Skip to main content

Retinal Ganglion Cells in a Dish: Current Strategies and Recommended Best Practices for Effective In Vitro Modeling of Development and Disease

  • Chapter
  • First Online:
Human iPSC-derived Disease Models for Drug Discovery

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 281))

Abstract

The ability to derive retinal ganglion cells (RGCs) from human pluripotent stem cells (hPSCs) provides an extraordinary opportunity to study the development of RGCs as well as cellular mechanisms underlying their degeneration in optic neuropathies. In the past several years, multiple approaches have been established that allow for the generation of RGCs from hPSCs, with these methods greatly improved in more recent studies to yield mature RGCs that more faithfully recapitulate phenotypes within the eye. Nevertheless, numerous differences still remain between hPSC-RGCs and those found within the human eye, with these differences likely explained at least in part due to the environment in which hPSC-RGCs are grown. With the ultimate goal of generating hPSC-RGCs that most closely resemble those within the retina for proper studies of retinal development, disease modeling, as well as cellular replacement, we review within this manuscript the current effective approaches for the differentiation of hPSC-RGCs, as well as how they have been applied for the investigation of RGC neurodegenerative diseases such as glaucoma. Furthermore, we provide our opinions on the characteristics of RGCs necessary for their use as effective in vitro disease models and importantly, how these current systems should be improved to more accurately reflect disease states. The establishment of characteristics in differentiated hPSC-RGCs that more effectively mimic RGCs within the retina will not only enable their use as effective models of RGC development, but will also create a better disease model for the identification of mechanisms underlying the neurodegeneration of RGCs in disease states such as glaucoma, further facilitating the development of therapeutic approaches to rescue RGCs from degeneration in disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostinone J, Alarcon-Martinez L, Gamlin C, Yu WQ, Wong ROL, Di Polo A (2018) Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury. Brain 141:1963–1980

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson SR, Vetter ML (2019) Developmental roles of microglia: a window into mechanisms of disease. Dev Dyn 248:98–117

    Article  PubMed  Google Scholar 

  • Anderson SR, Zhang J, Steele MR, Romero CO, Kautzman AG, Schafer DP, Vetter ML (2019) Complement targets newborn retinal ganglion cells for phagocytic elimination by microglia. J Neurosci 39:2025–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artero-Castro A, Rodriguez-Jimenez FJ, Jendelova P, Vander Wall KB, Meyer JS, Erceg S (2020) Glaucoma as a neurodegenerative disease caused by intrinsic vulnerability factors. Prog Neurobiol 193:101817

    Article  CAS  PubMed  Google Scholar 

  • Au NPB, Ma CHE (2022) Neuroinflammation, microglia and implications for retinal ganglion cell survival and axon regeneration in traumatic optic neuropathy. Front Immunol 13:860070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badea TC, Nathans J (2011) Morphologies of mouse retinal ganglion cells expressing transcription factors Brn3a, Brn3b, and Brn3c: analysis of wild type and mutant cells using genetically-directed sparse labeling. Vision Res 51:269–279

    Article  CAS  PubMed  Google Scholar 

  • Badea TC, Williams J, Smallwood P, Shi M, Motajo O, Nathans J (2012) Combinatorial expression of Brn3 transcription factors in somatosensory neurons: genetic and morphologic analysis. J Neurosci 32:995–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartsch D, Kalamkar K, Ahuja G, Lackmann J-W, Bazzi H, Clamer M, Mendjan S, Papantonis A, Kurian L (2022) A specialized mRNA translation circuit instated in pluripotency presets the competence for cardiogenesis in humans. bioRxiv. 2021.2004.2012.439420

    Google Scholar 

  • Belforte N, Agostinone J, Alarcon-Martinez L, Villafranca-Baughman D, Dotigny F, Cueva Vargas JL, Di Polo A (2021) AMPK hyperactivation promotes dendrite retraction, synaptic loss, and neuronal dysfunction in glaucoma. Mol Neurodegener 16:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bordone MP, Gonzalez Fleitas MF, Pasquini LA, Bosco A, Sande PH, Rosenstein RE, Dorfman D (2017) Involvement of microglia in early axoglial alterations of the optic nerve induced by experimental glaucoma. J Neurochem 142:323–337

