar 

  • Buisman AM, Sonsma JA, Kimman TG, Koopmans MP (2000) Mucosal and systemic immunity against poliovirus in mice transgenic for the poliovirus receptor: the poliovirus receptor is necessary for a virus-specific mucosal IgA response. J Infect Dis 181:815–823

    Article  PubMed  Google Scholar 

  • Calandria C, Lopez-Guerrero JA (2002) Poliovirus modulates Bcl-xl expression in the human U937 promonocytic cell line. Arch Virol 147:2445–2452

    Article  PubMed  Google Scholar 

  • Carrasco L, Guinea R, Irurzun A, Barco A (2002) Effects of viral replication on cellular membrane metabolism and function. In: Semler BL, Wimmer E (eds) Poliovirus receptors and cell entry. ASM Press, Washington DC, pp 337–354

    Google Scholar 

  • Carthy CM, Granville DJ, Watson KA, Anderson DR, Wilson JE, Yang D, Hunt DWC, MMcManus BM (1998) Caspase activation and specific cleavage of substrates after coxsackievirus B3-induced cytopathic effect in HeLa cells. J Virol 72:7669–7675

    PubMed  Google Scholar 

  • Castelli J, Wood KA, Youle RJ (1998a) The 2–5A system in viral infection and apoptosis. Biomed Pharmacother 52:386–390

    Article  PubMed  Google Scholar 

  • Castelli JC, Hassel BA, Maran A, Paranjape J, Hewitt JA, Li XL, Hsu YT, Silverman RH, Youle RJ (1998b) The role of 2′–5′ oligoadenylate-activated ribonuclease L in apoptosis. Cell Death Differ 5:313–320

    Article  PubMed  Google Scholar 

  • Castelli JC, Hassel BA, Wood KA, Li XL, Amemiya K, Dalakas MC, Torrence PF, Youle RJ (1997) A study of the interferon antiviral mechanism—apoptosis activation by the 2–5a system. J Exp Med 186:967–972

    Article  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2001) Acute flaccid paralysis associated with circulating vaccine-derived poliovirus—Philippines, 2001. Morbid Mortal Wkly Rep 50:874–875

    Google Scholar 

  • Centers for Disease Control and Prevention (2002) From the Centers for Disease Control and Prevention. Acute flaccid paralysis associated with circulating vaccine-derived poliovirus—Philippines, 2001. JAMA 287:311

    Google Scholar 

  • Cho MW, Teterina N, Egger D, Bienz K, Ehrenfeld E (1994) Membrane rearrangement and vesicle induction by recombinant poliovirus 2C and 2BC in human cells. Virology 202:129–145

    Article  PubMed  Google Scholar 

  • Clark ME, Dasgupta A (1990) A transcriptionally active form of TFIIIC is modified in poliovirus-infected HeLa cells. Mol Cell Biol 10:5106–5113

    PubMed  Google Scholar 

  • Clark ME, Hammerle T, Wimmer E, Dasgupta A (1991) Poliovirus proteinase-3C converts an active form of transcription factor-IIIC to an inactive form: a mechanism for inhibition of host cell polymerase-III transcription by poliovirus. EMBO J 10:2941–2947

    PubMed  Google Scholar 

  • Clark ME, Lieberman PM, Berk Al, Dasgupta A (1993) Direct cleavage of human TATA-binding protein by poliovirus protease 3C in vivo and in vitro. Mol Cell Biol 13:1232–1237

    PubMed  Google Scholar 

  • Colbère-Garapin F, Christodoulou C, Crainic R, Pelletier I (1989) Persistent poliovirus infection of human neuroblastoma cells. Proc. Natl Acad Sci USA 86:7590–7594

    PubMed  Google Scholar 

  • Colbère-Garapin F, Pelletier I, Ouzilou L (2002) Persistent infections by picornaviruses. In: Semler BL, Wimmer E (eds) Molecular biology of picornaviruses. ASM Press, Washington DC, pp 437–448

    Google Scholar 

  • Colston E, Racaniello VR (1994) Soluble receptor-resistant poliovirus mutants identify surface and internal capsid residues that control interaction with the cell receptor. EMBO J 13:5855–5862

    PubMed  Google Scholar 

  • Colston EM, Racaniello VR (1995) Poliovirus variants selected on mutant receptor-expressing cells identify capsid residues that expand receptor recognition. J Virol 69:4823–4829

    PubMed  Google Scholar 

  • Couderc T, Delpeyroux J, Le Blay H, Blondel B (1996) Mouse adaptation determinants of poliovirus type 1 enhance viral uncoating. J Virol 70:305–312

    PubMed  Google Scholar 

  • Couderc T, Guivel-Benhassine F, Calaora V, Gosselin AS, Blondel B (2002) An ex vivo murine model to study poliovirus-induced apoptosis in nerve cells. J Gen Virol 83:1925–1930

    PubMed  Google Scholar 

  • Couderc T, Hogle J, Le Blay H, Horaud F, Blondel B (1993) Molecular characterization of mouse-virulent poliovirus type 1 Mahoney mutants: involvement of residues of polypeptides VP1 and VP2 located on the inner surface of the capsid protein shell. J Virol 67:3808–3817

    PubMed  Google Scholar 

  • Crotty S, Hix L, Sigal LJ, Andino R (2002) Poliovirus pathogenesis in a new poliovirus receptor transgenic mouse model: age-dependent paralysis and a mucosal route of infection. J Gen Virol 83:1707–1720

