Skip to main content

Pharmacological Potential of p38 MAPK Inhibitors

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 167))

Abstract

A key component of the intracellular signaling pathways involved in cellular response to environmental stress and inflammatory cytokines is the p38 family of mitogen-activated protein kinases (MAPKs). Of the four isoforms of the p38 family of MAPKs identified thus far, p38α is the most characterized enzyme. Since the discovery of p38α MAPK as a target of a series of compounds that inhibited the production of inflammatory cytokines, an intense effort has been applied to further identify, develop, and refine highly potent and selective inhibitors of this enzyme. In addition, availability of p38α MAPK inhibitors has allowed the investigators to dissect this signaling pathway and to examine its role in various pathologies. A large body of biochemical as well as genetic evidence indicates a critical role of p38α MAPK in both the production of inflammatory cytokines such as interleukin (IL)-1 and tumor necrosis factor (TNF) and subsequent signaling initiated in response to these cytokines. This suggests that inhibition of p38α MAPK pathway will have utility in pathological settings where tissue inflammation and pro-inflammatory cytokines have been implicated. Indeed, several p38α MAPK inhibitors have been shown to be efficacious in preclinical animal models of a variety of diseases, including rheumatoid arthritis, pulmonary diseases, neuronal protection, and cancer. In the past few years, several groups have advanced inhibitors into early clinical studies for rheumatoid arthritis, but none thus far has reached the critical phase III efficacy stage. In this chapter, we review the p38 MAPK pathway and pharmacological potential of p38α MAPK inhibitors in various pathologies with particular emphasis on inflammatory diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi T, Choudhury BK, et al (2000) The differential role of extracellular signal-regulated kinases and p38 mitogen-activated protein kinase in eosinophil functions. J Immunol 165:2198–2204

    PubMed  CAS  Google Scholar 

  • Adams JL, Boehm JC, et al (1998) Pyrimidinylimidazole inhibitors of CSBP/p38 kinase demonstrating decreased inhibition of hepatic cytochrome P450 enzymes. Bioorg Med Chem Lett 8:3111–3116

    PubMed  CAS  Google Scholar 

  • Adams JL, Badger AM, et al (2001a) p38 MAP Kinase: molecular target for the inhibition of pro-inflammatory cytokines. Prog Med Chem 38:1–60

    PubMed  CAS  Google Scholar 

  • Adams JL, Boehm JC, et al (2001b) Pyrimidinylimidazole inhibitors of p38: Cyclic N-1 imidazole substituents enhance p38 kinase inhibition and oral activity. Bioorg Med Chem Lett 11:2867–2870

    Article  PubMed  CAS  Google Scholar 

  • Allen M, Svensson L, et al (2000) Deficiency of the stress kinase p38α results in embryonic lethality: characterization of the kinase dependence of stress response of enzyme-deficient embryonic stem cells. J Exp Med 191:859–869

    PubMed  CAS  Google Scholar 

  • Arend WP, Dayer JM (1995) Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheumatism 38:151–60

    PubMed  CAS  Google Scholar 

  • Badger AM, Bradbeer JN, et al (1996) Pharmacological Profile of SB 203580, a Selective Inhibitor of Cytokine Suppressive Binding Protein/p38 Kinase, in Animal Models of Arthritis, Bone Resorption, Endotoxin Shock and Immune Function. J Pharmacol Exp Therap 279:1453–1461

    CAS  Google Scholar 

  • Badger AM, Griswold DE, et al (2000) Disease-modifying activity of SB 242235, a selective inhibitor of p38 mitogen-activated protein kinase, in rat adjuvant-induced arthritis. Arthritis Rheumatism 43:175–183

    Article  PubMed  CAS  Google Scholar 

  • Badger AM, Roshak AK, et al (2000) Differential effects of SB 242235, a selective p38 mitogen-activated protein kinase inhibitor, on IL-1 treated bovine and human cartilage/chondrocyte cultures. Osteoarthritis Cartilage 8:434–443

    Article  PubMed  CAS  Google Scholar 

  • Barancik M, Htun P, et al (2000) Inhibition of the cardiac p38-MAPK pathway by SB203580 delays ischemic cell death. J Cardiovasc Pharmacol 35:474–483

    Article  PubMed  CAS  Google Scholar 

  • Barnes PJ, Chung KF, et al (1998) Inflammatory mediators of asthma: An update. Pharmacol Rev 50:515–596