    Article  CAS  PubMed  Google Scholar 

  • Capano LS, Sato C, Ficulle E, Yu A, Horie K, Kwon JS, Burbach KF, Barthelemy NR, Fox SG, Karch CM et al (2022) Recapitulation of endogenous 4R tau expression and formation of insoluble tau in directly reprogrammed human neurons. Cell Stem Cell 29:918–932 e918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capowski EE, Samimi K, Mayerl SJ, Phillips MJ, Pinilla I, Howden SE, Saha J, Jansen AD, Edwards KL, Jager LD et al (2019) Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development 146

    Google Scholar 

  • Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YP, Chiao CC (2014) Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina. PloS One 9:e86159

    Article  PubMed  PubMed Central  Google Scholar 

  • Conforti L, Adalbert R, Coleman MP (2007) Neuronal death: where does the end begin? Trends Neurosci 30:159–166

    Article  CAS  PubMed  Google Scholar 

  • Crair MC, Mason CA (2016) Reconnecting eye to brain. J Neurosci 36:10707–10722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croteau LP, Risner ML, Wareham LK, McGrady NR, Chamling X, Zack DJ, Calkins DJ (2022) Ex vivo integration of human stem retinal ganglion cells into the mouse retina. Cell 11

    Google Scholar 

  • Danese A, Patergnani S, Maresca A, Peron C, Raimondi A, Caporali L, Marchi S, La Morgia C, Del Dotto V, Zanna C et al (2022) Pathological mitophagy disrupts mitochondrial homeostasis in Leber’s hereditary optic neuropathy. Cell Rep 40:111124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel S, Clark AF, McDowell CM (2018) Subtype-specific response of retinal ganglion cells to optic nerve crush. Cell Death Dis 4:7

    CAS  Google Scholar 

  • Donato A, Kagias K, Zhang Y, Hilliard MA (2019) Neuronal sub-compartmentalization: a strategy to optimize neuronal function. Biol Rev Camb Philos Soc 94:1023–1037

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan X, Qiao M, Bei F, Kim IJ, He Z, Sanes JR (2015) Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron 85:1244–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldred KC, Hadyniak SE, Hussey KA, Brenerman B, Zhang PW, Chamling X, Sluch VM, Welsbie DS, Hattar S, Taylor J et al (2018) Thyroid hormone signaling specifies cone subtypes in human retinal organoids. Science 362

    Google Scholar 

  • Erskine L, Herrera E (2014) Connecting the retina to the brain. ASN Neuro 6

    Google Scholar 

  • Fligor CM, Langer KB, Sridhar A, Ren Y, Shields PK, Edler MC, Ohlemacher SK, Sluch VM, Zack DJ, Zhang C et al (2018) Three-dimensional retinal organoids facilitate the investigation of retinal ganglion cell development, organization and neurite outgrowth from human pluripotent stem cells. Sci Rep 8:14520

    Article  PubMed  PubMed Central  Google Scholar 

  • Fligor CM, Huang KC, Lavekar SS, Vander Wall KB, Meyer JS (2020) Differentiation of retinal organoids from human pluripotent stem cells. Methods Cell Biol 159:279–302

    Article  CAS  PubMed  Google Scholar 

  • Fligor CM, Lavekar SS, Harkin J, Shields PK, Vander Wall KB, Huang KC, Gomes C, Meyer JS (2021) Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids. Stem Cell Reports 16:2228–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii M, Sunagawa GA, Kondo M, Takahashi M, Mandai M (2016) Evaluation of micro electroretinograms recorded with multiple electrode array to assess focal retinal function. Sci Rep 6:30719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galatro TF, Holtman IR, Lerario AM, Vainchtein ID, Brouwer N, Sola PR, Veras MM, Pereira TF, Leite REP, Moller T et al (2017a) Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat Neurosci 20:1162–1171

    Article  CAS  PubMed  Google Scholar 

  • Galatro TF, Holtman IR, Lerario AM, Vainchtein ID, Brouwer N, Sola PR, Veras MM, Pereira TF, Leite REP, Möller T et al (2017b) Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat Neurosci 20:1162–1171