    PubMed  Google Scholar 

  • Dalakas MC (1995) The post-polio syndrome as an evolved clinical entity. Definition and clinical description. In: Dalakas MC, Bartfeld H, Kurland LT (eds) The postpolio syndrome, vol 753. The New York Academy of Sciences, New York, pp 68–80

    Google Scholar 

  • Dasgupta A, Yalamanchili P, Clark ME, Kliewer S, Fradkin L, Rubinstein S, Das S, Shen Y, Weidman MK, Banerjee R, Datta U, Igo M, Kundu P, Barat B, Berk AJ (2002) Effects of picornavirus proteinases on host cell transcription. In: Semler BL, Wimmer E (eds) Molecular biology of picornaviruses. ASM Press, Washington DC, pp 321–335

    Google Scholar 

  • Deitz SB, Dodd DA, Cooper S, Parham P, Kirkegaard K (2000) MHC I-dependent antigen presentation is inhibited by poliovirus protein 3A. Proc Natl Acad Sci USA 97:13790–13795

    Article  PubMed  Google Scholar 

  • Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369–377

    Article  PubMed  Google Scholar 

  • Desprès P, Frenkiel MP, Ceccaldi PE, Duarte dos Santos C, Deubel V (1998) Apoptosis in the mouse central nervous system in response to infection with mouse-neurovirulent dengue viruses. J Virol 72:823–829

    PubMed  Google Scholar 

  • Destombes J, Couderc T, Thiesson D, Girard S, Wilt SG, Blondel B (1997) Persistent poliovirus infection in mouse motoneurons. J Virol 71:1621–1628

    PubMed  Google Scholar 

  • Dodd DA, Giddings TH, Kirkegaard K (2001) Poliovirus 3A protein limits interleukin-6 (IL-6), IL-8, and beta interferon secretion during viral infection. J Virol 75:8158–8165

    Article  PubMed  Google Scholar 

  • Doedens JR, Giddings TH, Kirkegaard K (1997) Inhibition of endoplasmic reticulum-to-golgi traffic by poliovirus protein 3A—genetic and ultrastructural analysis. J Virol 71:9054–9064

    PubMed  Google Scholar 

  • Doedens JR, Kirkegaard K (1995) Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A. EMBO J 14:894–907

    PubMed  Google Scholar 

  • Duncan G, Colbère-Garapin F (1999) Two determinants in the capsid of a persistent type 3 poliovirus exert different effects on mutant virus uncoating. J Gen Virol 80: 2601–2605

    PubMed  Google Scholar 

  • Duncan G, Pelletier I, Colbère-Garapin F (1998) Two amino acid substitutions in the type 3 poliovirus capsid contribute to the establishment of persistent infection in HEp-2c cells by modifying virus-receptor interactions. Virology 241:14–29

    Article  PubMed  Google Scholar 

  • Dunnebacke TH, Levinthal JD, Williams RC (1969) Entry and release of poliovirus as observed by electron microscopy of cultured cells. J Virol 4:504–513

    Google Scholar 

  • Earnshaw W, Martins L, Kaufmann S (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    PubMed  Google Scholar 

  • Eberle F, Dubreuil P, Mattei MG, Devilard E, Lopez M (1995a) The human PRR2 gene, related to the human poliovirus receptor gene (PVR), is the true homolog of the murine MPH gene. Gene 159:267–272

    Article  PubMed  Google Scholar 

  • Eberle KE, Nguyen VT, Freistadt MS (1995b) Low levels of poliovirus replication in primary human monocytes: possible interactions with lymphocytes. Arch Virol 140:2135–2150

    Article  PubMed  Google Scholar 

  • Egger D, Gosert R, Bienz K (2002) Role of cellular structures in viral RNA replication. In: Semler BL, Wimmer E (eds) Molecular biology of picornaviruses. ASM Press, Washington DC, pp 247–253

    Google Scholar 

  • Ehrenfeld E, Teterina N (2002) Initiation of translation of picornavirus RNAs: structure and function of internal ribosome entry site. In: Semler BL, Wimmer E (eds) Molecular biology of picornaviruses. ASM Press, Washington DC, pp 159–169

    Google Scholar 

  • Etchison D, Milburn SC, Edery I, Sonenberg N, Hershey JW (1982) Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J Biol Chem 257:14806–14810

    PubMed  Google Scholar 

  • Evlashev A, Moyse E, Valentin H, Azocar O, Trescol-Biemont MC, Marie JC, Rabourdin-Combe C, Horvat B (2000) Productive measles virus brain infection and apoptosis in CD46 transgenic mice. J Virol 74:1373–1382

    Article  PubMed  Google Scholar 

  • Fabre S, Reymond N, Cocchi F, Menotti L, Dubreuil P, Campadelli-Fiume G, Lopez M (2002) Prominent role of the Ig-like V domain in trans-interactions of nectins. Nectin 3 and nectin 4 bind to the predicted C-C′-C″-D beta-strands of the nectinlV domain. J Biol Chem 277:27006–27013

    Article  PubMed  Google Scholar 

  • Filman DJ, Syed R, Chow M, Macadam AJ, Minor PD, Hogle JM (1989) Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO J 8:1567–1579

    PubMed  Google Scholar 

  • Foger N, Marhaba R, Zoller M (2000) CD44 supports T cell proliferation and apoptosis by apposition of protein kinases. Eur J Immunol 30:2888–2899