    PubMed  CAS  Google Scholar 

  • Barone FC, Irving EA, et al (2001) SB 239063, a second-generation p38 mitogen-activated protein kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemia. J Pharmacol Exp Ther 296:312–321

    PubMed  CAS  Google Scholar 

  • Behr TM, Nerurkar SS, et al (2001) Hypertensive end-organ damage and premature mortality are p38 mitogen-activated protein kinase-dependent in a rat model of cardiac hypertrophy and dysfunction. Circulation 104:1292–1298

    PubMed  CAS  Google Scholar 

  • Bendele AM, Chlipala ES, et al (2000) Combination benefit of treatment with the cytokine inhibitors interleukin-1 receptor antagonist and PEGylated soluble tumor necrosis factor receptor type I in animal models of rheumatoid arthritis. Arthritis Rheum 43:2648–2659

    Article  PubMed  CAS  Google Scholar 

  • Boehm JC, Smietana JM, et al (1996) 1-substituted 4-aryl-5-pyridinylimidazoles: a new class of cytokine suppressive drugs with low 5-lipoxygenase and cyclooxygenase inhibitory potency. J Med Chem 39:3929–3937

    Article  PubMed  CAS  Google Scholar 

  • Braz JC, Bueno OF, et al (2003) Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NEAT signaling. J Clin Invest 111:1475–1486

    Article  PubMed  CAS  Google Scholar 

  • Caput D, Beutler B, et al (1986) Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci U S A 83:1670–1674

    PubMed  CAS  Google Scholar 

  • Cavender D, Haskard D, et al (1987) Pathways to chronic inflammation in rheumatoid synovitis. Fed Proc 46:113–7

    PubMed  CAS  Google Scholar 

  • Cirillo PF, Pargellis C, et al (2002) The non-diaryl heterocycle classes of p38 MAP kinase inhibitors. Curr Top Med Chem 2:1021–1035

    Article  PubMed  CAS  Google Scholar 

  • Court NW, dos Remedios CG, et al (2002) Cardiac expression and subcellular localization of the p38 mitogen-activated protein kinase member, stress-activated protein kinase-3 (SAPK3). J Mol Cell Cardiol 34:413–426

    Article  PubMed  CAS  Google Scholar 

  • Dayer JM, Beutler B, et al (1985) Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J Exp Med 162:2163–8

    Article  PubMed  CAS  Google Scholar 

  • Elenitoba-Johnson KS J, Jenson SD, et al (2003) Involvement of multiple signaling pathways in follicular lymphoma transformation: p38-mitogenactivated protein kinase as a target for therapy. Proc Natl Acad Sci U S A 100:7259–7264

    Article  PubMed  CAS  Google Scholar 

  • Fijen JW, Zijlstra JG, et al (2001) Suppression of the clinical and cytokine response to endotoxin by RWJ-67657, a p38 mitogen-activated protein-kinase inhibitor, in healthy human volunteers. Clin Exp Immunol 124:16–20

    Article  PubMed  CAS  Google Scholar 

  • Frevel MA E, Bakheet T, et al (2003) p38 mitogen-activated protein kinase-dependent and-independent signaling of mRNA stability of AU-rich element-containing transcripts. Mol Cell Biol 23:425–436

    Article  PubMed  CAS  Google Scholar 

  • Fullerton T, Sharma A, et al (2000) Suppression of ex vivo cytokine production by SB-242235, a selective inhibitor of p38 MAP kinase. Clin Pharmacol Ther 101st Ann Meeting Am Soc Clin Pharmacol 67:Abstract O1-B-4

    Google Scholar 

  • Gallagher T, Seibel GL, et al (1997) Regulation of stress-induced cytokine production by pyridinylimidazoles; inhibition of CSBP kinase. Bioorg Med Chem 5:49–64

    PubMed  CAS  Google Scholar 

  • Gallagher TF, Fierthompson SM, et al (1995) 2,4,5-Triarylimidazole Inhibitors of IL-1 Biosynthesis. Bioorg Med Chem Lett 5:1171–1176

    Article  CAS  Google Scholar 

  • Ge BX, Gram H, et al (2002) MAPKK-independent activation of p38 alpha mediated by TAB1-dependent autophosphorylation of p38 alpha. Science 295:1291–1294