    Article  CAS  PubMed  Google Scholar 

  • Gomes C, Vander Wall KB, Pan Y, Lu X, Lavekar SS, Huang KC, Fligor CM, Harkin J, Zhang C, Cummins TR et al (2022) Astrocytes modulate neurodegenerative phenotypes associated with glaucoma in OPTN(E50K) human stem cell-derived retinal ganglion cells. Stem Cell Reports 17:1636–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttenplan KA, Stafford BK, El-Danaf RN, Adler DI, Munch AE, Weigel MK, Huberman AD, Liddelow SA (2020) Neurotoxic reactive astrocytes drive neuronal death after retinal injury. Cell Rep 31:107776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, Close JL, Long B, Johansen N, Penn O et al (2019) Conserved cell types with divergent features in human versus mouse cortex. Nature 573:61–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huh CJ, Zhang B, Victor MB, Dahiya S, Batista LF, Horvath S, Yoo AS (2016) Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts. eLife 5

    Google Scholar 

  • Jacobi A, Tran NM, Yan W, Benhar I, Tian F, Schaffer R, He Z, Sanes JR (2022) Overlapping transcriptional programs promote survival and axonal regeneration of injured retinal ganglion cells. Neuron 110:2625–2645 e2627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi W, Onishi A, Tu HY, Takihara Y, Matsumura M, Tsujimoto K, Inatani M, Nakazawa T, Takahashi M (2018) Culture systems of dissociated mouse and human pluripotent stem cell-derived retinal ganglion cells purified by two-step immunopanning. Invest Ophthalmol Vis Sci 59:776–787

    Article  CAS  PubMed  Google Scholar 

  • Langer KB, Ohlemacher SK, Phillips MJ, Fligor CM, Jiang P, Gamm DM, Meyer JS (2018) Retinal ganglion cell diversity and subtype specification from human pluripotent stem cells. Stem Cell Reports 10:1282–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X, Song MR, Xu Z, Lanuza GM, Liu Y, Zhuang T, Chen Y, Pfaff SL, Evans SM, Sun Y (2011) Isl1 is required for multiple aspects of motor neuron development. Mol Cell Neurosci 47:215–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindborg JA, Tran NM, Chenette DM, DeLuca K, Foli Y, Kannan R, Sekine Y, Wang X, Wollan M, Kim IJ et al (2021) Optic nerve regeneration screen identifies multiple genes restricting adult neural repair. Cell Rep 34:108777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Sanes JR (2017) Cellular and molecular analysis of dendritic morphogenesis in a retinal cell type that senses color contrast and ventral motion. J Neurosci 37:12247–12262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ML, Zang T, Zou Y, Chang JC, Gibson JR, Huber KM, Zhang CL (2013) Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nat Commun 4:2183

    Article  PubMed  Google Scholar 

  • Lo Sardo V, Ferguson W, Erikson GA, Topol EJ, Baldwin KK, Torkamani A (2017) Influence of donor age on induced pluripotent stem cells. Nat Biotechnol 35:69–74

    Article  CAS  PubMed  Google Scholar 

  • Mancino R, Martucci A, Cesareo M, Giannini C, Corasaniti MT, Bagetta G, Nucci C (2018) Glaucoma and Alzheimer disease: one age-related neurodegenerative disease of the brain. Curr Neuropharmacol 16:971–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mertens J, Reid D, Lau S, Kim Y, Gage FH (2018) Aging in a dish: iPSC-derived and directly induced neurons for studying brain aging and age-related neurodegenerative diseases. Annu Rev Genet 52:271–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mertens J, Herdy JR, Traxler L, Schafer ST, Schlachetzki JCM, Bohnke L, Reid DA, Lee H, Zangwill D, Fernandes DP et al (2021) Age-dependent instability of mature neuronal fate in induced neurons from Alzheimer’s patients. Cell Stem Cell 28:1533–1548 e1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, Zhang SC, Gamm DM (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A 106:16698–16703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer JS, Howden SE, Wallace KA, Verhoeven AD, Wright LS, Capowski EE, Pinilla I, Martin JM, Tian S, Stewart R et al (2011) Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29:1206–1218