    Article  PubMed  Google Scholar 

  • Freistadt MS, Eberle KE (1997) Physical association between CD155 and CD44 in human monocytes. Mol Immunol 34:1247–1257

    Article  PubMed  Google Scholar 

  • Freistadt MS, Eberle KE (2000) Hematopoietic cells from CD155-transgenic mice express CD155 and support poliovirus replication ex vivo. Microbial Pathogenesis 29:203–212

    Article  PubMed  Google Scholar 

  • Freistadt MS, Fleit HB, Wimmer E (1993) Poliovirus receptor on human blood cells: a possible extraneural site of poliovirus replication. Virology 195:798–803

    Article  PubMed  Google Scholar 

  • Fuchs A, Cella M, Giurisato E, Shaw AS, Colonna M (2004) Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J Immunol 172:3994–3998

    PubMed  Google Scholar 

  • Girard S, Couderc T, Destombes J, Thiesson D, Delpeyroux F, Blondel B (1999) Poliovirus induces apoptosis in the mouse central nervous system. J Virol 73:6066–6072

    PubMed  Google Scholar 

  • Girard S, Gosselin AS, Pelletier I, Colbère-Garapin F, Couderc T, Blondel B (2002) Restriction of poliovirus RNA replication in persistently infected nerve cells. J Gen Virol 83:1087–1093

    PubMed  Google Scholar 

  • Goldstaub D, Gradi A, Bercovitch Z, Grosmann Z, Nophar Y, Luria S, Sonenberg N, Kahana C (2000) Poliovirus 2A protease induces apoptotic cell death. Mol Cell Biol 20:1271–1277

    Article  PubMed  Google Scholar 

  • Gosselin AS, Simonin Y, Guivel-Benhassine F, Rincheval V, Vayssiere JL, Mignotte B, Colbère-Garapin F, Couderc T, Blondel B (2003) Poliovirus-induced apoptosis is reduced in cells expressing a mutant CD155 selected during persistent poliovirus infection in neuroblastoma cells. J Virol 77:790–798

    Article  PubMed  Google Scholar 

  • Gradi A, Svitkin YV, Imataka H, Sonenberg N (1998) Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc Natl Acad Sci USA 95:11089–11094

    Article  PubMed  Google Scholar 

  • Green DR, Amarante-Mendes GP (1998) The point of no return: mitochondria, caspases, and the commitment to cell death. Results Probl Cell Differ 24:45–61

    PubMed  Google Scholar 

  • Griffin DE, Hardwick JM (1999) Perspective: virus infections and the death of neurons. Trends Microbiol 7:155–160

    Article  PubMed  Google Scholar 

  • Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH, Wimmer E (2000a) Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc. Natl Acad Sci USA 97:6803–6808

    Article  PubMed  Google Scholar 

  • Gromeier M, Nomoto A (2002) Determinants of poliovirus pathogenesis. In: Semler BL, Wimmer E (eds) Molecular biology of picornaviruses. ASM Press, Washington DC, pp 367–379

    Google Scholar 

  • Gromeier M, Solecki D, Patel DD, Wimmer E (2000b) Expression of the human poliovirus receptor/CD155 gene during development of the central nervous system: Implications for the pathogenesis of poliomyelitis. Virology 273:248–257

    Article  PubMed  Google Scholar 

  • Gromeier M, Wimmer E (1998) Mechanism of injury-provoked poliomyelitis. J Virol 72:5056–5060

    PubMed  Google Scholar 

  • Gromeier M, Wimmer E, Gorbalenya AE (1999) Genetics, pathogenesis and evolution of picornaviruses. In: Domingo E, Webster RG, Holland JJ (eds) Origin and evolution of viruses. Academic Press, New York, pp 287–343

    Google Scholar 

  • Gustin KE (2003) Inhibition of nucleo-cytoplasmic trafficking by RNA viruses: targeting the nuclear pore complex. Virus Res 95:35–44

    Article  PubMed  Google Scholar 

  • Gustin KE, Sarnow P (2001) Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex composition. EMBO J 20:240–249

    Article  PubMed  Google Scholar 

  • Haller A, Semler B (1995) Translation and host cell shutoff. In: Rotbart HA (ed) Human enterovirus infection. ASM Press, Washington, DC, pp 113–133

    Google Scholar 

  • He YN, Bowman VD, Mueller S, Bator CM, Bella J, Peng XH, Baker TS, Wimmer E, Kuhn RJ, Rossmann MG (2000) Interaction of the poliovirus receptor with poliovirus. Proc Natl Acad Sci USA 97:79–84

    Article  PubMed  Google Scholar 

  • Hellen C, Wimmer E (1995) Enterovirus structure and assembly. In: Rotbart HA (ed) Human enterovirus infection. ASM Press, Washington, DC, pp 155–174

    Google Scholar 

  • Hogle JM (2002) Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu Rev Microbiol 56:677–702

    Article  PubMed  Google Scholar 

  • Hogle JM, Chow M, Filman DJ (1985) Three dimensional structure of poliovirus at 2.9 Å resolution. Science 229:1358–1365

    PubMed  Google Scholar 

  • Hogle JM, Racaniello VR (2002) Poliovirus receptors and cell entry. In: Semler BL, Wimmer E (eds) Molecular biology of picornaviruses. ASM Press, Washington DC, pp 71–83

    Google Scholar 

  • Ida-Hosonuma M, Iwasaki T, Taya C, Sato Y, Li J, Nagata N, Yonekawa H, Koike S (2002) Comparison of neuropathogenicity of poliovirus in two transgenic mouse strains expressing human poliovirus receptor with different distribution patterns. J Gen Virol 83:1095–1105

