Skip to main content

Regular Patterned Surfaces from Core-Shell Particles. Preparation and Characterization

  • Conference paper
  • First Online:

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 132))

Abstract

A simple route for fabrication of regularly patterned surfaces with specifically designed surface roughness and chemistry is reported using colloidal particles. The surface was built up from self-assembled submicrometer- and micrometer-sized monodisperse core-shell particles of different radius (0.1–10 μm) forming ordered arrays. In this way, an increase in the vertical roughness is achieved with increasing particle radius, but without changing the Wenzel roughness factor. The morphology of the ordered particle arrays was characterized using an optical imaging method (MicroGlider), scanning force (SFM) and scanning electron (SEM) microscopy. The organic shell was either prepared by covalent grafting of polymer brushes or by chemisorption of a silane with a long fluoroalkyl tail. From FTIR-ATR, diffuse reflection IR spectroscopy, and capillary penetration experiments, it was concluded that the grafted polymer completely covers the surface of the silica particles. The solid surface tension of the organic shell obtained from contact angle measurements on smooth surfaces decreased in the following order: polystyrene brush-PS (γsv = 28.9 mJ/m2) > copolymer of polystyrene and 2,3,4,5,6-pentafluoropolystyrene brush-FPS (γsv = 24.3 mJ/m2) > chemisorbed (tridecafluoro-1,1,2,2-tetrahydrooctyl) dimethylchlorosilane-FSI (γsv = 18.3 mJ/m2). Water contact angle measurements revealed an influence of the surface height roughness and the shell chemistry on the wettability. For all surfaces investigated, the contact angle hysteresis increased on the rough model surfaces compared to the smooth surfaces due to the increase of the advancing contact angle and the decrease of the receding angle. The lower the surface free energy of the shell chemistry, the smaller is the contact angle hysteresis on the closely packed surface arrays. Further the contact angles varied with increasing height roughness. A possible explanation for this behaviour is that the vertical roughness influences the curvature radius of the liquid in trapped air pockets at the solid-liquid interface as was already assumed in the literature for nanostructured metal surfaces and paraffin-coated steel balls.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barthlott W, Neinhuis C (1997) Planta 202:1

    Article  CAS  Google Scholar 

  2. Tsujii K, Yamamoto T, Onda T, Shibuichi S (1997) Angew Chem 109:1042

    Article  Google Scholar 

  3. Nakajima A, Fujishima A, Hashimoto K, Watanabe T (1999) Adv Mater 11:1365

    Article  CAS  Google Scholar 

  4. Youngblood J, McCarthy TJ (1999) Macromolecules 32:6800

    Article  CAS  Google Scholar 

  5. Chen W, Fadeev AY, Hsieh MC, Öner D, Youngblood J, McCarthy T (1999) Langmuir 15:3395

    Article  CAS  Google Scholar 

  6. Minko S, Müller M, Motornov M, Nitschke M, Grundke K, Stamm M (2003) J Am Chem Soc 125:3896

    Article  CAS  Google Scholar 

  7. Grundke K, Nitschke M, Minko S, Stamm M, Froeck C, Simon F, Uhlmann S, Pöschel K, Motornov M (2003) In: Mittal KL (ed) Contact Angle, Wettability and Adhesion, vol 3, p 1–25