    Article  PubMed  CAS  Google Scholar 

  • Giembycz MA, Lindsay MA (1999) Pharmacology of the eosinophil. Pharmacol Rev 51:213–339

    PubMed  CAS  Google Scholar 

  • Guan ZH, Buckman SY, et al (1998) Induction of Cyclooxygenase-2 by the Activated Mekk1-]Sek1/Mkk4-]P38 Mitogen-Activated Protein Kinase Pathway. J Biol Chem 273:12901–12908

    PubMed  CAS  Google Scholar 

  • Han J, Lee JD, et al (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265:808–811

    PubMed  CAS  Google Scholar 

  • Harper SJ, LoGrasso P (2001) Signalling for survival and death in neurones—the role of stress-activated kinases, JNK and p38. Cell Signal 13:299–310

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto S, Matsumoto K, et al (1999) Hyperosmolarity-induced interleukin-8 expression in human bronchial epithelial cells through p38 mitogen-activated protein kinase. Am J Respir Critic Care Med 159:634–40

    CAS  Google Scholar 

  • Hensley K, Floyd RA, et al (1999) p38 kinase is activated in the Alzheimer’s disease brain. J NeuroChem 72:2053–2058

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi D, Ogata T, et al (2003) Continuous intrathecal infusion of SB203580, a selective inhibitor of p38 mitogen-activated protein kinase, reduces the damage of hindlimb function after thoracic spinal cord injury in rat. Neurosci Res 47:209–217

    Article  PubMed  CAS  Google Scholar 

  • Jackson PF, Bullington JL (2002) Pyridinylimidazole based p38 MAP kinase inhibitors. Curr Top Med Chem 2:1011–1020

    PubMed  CAS  Google Scholar 

  • Ju HS, Nerurkar S, et al (2002) Sustained activation of p38 mitogen-activated protein kinase contributes to the vascular response to injury. J Pharmacol Exp Ther 301:15–20

    Article  PubMed  CAS  Google Scholar 

  • Kawashima Y, Takeyoshi I, et al (2001) FR167653 attenuates ischemia and reperfusion injury of the rat lung with suppressing p38 mitogen-activated protein kinase. J Heart Lung Transplant 20:568–574

    PubMed  CAS  Google Scholar 

  • Kikuchi M, Tenneti L, et al (2000) Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J Neurosci 20:5037–5044

    PubMed  CAS  Google Scholar 

  • Ko HW, Han KS, et al (2000) Synergetic activation of p38 mitogen-activated protein kinase and caspase-3-like proteases for execution of calyculin A-induced apoptosis but not N-methyl-D-aspartate-induced necrosis in mouse cortical neurons. J NeuroChem 74:2455–2461

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Takeyoshi I, et al (2002) P38 mitogen-activated protein kinase inhibition attenuates ischemia-reperfusion injury of the rat liver. Surgery 131:344–349

    Article  PubMed  Google Scholar 

  • Kotlyarov A, Neininger A, et al (1999) MAPKAP Kinase 2 is essential for LPS-induced TNF-a biosynthesis. Nat Cell Biol 1:94–97

    PubMed  CAS  Google Scholar 

  • Kumar S, Blake SM, et al (2001a) Intracellular signaling pathways as a target for the treatment of rheumatoid arthritis. Curr Opin Pharmacol 1:307–13

    PubMed  CAS  Google Scholar 

  • Kumar S, Votta BJ, et al (2001b) IL-1 and TNF-induced bone resorption is mediated by p38 mitogen activated protein kinase. J Cell Physiol 187:294–303

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Boehm J, et al (2003) p38 map kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2:717–726

    Article  PubMed  CAS  Google Scholar 

  • Kummer JL, Rao PK, et al (1997) Apoptosis induced by withdrawal of trophic factors is mediated by P38 mitogen-activated protein kinase. J Biol Chem 272:20490–20494

    Article  PubMed  CAS  Google Scholar 

  • Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    PubMed  CAS  Google Scholar 

  • Lee DM, Weinblatt ME (2001) Rheumatoid arthritis. Lancet 358:903–911

    Article  PubMed  CAS  Google Scholar 

  • Lee JC, Griswold DE, et al (1988) Inhibition of monocyte IL-1 production by the anti-inflammatory compound, SK&F 86002. Int J Immunopharmacol 10:835–843