    PubMed  Google Scholar 

  • Iwasaki A, Welker R, Mueller S, Linehan M, Nomoto A, Wimmer E (2002) Immuno-fluorescence analysis of poliovirus receptor expression in Peyer’s patches of humans, primates, and CD155 transgenic mice: implications for poliovirus infection. J Infect Dis 186:585–592

    Article  PubMed  Google Scholar 

  • Jackson AC, Rossiter JP (1997) Apoptosis plays an important role in experimental rabies virus infection. J Virol 71:5603–5607

    PubMed  Google Scholar 

  • Jackson R (2002) Proteins involved in the function of picornavirus internal ribosomal entry sites. In: Semler BL, Wimmer E (eds) Molecular biology of picornaviruses. ASM Press, Washington DC, pp 171–183

    Google Scholar 

  • Jan J-T, Griffin DE (1999) Induction of apoptosis by Sindbis virus occurs at cell entry and does not require virus replication. J Virol 73:10296–10302

    PubMed  Google Scholar 

  • Joachims M, Harris KS, Etchison D (1995) Poliovirus protease 3C mediates cleavage of microtubule-associated protein 4. Virology 211:451–461

    Article  PubMed  Google Scholar 

  • Joachims M, Van Breugel PC, Lloyd RE (1999) Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. J Virol 73:718–727

    PubMed  Google Scholar 

  • Karttunen A, Poyry T, Vaarala O, Ilonen J, Hovi T, Roivainen M, Hyypia T (2003) Variation in enterovirus receptor genes. J Med Virol 70:99–108

    Article  PubMed  Google Scholar 

  • Kaufmann SH, Hengartner MO (2001) Programmed cell death: alive and well in the new millennium. Trends Cell Biol. 11:526–534

    Article  PubMed  Google Scholar 

  • Kew O, Morris-Glasgow V, Landaverde M, Burns C, Shaw J, Garib Z, Andre J, Blackman E, Freeman CJ, Jorba J, Sutter R, Tambini G, Venczel L, Pedreira C, Laender F, Shimizu H, Yoneyama T, Miyamura T, van Der Avoort H, Oberste MS, Kilpatrick D, Cochi S, Pallansch M, de Quadros C (2002) Outbreak of poliomyelitis in Hispaniola associated with circulating type 1 vaccine-derived poliovirus. Science 296:356–359

    Article  PubMed  Google Scholar 

  • Kitamura N, Semler BL, Rothberg PG, Larsen GR, Adler CJ, Dorner AJ, Emini EA, Hanecak R, Lee JJ, Van der Werf S, Anderson CW, Wimmer E (1981) Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 291:547–553

    Article  PubMed  Google Scholar 

  • Koike S, Horie H, Ise I, Okitsu A, Yoshida M, Iizuka N, Takeuchi K, Takegami T, Nomoto A (1990) The poliovirus receptor protein is produced both as membrane-bound and secreted forms. EMBO J 9:3217–3224

    PubMed  Google Scholar 

  • Koike S, Ise I, Nomoto A (1991a) Functional domains of the poliovirus receptor. Proc Natl Acad Sci USA 88:4104–4108

    PubMed  Google Scholar 

  • Koike S, Ise I, Sato Y, Yonekawa H, Gotoh O, Nomoto A (1992) A 2nd gene for the African green monkey poliovirus receptor that has no putative N-glycosylation site in the functional N-terminal immunoglobulin-like domain. J Virol 66:7059–7066

    PubMed  Google Scholar 

  • Koike S, Taya C, Kurata T, Abe S, Ise I, Yonekawa H, Nomoto A (1991b) Transgenic mice susceptible to poliovirus. Proc Natl Acad Sci USA 88:951–955

    PubMed  Google Scholar 

  • Koyama AH, Irie H, Ueno F, Ogawa M, Nomoto A, Adachi A (2001) Suppression of apoptotic and necrotic cell death by poliovirus. J Gen Virol 82:2965–2972

    PubMed  Google Scholar 

  • Kräusslich HG, Nicklin MJ, Toyoda H, Etchison D, Wimmer E (1987) Poliovirus proteinase 2A induces cleavage of eukaryotic initiation factor 4F polypeptide p220. J Virol 61:2711–2718

    PubMed  Google Scholar 

  • Kuechler E, Seipelt J, Liebig H-D, Sommergruber W (2002) Picornavirus proteinase-mediated shutoff of host cell translation: direct cleavage of a cellular initiation factor. In: Semler BL, Wimmer E (eds) Molecular biology of picornaviruses. ASM Press, Washington DC, pp 301–311

    Google Scholar 

  • Kuo RL, Kung SH, Hsu YY, Liu WT (2002) Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death. J Gen Virol 83:1367–1376

    PubMed  Google Scholar 

  • Kuyumcu-Martinez NM, Van Eden ME, Younan P, Lloyd RE (2004) Cleavage of poly(A)-binding protein by poliovirus 3C protease inhibits host cell translation: a novel mechanism for host translation shutoff. Mol Cell Biol 24:1779–1790

    Article  PubMed  Google Scholar 

  • Lange R, Peng X, Wimmer E, Lipp M, Bernhard G (2001) The poliovirus receptor CD155 mediates cell-to-matrix contacts by specifically binding to vitronectin. Virology 285:218–227