    Google Scholar 

  8. Öner D, McCarthy TJ (2000) Langmuir 16:7777

    Article  Google Scholar 

  9. Onda T, Shibuichi S, Satoh N, Tsujii K (1996) Langmuir 12:2125

    Article  CAS  Google Scholar 

  10. Shibuichi S, Onda T, Satoh N, Tsujii K (1996) J Phys Chem 100:19512

    Article  CAS  Google Scholar 

  11. Wenzel RN (1936) Ind Eng Chem Res 28:988

    Article  CAS  Google Scholar 

  12. Cassie A (1948) Discuss Faraday Soc 3:11

    Article  Google Scholar 

  13. Johnson RE, Dettre RH (1964) In: Contact angle, Wettability and Adhesion. Adv Chem Ser 43:112

    Article  CAS  Google Scholar 

  14. Dettre RH, Johnson RE (1964) In: Contact angle, Wettability and Adhesion. Adv Chem Ser 43:136

    Article  CAS  Google Scholar 

  15. Johnson RE, Dettre RH (1968) J Phys Chem 64:1744

    Google Scholar 

  16. Bico J, Tordeux C, Quere D (2001) Europhys Lett 55:214

    Article  CAS  Google Scholar 

  17. Quere D (2003) Nanotechnology 14:1109

    Article  CAS  Google Scholar 

  18. Patankar NA (2003) Langmuir 19:1249

    Article  CAS  Google Scholar 

  19. Patankar NA (2004) Langmuir 20:7097

    Article  CAS  Google Scholar 

  20. Marmur A, Krasovitski B (2003) Langmuir 19:8343

    Article  CAS  Google Scholar 

  21. Zhang J, Kwok DY (2005) J Colloid Interface Sci 282:434

    Article  CAS  Google Scholar 

  22. Coulson SR, Woodward I, Badyal JPS, Brewer SA, Willis C (2000) J Phys Chem B 104:8836

    Article  CAS  Google Scholar 

  23. Shirtcliffe N, Thiemann P, Stratmann M, Grundmeier G (2001) Surf Coat Technol 142:1121

    Article  Google Scholar 

  24. Dae-Hwan J, Park J, Choi YK, Lee SB, Park HS, Rühe J (2002) Langmuir 18:6133

    Article  Google Scholar 

  25. Bartell FE, Shepard JW (1953) J Phys Chem 57:211

    Article  CAS  Google Scholar 

  26. Krupenkin TN, Taylor JA, Schneider TM, Yang S (2004) Langmuir 20:3824

    Article  CAS  Google Scholar 

  27. Yang SM, Migues H, Ozin GA (2002) Adv Func Mater 12:425

    Article  CAS  Google Scholar 

  28. van Blaaderen A, Ruel R, Wiltzius PP (1997) Nature 385:321

    Article  Google Scholar 

  29. Park SH, Qin D, Xia Y (1998) Adv Mater 10:1028

    Article  CAS  Google Scholar 

  30. Yang SM, Ozin GA (2000) Chem Commun 24:2507

    Article  Google Scholar 

  31. Lee W, Jin MK, Yoo WC, Jang ES, Choy JH, Kim JH, Char K, Lee JK (2004) Langmuir 20:287

    Article  CAS  Google Scholar 

  32. Luzinov I, Julthongpiput D, Malz H, Pionteck J, Tsukruk VV (2000) Macromolecules 33:1043

    Article  CAS  Google Scholar 

  33. Goldenberg LM, Wagner J, Stumpe J, Paulke BR, Görnitz E (2002) Langmuir 18:3319

    Article  CAS  Google Scholar 

  34. Minko S, Patil S, Datsyuk V, Simon F, Eichhorn KJ, Motornov M, Usov D, Tokarev I, Stamm M (2002) Langmuir 18:289

    Article  CAS  Google Scholar 

  35. Kwok DY, Gietzelt T, Grundke K, Jacobasch HJ, Neumann AW (1997) Langmuir 13:2880

    Article  CAS  Google Scholar 

  36. Grundke K, Augsburg A (2000) J Adhesion Sci Technol 14:765

    Article  CAS  Google Scholar 

  37. Grundke K (2001) In: Holmberg K (ed) Handbook of Applied Surfaceand Colloid Chemistry: Wetting, Spreading and Penetration, chapter 7, vol 2, p 119–140

    Google Scholar 

  38. Scanning Probe Microscopy (2000) Training Notebook, Digital Instruments, Veeco Metrology Group, Santa Barbara, CA, p 40

    Google Scholar 

  39. Kwok DY, Neumann AW (1999) Adv Colloid Interface Sci 81:167

    Article  CAS  Google Scholar 

  40. Nakae H, Inui R, Hirata Y, Saito H (1998) Acta Mater 46:2313

    Article  CAS  Google Scholar 

  41. Synytska A, Ionov L, Minko S, Motornov M, Eichhorn KJ, Stamm M, Grundke K (2004) Polym Mater Sci Eng 90:624

    CAS  Google Scholar 

  42. Hennig A, Grundke K, Frenzel R, Stamm M (2002) Tenside Surfactants Detergents 39:243

    Google Scholar 

Download references

Acknowledgments

Authors thank Dr. M. Motornov for providing assistance in grafting of particles, Ms. G. Adam, Ms. G. Zedler and Mr. U. Streller for FTIR-ATR, capillary penetration and SEM investigations, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Grundke .

Editor information

Karina Grundke Manfred Stamm Hans-Jürgen Adler

Rights and permissions

Reprints and permissions

About this paper

Cite this paper

Synytska, A. et al. Regular Patterned Surfaces from Core-Shell Particles. Preparation and Characterization. In: Grundke, K., Stamm, M., Adler, HJ. (eds) Characterization of Polymer Surfaces and Thin Films. Progress in Colloid and Polymer Science, vol 132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2882_037

Download citation

Publish with us

Policies and ethics