    Article  CAS  PubMed  Google Scholar 

  • Mirzaei M, Gupta VB, Chick JM, Greco TM, Wu Y, Chitranshi N, Wall RV, Hone E, Deng L, Dheer Y et al (2017) Age-related neurodegenerative disease associated pathways identified in retinal and vitreous proteome from human glaucoma eyes. Sci Rep 7:12685

    Article  PubMed  PubMed Central  Google Scholar 

  • Miskinyte G, Devaraju K, Gronning Hansen M, Monni E, Tornero D, Woods NB, Bengzon J, Ahlenius H, Lindvall O, Kokaia Z (2017) Direct conversion of human fibroblasts to functional excitatory cortical neurons integrating into human neural networks. Stem Cell Res Ther 8:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Musunuru K (2013) Genome editing of human pluripotent stem cells to generate human cellular disease models. Dis Model Mech 6:896–904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagaki-Silva EE, Gooding C, Llorian M, Jacob AG, Richards F, Buckroyd A, Sinha S, Smith CWJ (2019) Identification of RBPMS as a mammalian smooth muscle master splicing regulator via proximity of its gene with super-enhancers. eLife 8

    Google Scholar 

  • Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785

    Article  CAS  PubMed  Google Scholar 

  • Nie Z, Wang C, Chen J, Ji Y, Zhang H, Zhao F, Zhou X, Guan MX (2022) Abnormal morphology and function in retinal ganglion cells derived from patients-specific iPSCs generated from individuals with Leber’s hereditary optic neuropathy. Hum Mol Genet

    Google Scholar 

  • Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG et al (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlemacher SK, Iglesias CL, Sridhar A, Gamm DM, Meyer JS (2015) Generation of highly enriched populations of optic vesicle-like retinal cells from human pluripotent stem cells. Curr Protoc Stem Cell Biol 32:1h.8.1–1h.8.20

    Article  PubMed  Google Scholar 

  • Ohlemacher SK, Sridhar A, Xiao Y, Hochstetler AE, Sarfarazi M, Cummins TR, Meyer JS (2016) Stepwise differentiation of retinal ganglion cells from human pluripotent stem cells enables analysis of glaucomatous neurodegeneration. Stem Cells 34:1553–1562

    Article  CAS  PubMed  Google Scholar 

  • Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Sudhof TC et al (2011) Induction of human neuronal cells by defined transcription factors. Nature 476:220–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmhans N, Fuller AD, Nguyen E, Chuang K, Swygart D, Wienbar SR, Lin T, Kozmik Z, Dong L, Schwartz GW et al (2021) Identification of retinal ganglion cell types and brain nuclei expressing the transcription factor Brn3c/Pou4f3 using a Cre recombinase knock-in allele. J Comp Neurol 529:1926–1953

    Article  CAS  PubMed  Google Scholar 

  • Patel AK, Broyer RM, Lee CD, Lu T, Louie MJ, La Torre A, Al-Ali H, Vu MT, Mitchell KL, Wahlin KJ et al (2020) Inhibition of GCK-IV kinases dissociates cell death and axon regeneration in CNS neurons. Proc Natl Acad Sci U S A 117:33597–33607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patir A, Shih B, McColl BW, Freeman TC (2019) A core transcriptional signature of human microglia: derivation and utility in describing region-dependent alterations associated with Alzheimer’s disease. Glia 67:1240–1253

    Article  PubMed  Google Scholar 

  • Peng YR, Shekhar K, Yan W, Herrmann D, Sappington A, Bryman GS, van Zyl T, Do MTH, Regev A, Sanes JR (2019) Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell 176:1222–1237 e1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Bjorklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108:10343–10348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin H, Zhao AD, Sun ML, Ma K, Fu XB (2020) Direct conversion of human fibroblasts into dopaminergic neuron-like cells using small molecules and protein factors. Mil Med Res 7:52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabesandratana O, Chaffiol A, Mialot A, Slembrouck-Brec A, Joffrois C, Nanteau C, Rodrigues A, Gagliardi G, Reichman S, Sahel JA et al (2020) Generation of a transplantable population of human iPSC-derived retinal ganglion cells. Front Cell Dev Biol 8:585675