    Article  PubMed  Google Scholar 

  • Lentz KN, Smith AD, Geisler SC, Cox S, Buontempo P, Skelton A, Demartino J, Rozhon E, Schwartz J, Girijavallabhan V, Oconnell J, Arnold E (1997) Structure of poliovirus type 2 Lansing completed with antiviral agent sch48973—comparison of the structural and biological properties of the three poliovirus serotypes. Structure 5:961–978

    Article  PubMed  Google Scholar 

  • Leon-Monzon ME, Dalakas MC (1995) Detection of poliovirus antibodies and poliovirus genome in patients with post-polio syndrome (PPS). In: Dalakas MC, Bart-feld H, Kurland LT (eds) The post-polio syndrome, vol 753. The New York Academy of Sciences, New York, pp 208–218

    Google Scholar 

  • Leparc-Goffart I, Julien J, Fuchs F, Janatova I, Aymard M, Kopecka H (1996) Evidence of presence of poliovirus genomic sequences in cerebrospinal fluid from patients with postpolio syndrome. J Clin Microbiol 34:2023–2026

    PubMed  Google Scholar 

  • Levine B (2002) Apoptosis in viral infections of neurons: a protective or pathologic host response? Curr Top Microbiol Immunol 265:95–118

    PubMed  Google Scholar 

  • Levine B, Huang Q, Isaacs JT, Reed JC, Griffin DE, Hardwick JM (1993) Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature 361:739–742

    Article  PubMed  Google Scholar 

  • Lewis J, Wesselingh SL, Griffin DE, Hardwick JM (1996) Alphavirus-induced apoptosis in mouse brains correlates with neurovirulence. J Virol 70:1828–1835

    PubMed  Google Scholar 

  • Li ML, Hsu TA, Chen TC, Chang SC, Lee JC, Chen CC, Stollar V, Shih SR (2002) The 3C protease activity of enterovirus 71 induces human neural cell apoptosis. Virology 293:386–395

    Article  PubMed  Google Scholar 

  • Lopez M, Eberle F, Mattei MG, Gabert J, Birg F, Bardin F, Maroc C, Dubreuil P (1995) Complementary DNA characterization and chromosomal localization of a human gene related to the poliovirus receptor-encoding gene. Gene 155:261–265

    Article  PubMed  Google Scholar 

  • Lopez-Guerrero JA, Alonso M, Martin-Belmonte F, Carrasco L (2000) Poliovirus induces apoptosis in the human U937 promonocytic cell line. Virology 272:250–256

    Article  PubMed  Google Scholar 

  • Lwoff A, Dulbecco R, Vogt M, Lwoff M (1955) Kinetics of the release of poliomyelitis virus from single cells. Virology 1:128–139

    Article  PubMed  Google Scholar 

  • MacLennan C, Dunn G, Huissoon AP, Kumararatne DS, Martin J, O’Leary P, Thompson RA, Osman H, Wood P, Minor P, Wood DJ, Pillay D (2004) Failure to clear persistent vaccine-derived neurovirulent poliovirus infection in an immunodeficient man. Lancet 363:1509–1513

    Article  PubMed  Google Scholar 

  • Manchester M, Eto DS, Oldstone MB (1999) Characterization of the inflammatory response during acute measles encephalitis in NSE-CD46 transgenic mice. J Neuroimmunol 96:207–217

    Article  PubMed  Google Scholar 

  • Martin J, Dunn G, Hull R, Patel V, Minor PD (2000) Evolution of the Sabin strain of type 3 poliovirus in an immunodeficient patient during the entire 637-day period of virus excretion. J Virol 74:3001–3010

    Article  PubMed  Google Scholar 

  • Martinez-Moralez JR, Barbas JA, Marti E, Bovolenta P, Edgar D, Rodriguez-Tèbar A (1997) Vitronectin is expressed in the ventral region of the neural tube and promotes the differentiation of motor neurons. Development 124:5139–5147

    PubMed  Google Scholar 

  • Masson D, Jarry A, Baury B, Blanchardie P, Laboisse C, Lustenberger P, Denis MG (2001) Overexpression of the CD155 gene in human colorectal carcinoma. Gut 49:236–240

    Article  PubMed  Google Scholar 

  • McBride AE, Schlegel A, Kirkegaard K (1996) Human protein Sam68 relocalization and interaction with poliovirus RNA polymerase in infected cells. Proc Natl Acad Sci USA 93:2296–2301

    Article  PubMed  Google Scholar 

  • Meerovitch K, Pelletier J, Sonenberg N (1989) A cellular protein that binds to the 5′-noncoding region of poliovirus RNA: implications for internal translation initiation. Genes Dev 3:1026–1034

    PubMed  Google Scholar 

  • Mendelsohn CL, Wimmer E, Racaniello VR (1989) Cellular receptor for poliovirus: molecular cloning, nucleotide sequence and expression of a new member of the immunoglobulin superfamily. Cell 56:855–865

    Article  PubMed  Google Scholar 

  • Minor P (1997) Poliovirus. In: Nathanson N (ed) Viral pathogenesis. Lippincott-Raven, Philadelphia, pp 555–574

    Google Scholar 

  • Morrison ME, He YJ, Wien MW, Hogle JM, Racaniello VR (1994) Homolog-scanning mutagenesis reveals poliovirus receptor residues important for virus binding and replication. J Virol 68:2578–2588

    PubMed  Google Scholar 

  • Mueller S, Cao X, Welker R, Wimmer E (2002) Interaction of the poliovirus receptor CD155 with the dynein light chain Tctex-1 and its implication for poliovirus pathogenesis. J Biol Chem 277:7897–7904

