Skip to main content

Precise Orbit Determination for CHAMP Using an Efficient Kinematic and Reduced-Dynamic Procedure

  • Chapter
Earth Observation with CHAMP
  • 1480 Accesses

Summary

Using an efficient and robust combination of a kinematic and reduced-dynamic orbit determination procedure CHAMP GPS data spanning about eleven months are processed and different aspects are addressed. Kinematic solutions are generated with and without elevation-dependent weighting of the observations in order to study the impact on the solution. GPS clock corrections with a sampling rate of 30 seconds and of 5 minutes, both interpolated to 10 seconds, are used. The orbit results are compared with the Post-processed Science Orbits from the GeoForschungsZentrum Potsdam, Germany, with orbit solutions from the Technical University of Munich, Germany, and they are validated with SLR measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bock H (2003) Efficient Methods for Determining Precise Orbits of Low Earth Orbiters Using the Global Positioning System, PhD thesis, Astronomical Institute, University of Berne.

    Google Scholar 

  2. Bock H, Hugentobler U, Beutler G (2003) Kinematic and Dynamic Determination of trajectories for low Earth Satellites Using GPS. in: First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, edited by Reigber C et al., pp. 65–69, Springer, Berlin, ISBN 3-540-00206-5.

    Google Scholar 

  3. Montenbruck O, Kroes R. (2003) In-flight performance analysis of the CHAMP BlackJack GPS Receiver. GPS Solutions 7(2): 74–86.

    Article  Google Scholar 

  4. Reigber Ch, Schwintzer P, Neumayer K-H, Barthelmes F, König R, Förste Ch, Balmino G, Biancale R, Lemoine J-M, Loyer S, Bruinsma S, Perosanz F, Fayard T (2003) The CHAMP-only Earth Gravity Field Model EIGEN-2. Adv Space Res 31(8): 1883–1888 (doi: 10.1016/S0273 1177(03)00162-5).

    Article  Google Scholar 

  5. Švehla D, Rothacher M (2003) Kinematic and reduced-dynamic precise orbit determination of CHAMP satellite over one year using zero-differences. presented at EGS-AGU-EGU Joint Assembly, Nice, France, 06-11 April 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bock, H., Hugentobler, U., Jäggi, A., Beutler, G. (2005). Precise Orbit Determination for CHAMP Using an Efficient Kinematic and Reduced-Dynamic Procedure. In: Reigber, C., Lühr, H., Schwintzer, P., Wickert, J. (eds) Earth Observation with CHAMP. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26800-6_25

Download citation

Publish with us

Policies and ethics