    PubMed  CAS  Google Scholar 

  • Lee JC, Badger AM, et al (1993) Bicyclic imidazoles as a novel class of cytokine biosynthesis inhibitors. Ann N YAcad Sci 696:149–170

    CAS  Google Scholar 

  • Lee JC, Laydon JT, et al (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372:739–746

    Article  PubMed  CAS  Google Scholar 

  • Lee JC, Kassis S, et al (1999) p38 mitogen-activated protein kinase inhibitors-Mechanism and therapeutic potentials. Pharmacol Ther 82:389–397

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Kavanaugh A (2003) Pharmacological treatment of established rheumatoid arthritis. Best Pract Res Clin Rheumatol 17:811–29

    Article  PubMed  CAS  Google Scholar 

  • Legos JJ, McLaughlin B, et al (2002) The selective p38 inhibitor SB-239063 protects primary neurons from mild to moderate excitotoxic injury. Eur J Pharmacol 447:37–42

    Article  PubMed  CAS  Google Scholar 

  • Liverton NJ, Butcher JW, et al (1999) Design and synthesis of potent, selective, and orally bioavailable tetrasubstituted imidazole inhibitors of p38 mitogen-activated protein kinase. J Med Chem 42:2180–2190

    Article  PubMed  CAS  Google Scholar 

  • Ma XL, Kumar S, et al (1999) Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation 99:1685–1691

    PubMed  CAS  Google Scholar 

  • Maas JW, Horstmann S, et al (1998) Apoptosis of central and peripheral neurons can be prevented with cyclin-dependent kinase mitogen-activated protein kinase inhibitors. J Neuro Chem 70:1401–1410

    CAS  Google Scholar 

  • Masuda K, Shima H, et al (2001) MKP-7, a novel mitogen-activated protein kinase phosphatase, functions as a shuttle protein. J Biol Chem 276:39002–39011

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Hashimoto S, et al (1998) Proinflammatory cytokine-induced and chemical mediator-induced IL-8 expression in human bronchial epithelial cells through p38 mitogen-activated protein kinase-dependent pathway. J Allergy Clin Immunol 101:825–31

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Sudo T, et al (2000) Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J Biol Chem 275:31155–31161

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka H, Arai T, et al (2002) A p38 MAPK inhibitor, FR-167653, ameliorates murine bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 283:L103–L112

    PubMed  CAS  Google Scholar 

  • McKenna JM, Halley F, et al (2002) An algorithm-directed two-component library synthesized via solid-phase methodology yielding potent and orally bioavailable p38 MAP kinase inhibitors. J Med Chem 45:2173–2184

    Article  PubMed  CAS  Google Scholar 

  • McLay IM, Halley F, et al (2001) The discovery of RPR 200765A, a p38 MAP kinase inhibitor displaying a good oral anti-arthritic efficacy. Bioorg Med Chem 9:537–554

    PubMed  CAS  Google Scholar 

  • Mielke K, Herdegen T (2000) JNK and p38 stresskinases—degenerative effectors of signal-transduction-cascades in the nervous system. Prog Neuro Biol 61:45–60

    CAS  Google Scholar 

  • Mielke K, Brecht S, et al (1999) Activity and expression of JNK1, p38 and ERK kinases, c-Jun N-terminal phosphorylation, and c-jun promoter binding in the adult rat brain following kainate-induced seizures. Neuroscience 91:471–483

    Article  PubMed  CAS  Google Scholar 

  • Ming XF, Stoecklin G, et al (2001) Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol Cell Biol 21:5778–5789

    Article  PubMed  CAS  Google Scholar 

  • Mori T, Wang XY, et al (2002) Mitogen-activated protein kinase inhibition in traumatic brain injury: In vitro and in vivo effects. J Cereb Blood Flow Metabolism 22:444–452

    CAS  Google Scholar 

  • Neininger A, Kontoyiannis D, et al (2002) MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J Biol Chem 277:3065–3068

    Article  PubMed  CAS  Google Scholar 

  • Nick JA, Young SK, et al (2002) Selective suppression of neutrophil accumulation in ongoing pulmonary inflammation by systemic inhibition of p38 mitogen-activated protein kinase. J Immunol 169:5260–5269

    PubMed  Google Scholar 

  • Nishikawa M, Myoui A, et al (2003) Prevention of the onset and progression of collagen-induced arthritis in rats by the potent p38 mitogen-activated protein kinase inhibitor FR167653. Arthritis Rheum 48:2670–2681