    Article  PubMed  Google Scholar 

  • Mueller S, Wimmer E (2003) Recruitment of nectin-3 to cell-cell junctions through trans-heterophilic interaction with CD155, a vitronectin and poliovirus receptor that localizes to alpha(v)beta3 integrin-containing membrane microdomains. J Biol Chem 278:31251–31260

    Article  PubMed  Google Scholar 

  • Muir P, Nicholson F, Sharief MK, Thompson EJ, Cairns NJ, Lantos P, Spencer GT, Kaminski HJ, Banatvala JE (1995) Evidence for persistent enterovirus infection of the central nervous system in patients with previous paralytic poliomyelitis. In: Dalakas MC, Bartfeld H, Kurland LT (eds) The post-polio syndrome, vol 753. The New York Academy of Sciences, New York, pp 219–232

    Google Scholar 

  • Nagata N, Iwasaki T, Ami Y, Sato Y, Hatano I, Harashima A, Suzaki Y, Yoshii T, Hashikawa T, Sata T, Horiuchi Y, Koike S, Kurata T, Nomoto A (2004) A poliomyelitis model through mucosal infection in transgenic mice bearing human poliovirus receptor, TgPVR21. Virology 321:87–100

    Article  PubMed  Google Scholar 

  • Nathanson N, Langmuir AD (1963) The Cutter incident. Am J Hyg 78:16–81

    PubMed  Google Scholar 

  • Neznanov N, Chumakov KP, Ullrich A, Agol VI, Gudkov AV (2002) Unstable receptors disappear from cell surface during poliovirus infection. Med Sci Monit 8:BR391–BR396

    PubMed  Google Scholar 

  • Neznanov N, Kondratova A, Chumakov KM, Angres B, Zhumabayeva B, Agol VI, Gudkov AV (2001) Poliovirus protein 3A inhibits tumor necrosis factor (TNF)-induced apoptosis by eliminating the TNF receptor from the cell surface. J Virol 75:10409–10420

    Article  PubMed  Google Scholar 

  • Novoa I, Carrasco L (1999) Cleavage of eukaryotic translation initiation factor 4G by exogenously added hybrid proteins containing poliovirus 2A(pro) in HeLa cells: Effects on gene expression. Mol Cell Biol 19:2445–2454

    PubMed  Google Scholar 

  • Nugent CI, Johnson KL, Sarnow P, Kirkegaard K (1999) Functional coupling between replication and packaging of poliovirus replicon RNA. J Virol 73:427–435

    PubMed  Google Scholar 

  • O’Brien V (1998) Viruses and apoptosis. J Gen Virol 79: 1833–1845

    PubMed  Google Scholar 

  • Oberhaus SM, Smith RL, Clayton GH, Dermody TS, Tyler KL (1997) Reovirus infection and tissue injury in the mouse central nervous system are associated with apoptosis. J Virol 71:2100–2106

    PubMed  Google Scholar 

  • Ohka S, Matsuda N, Tohyama K, Oda T, Morikawa M, Kuge S, Nomoto A (2004) Receptor (CD155)-dependent endocytosis of poliovirus and retrograde axonal transport of the endosome. J Virol 78:7186–7198

    Article  PubMed  Google Scholar 

  • Ohka S, Nomoto A (2001) Recent insights into poliovirus pathogenesis. Trends Microbiol 9:501–506

    Article  PubMed  Google Scholar 

  • Ohka S, Ohno H, Tohyama K, Nomoto A (2001) Basolateral sorting of human poliovirus receptor alpha involves an interaction with the mulB subunit of the clathrin adaptor complex in polarized epithelial cells. Biochem. Biophys. Res Commun 287:941–948

    Article  PubMed  Google Scholar 

  • Ohka S, Yang W-X, Terada E, Iwasaki K, Nomoto A (1998) Retrograde transport of intact poliovirus through the axon via the fast transport system. Virology 250:67–75

    Article  PubMed  Google Scholar 

  • Okamoto I, Kawano Y, Murakami D, Sasayama T, Araki N, Miki T, Wong AJ, Saya H (2001) Proteolytic release of CD44 intracellular domain and its role in the CD44 signaling pathway. J Cell Biol 155:755–762

    Article  PubMed  Google Scholar 

  • Ouzilou L, Caliot E, Pelletier I, Prevost MC, Pringault E, Colbère-Garapin F (2002) Poliovirus transcytosis through M-like cells. J Gen Virol 83:2177–2182

    PubMed  Google Scholar 

  • Pallansch M, Roos R (2001) Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In: Knipe DM, Howley PM (eds) Fields Virology, vol 1. Lippincott Williams and Wilkins, Philadelphia, pp 723–775

    Google Scholar 

  • Paul AV (2002) Possible unifying mechanisms of picornavirus genome replication. In: Semler BL, Wimmer E (eds) Molecular biology of picornaviruses. ASM Press, Washington DC, pp 227–246

    Google Scholar 

  • Pavio N, Buc-Caron M-H, Colbère-Garapin F (1996) Persistent poliovirus infection of human fetal brain cells. J Virol 70:6395–6401

    PubMed  Google Scholar 

  • Pavio N, Couderc T, Girard S, Sgro JY, Blondel B, Colbère-Garapin F (2000) Expression of mutated receptors in human neuroblastoma cells persistently infected with poliovirus. Virology 274:331–342

    Article  PubMed  Google Scholar 

  • Pelletier I, Ouzilou L, Arita M, Nomoto A, Colbère-Garapin F (2003) Characterization of the poliovirus 147S particle: new insights into poliovirus uncoating. Virology 305:55–65

    Article  PubMed  Google Scholar 

  • Petito CK, Roberts B (1995) Evidence of apoptotic cell death in HIV encephalitis. Am J Pathol 146:1121–1130

    PubMed  Google Scholar 

  • Ponnuraj EM, John TJ, Levin MJ, Simoes EAF (1998) Cell-to-cell spread of poliovirus in the spinal cord of bonnet monkeys (Macaca radiata). J Gen Virol 79:2393–2403

    PubMed  Google Scholar 

  • Putcha GV, Moulder KL, Golden JP, Bouillet P, Adams JA, Strasser A, Johnson EM (2001) Induction of BIM, a proapoptotic BH3-only BCL-2 family member, is critical for neuronal apoptosis. Neuron 29:615–628

    Article  PubMed  Google Scholar 

  • Puthalakath H, Huang DC, O’Reilly LA, King SM, Strasser A (1999) The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 3:287–296

    Article  PubMed  Google Scholar 

  • Racaniello VR (2001) Picornaviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields Virology, vol 1. Lippincott Williams and Wilkins, Philadelphia, pp 685–722

    Google Scholar 

  • Ren R, Racaniello VR (1992) Poliovirus spreads from muscle to the central nervous system by neural pathways. J Infect Dis 166:747–752

    PubMed  Google Scholar 

  • Ren RB, Costantini F, Gorgacz EJ, Lee JJ, Racaniello VR (1990) Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell 63:353–362

    Article  PubMed  Google Scholar 

  • Roulston A, Marcellus R, Branton PE (1999) Virus and apoptosis. Annu Rev Microbiol 53:577–628

    Article  PubMed  Google Scholar 

  • Rousset D, Rakoto-Andrianarivelo M, Razafindratsimandresy R, Randriamanalina B, Guillot S, Balanant J, Mauclbre P, Delpeyroux F (2003) Emergence of recombinant vaccine-derived poliovirus in Madagascar. Emerging Infect Dis 9:885–887

    PubMed  Google Scholar 

  • Rubinstein SJ, Dasgupta A (1989) Inhibition of rRNA synthesis by poliovirus: specific inactivation of transcription factors. J Virol 63:4689–4696

    PubMed  Google Scholar 

  • Rubinstein SJ, Hammerle T, Wimmer E, Dasgupta A (1992) Infection of HeLa cells with poliovirus results in modification of a complex that binds to the rRNA promoter. J Virol 66:3062–3068

    PubMed  Google Scholar 

  • Sabin AB, Boulger LR (1973) History of Sabin attenuated poliovirus oral live vaccine strains. J Biol Stand 1:115–118

    Article  Google Scholar 

  • Salk JE (1955) Consideration in the preparation and use of poliomyelitis virus vaccine. JAMA 1548:1239–1248

    Google Scholar 

  • Sanchez I, Yuan J (2001) A convoluted way to die. Neuron 29:563–566

    Article  PubMed  Google Scholar 

  • Saunderson R, Yu B, Trent RJ, Pamphlett R (2004) A polymorphism in the poliovirus receptor gene differs in motor neuron disease. Neuroreport 15:383–386

    Article  PubMed  Google Scholar 

  • Schlegel A, Giddings TH, Ladinsky MS, Kirkegaard K (1996) Cellular origin and ultrastructure of membranes induced during poliovirus infection. J Virol 70:6576–6588

    PubMed  Google Scholar 

  • Sharief MK, Hentges MR, Ciardi M (1991) Intrathecal immune response in patients with the post-polio syndrome. N Engl J Med 325:749–755

    PubMed  Google Scholar 

  • Shepley MP, Racaniello VR (1994) A monoclonal antibody that blocks poliovirus attachment recognizes the lymphocyte homing receptor CD44. J Virol 68:1301–1308

    PubMed  Google Scholar 

  • Shiroki K, Isoyama T, Kuge S, Ishii T, Ohmi S, Hata S, Suzuki K, Takasaki Y, Nomoto A (1999) Intracellular redistribution of truncated La protein produced by poliovirus 3Cpro-mediated cleavage. J Virol 73:2193–2200

    PubMed  Google Scholar 

  • Sicinski P, Rowinski J, Warchol JB, Jarzabek Z, Gut W, Szczygiel B, Bielicki K, Koch G (1990) Poliovirus type 1 enters the human host through intestinal M cells. Gastroenterology 98:56–58

    PubMed  Google Scholar 

  • Solecki DJ, Gromeier M, Mueller S, Bernhardt G, Wimmer E (2002) Expression of the human poliovirus Receptor/CD155 gene is activated by sonic-hedgehog. J Biol Chem 277:25697–25702

    Article  PubMed  Google Scholar 

  • Strebel PM, Ion-Nedelcu N, Baughman AL, Sutter RW, Cochi SL (1995) Intramuscular injections within 30 days of immunization with oral poliovirus vaccine—a risk factor for vaccine-associated paralytic poliomyelitis. N Engl J Med 332:500–506

    Article  PubMed  Google Scholar 

  • Tahara-Hanaoka S, Shibuya K, Onoda Y, Zhang H, Yamazaki S, Miyamoto A, Honda S, Lanier LL, Shibuya A (2004) Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int Immunol 16:533–538