    Article  PubMed  CAS  Google Scholar 

  • Pargellis C, Tong L, et al (2002) Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat Struct Biol 9:268–272

    Article  PubMed  CAS  Google Scholar 

  • Pearson G, Robinson F, et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    Article  PubMed  CAS  Google Scholar 

  • Piao CS, Kim JB, et al (2003) Administration of the p38 MAPK inhibitor SB203580 affords brain protection with a wide therapeutic window against focal ischemic insult. J Neurosci Res 73:537–544

    Article  PubMed  CAS  Google Scholar 

  • Polmar SH (2002) Safety and pharmacokinetics of an oral p38 MAP kinase inhibitor (BIRB 796 BS), administered twice daily for 14 days to healthy volunteers. J Allergy Clin Immunol 58th Ann Meeting Am Acad Allergy Asthma Immunol 109:S66:Abstract 167

    Google Scholar 

  • Regan J, Breitfelder S, et al (2002) Pyrazole urea-based inhibitors of p38 MAP kinase: from lead compound to clinical candidate. J Med Chem 45:2994–3008

    Article  PubMed  CAS  Google Scholar 

  • Revesz L, Di Padova FE, et al (2000) SAR of 4-hydroxypiperidine and hydroxyalkyl substituted heterocycles as novel p38 map kinase inhibitors. Bioorg Med Chem Lett 10:1261–1264

    Article  PubMed  CAS  Google Scholar 

  • Shapiro L, Dinarello CA (1995) Osmotic regulation of cytokine synthesis in vitro. Proc Natl Acad Sci U S A 92:12230–12234

    PubMed  CAS  Google Scholar 

  • Shaw G, Kamen R (1986) A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667

    Article  PubMed  CAS  Google Scholar 

  • Song GY, Chung CS, et al (2001) MAPK p38 antagonism as a novel method of inhibiting lymphoid immune suppression in polymicrobial sepsis. Am J Physiol Cell Physiol 281:C662–C669

    PubMed  CAS  Google Scholar 

  • Suzuki M, Tetsuka T, et al (2000) The role of p38 mitogen-activated protein kinase in IL-6 and IL-8 production from the TNF-alpha-or IL-1 beta-stimulated rheumatoid synovial fibroblasts. FEBS Lett 465:23–27

    Article  PubMed  CAS  Google Scholar 

  • Tanoue T, Yamamoto T, et al (2001) A novel MAPK phosphatase MKP-7 acts preferentially on JNK/SAPK and p38 alpha and beta MAPKs. J Biol Chem 276:26629–26639

    PubMed  CAS  Google Scholar 

  • Theodosiou A, Smith A, et al (1999) MKP5, a new member of the MAP kinase phosphatase family, which selectively dephosphorylates stress-activated kinases. Oncogene 18:6981–6988

    Article  PubMed  CAS  Google Scholar 

  • Underwood DC, Osborn RR, et al (2000) SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. Am J Physiol Lung Cell Mol Physiol 279:L895–L902

    PubMed  CAS  Google Scholar 

  • Wadsworth SA, Cavender DE, et al (1999) RWJ 67657, a potent, orally active inhibitor of p38 mitogen-activated protein kinase. J Pharmacol Exp Ther 291:680–7

    PubMed  CAS  Google Scholar 

  • Waetzig GH, Seegert D, et al (2002) p38 mitogen-activated protein kinase is activated and linked to TNF-alpha signaling in inflammatory bowel disease. J Immunol 168:5342–5351

    PubMed  CAS  Google Scholar 

  • Weisman M (2002) Double-blind, placebo-controlled trial of VX-745, an oral p38 mitogen activated protein kinase inhibitor, in patients with rheumatoid arthritis (RA). Ann Eur Congress Rheumatol:Abstract FR 10018

    Google Scholar 

  • Winzen R, Kracht M, et al (1999) The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J 18:4969–4980

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Kumar, S., Blake, S.M. (2005). Pharmacological Potential of p38 MAPK Inhibitors. In: Pinna, L.A., Cohen, P.T. (eds) Inhibitors of Protein Kinases and Protein Phosphates. Handbook of Experimental Pharmacology, vol 167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26670-4_4

Download citation

Publish with us

Policies and ethics