    Article  PubMed  Google Scholar 

  • Takahashi K, Nakanishi H, Miyahara M, Mandai K, Satoh K, Satoh A, Nishioka H, Aoki J, Nomoto A, Mizoguchi A, Takai Y (1999) Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein. J Cell Biol 145:539–549

    Article  PubMed  Google Scholar 

  • Teodoro JG, Branton PE (1997) Regulation of apoptosis by viral gene products. J Virol 71:1739–1746

    PubMed  Google Scholar 

  • Teterina NL, Gorbalenya AE, Egger D, Bienz K, Ehrenfeld E (1997) Poliovirus 2C protein determinants of membrane binding and rearrangements in mammalian cells. J Virol 71:8962–8972

    PubMed  Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    PubMed  Google Scholar 

  • Tolskaya EA, Romanova L, Kolesnikova MS, Ivannikova TA, Smirnova EA, Raikhlin NT, Agol VI (1995) Apoptosis-inducing and apoptosis-preventing functions of poliovirus. J Virol 69:1181–1189

    PubMed  Google Scholar 

  • Tsunoda I, Kurtz CIB, Fujinami RS (1997) Apoptosis in acute and chronic central nervous system disease induced by Theiler’s murine encephalomyelitis virus. Virology 228:388–393

    Article  PubMed  Google Scholar 

  • Tucker SP, Thornton CL, Wimmer E, Compans RW (1993) Vectorial release of poliovirus from polarized human intestinal epithelial cells. J Virol 67:4274–4282

    PubMed  Google Scholar 

  • Tyler KL, Clarke P, DeBiasi RL, Kominsky D, Poggioli GJ (2001) Reoviruses and the host cell. Trends Microbiol 9:560–564

    Article  PubMed  Google Scholar 

  • Umehara F, Nakamura A, Izumo S, Kubota R, Ijchi S, Kashio N, Hashimoto K-I, Usuku K, Sato E, Osame M (1994) Apoptosis of T lymphocytes in the spinal cord lesions in HTLV-I-associated myelopathy: a possible mechanism to control viral infection in the central nervous system. J Neuropathol Exp Neurol 53:617–624

    PubMed  Google Scholar 

  • Viswanath V, Wu Y, Boonplueang R, Chen S, Stevenson FF, Yantiri F, Yang L, Beal MF, Andersen JK (2001) Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease. J Neurosci 21:9519–9528

    PubMed  Google Scholar 

  • Waggoner S, Sarnow P (1998) Viral ribonucleoprotein complex formation and nucleolar-cytoplasmic relocalization of nucleolin in poliovirus-infected cells. J Virol 72:6699–6709

    PubMed  Google Scholar 

  • Wallach D (1997) Cell death induction by TNF: a matter of self control. Trends Biochem Sci 22:107–109

    Article  PubMed  Google Scholar 

  • Weidman MK, Yalamanchili P, Ng B, Tsai W, Dasgupta A (2001) Poliovirus 3C protease-mediated degradation of transcriptional activator p53 requires a cellular activity. Virology 291:260–271

    Article  PubMed  Google Scholar 

  • Xiang W, Paul AV, Wimmer E (1997) RNA signals in entero-and rhinovirus genome replication. Semin Virol 8:256–273

    Article  Google Scholar 

  • Yalamanchili P, Datta U, Dasgupta A (1997a) Inhibition of host cell transcription by poliovirus: cleavage of transcription factor CREB by poliovirus-encoded protease 3Cpro. J Virol 71:1220–1226

    PubMed  Google Scholar 

  • Yalamanchili P, Harris K, Wimmer E, Dasgupta A (1996) Inhibition of basal transcription by poliovirus: a virus-encoded protease (3Cpro) inhibits formation of TBP-TATA box complex in vitro. J Virol 70:2922–2929

    PubMed  Google Scholar 

  • Yalamanchili P, Weidman K, Dasgupta A (1997b) Cleavage of transcriptional activator Oct-1 by poliovirus encoded protease 3Cpro. Virology 239:176–185

    Article  PubMed  Google Scholar 

  • Yang C, Naguib T, Yang SJ, Nasr E, Jorba J, Ahmed N, Campagnoli R, van der Avoort H, Shimizu H, Yoneyama T, Miyamura T, Pallansch M, Kew O (2003) Circulation of endemic type 2 vaccine-derived poliovirus in Egypt from 1983 to 1993. J Virol 77:8366–8377

    Article  PubMed  Google Scholar 

  • Yang W-X, Terasaki T, Shiroki K, Ohka S, Aoki J, Tanabe S, Nomura T, Terada E, Sugiyama Y, Nomoto A (1997) Efficient delivery of circulating poliovirus to the central nervous system independently of poliovirus receptor. Virology 229:421–428

    Article  PubMed  Google Scholar 

  • Zamora M, Marissen WE, Lloyd RE (2002) Poliovirus-mediated shutoff of host translation: an indirect effect. In: Semler BL, Wimmer E (eds) Molecular biology of picornaviruses. ASM Press, Washington DC, pp 313–320

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Blondel, B., Colbere-Garapin, F., Couderc, T., Wirotius, A., Guivel-Benhassine, F. (2005). Poliovirus, Pathogenesis of Poliomyelitis, and Apoptosis. In: Griffin, D.E. (eds) Role of Apoptosis in Infection. Current Topics in Microbiology and Immunology, vol 289. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27320-4_2

Download citation

Publish with us

Policies and ethics