    Article  PubMed  PubMed Central  Google Scholar 

  • Risner ML, Pasini S, Chamling X, McGrady NR, Goldberg JL, Zack DJ, Calkins DJ (2021) Intrinsic morphologic and physiologic development of human derived retinal ganglion cells in vitro. Transl Vis Sci Technol 10:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Sepehrimanesh M, Akter M, Ding B (2021) Direct conversion of adult fibroblasts into motor neurons. STAR Protoc 2:100917

    Article  PubMed  PubMed Central  Google Scholar 

  • Sladen PE, Perdigao PRL, Salsbury G, Novoselova T, van der Spuy J, Chapple JP, Yu-Wai-Man P, Cheetham ME (2021) CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial homeostasis in dominant optic atrophy patient-derived iPSCs. Mol Ther Nucleic Acids 26:432–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sladen PE, Jovanovic K, Guarascio R, Ottaviani D, Salsbury G, Novoselova T, Chapple JP, Yu-Wai-Man P, Cheetham ME (2022) Modelling autosomal dominant optic atrophy associated with OPA1 variants in iPSC-derived retinal ganglion cells. Hum Mol Genet

    Google Scholar 

  • Sluch VM, Chamling X, Liu MM, Berlinicke CA, Cheng J, Mitchell KL, Welsbie DS, Zack DJ (2017) Enhanced stem cell differentiation and immunopurification of genome engineered human retinal ganglion cells. Stem Cells Transl Med 6:1972–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AM, Dragunow M (2014) The human side of microglia. Trends Neurosci 37:125–135

    Article  CAS  PubMed  Google Scholar 

  • Sridhar A, Hoshino A, Finkbeiner CR, Chitsazan A, Dai L, Haugan AK, Eschenbacher KM, Jackson DL, Trapnell C, Bermingham-McDonogh O et al (2020) Single-cell transcriptomic comparison of human Fetal retina, hPSC-derived retinal organoids, and long-term retinal cultures. Cell Rep 30:1644–1659 e1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syc-Mazurek SB, Libby RT (2019) Axon injury signaling and compartmentalized injury response in glaucoma. Prog Retin Eye Res 73:100769

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Teotia P, Chopra DA, Dravid SM, Van Hook MJ, Qiu F, Morrison J, Rizzino A, Ahmad I (2017a) Generation of functional human retinal ganglion cells with target specificity from pluripotent stem cells by chemically defined recapitulation of developmental mechanism. Stem Cells 35:572–585

    Article  CAS  PubMed  Google Scholar 

  • Teotia P, Van Hook MJ, Wichman CS, Allingham RR, Hauser MA, Ahmad I (2017b) Modeling glaucoma: retinal ganglion cells generated from induced pluripotent stem cells of patients with SIX6 risk allele show developmental abnormalities. Stem Cells 35:2239–2252

    Article  CAS  PubMed  Google Scholar 

  • Teotia P, Van Hook MJ, Fischer D, Ahmad I (2019) Human retinal ganglion cell axon regeneration by recapitulating developmental mechanisms: effects of recruitment of the mTOR pathway. Development 146

    Google Scholar 

  • Teotia P, Niu M, Ahmad I (2020) Mapping developmental trajectories and subtype diversity of normal and glaucomatous human retinal ganglion cells by single-cell transcriptome analysis. Stem Cells 38:1279–1291

    Article  CAS  PubMed  Google Scholar 

  • Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I, Hong G, Yan W, Adiconis X, Arnold ME, Lee JM et al (2019) Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron 104:1039–1055 e1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troilo D, Xiong M, Crowley JC, Finlay BL (1996) Factors controlling the dendritic arborization of retinal ganglion cells. Vis Neurosci 13:721–733

    Article  CAS  PubMed  Google Scholar 

  • Tucker BA, Solivan-Timpe F, Roos BR, Anfinson KR, Robin AL, Wiley LA, Mullins RF, Fingert JH (2014) Duplication of TBK1 stimulates autophagy in iPSC-derived retinal cells from a patient with normal tension glaucoma. J Stem Cell Res Ther 3:161

    PubMed  PubMed Central  Google Scholar 

  • Vander Wall KB, Vij R, Ohlemacher SK, Sridhar A, Fligor CM, Feder EM, Edler MC, Baucum AJ 2nd, Cummins TR, Meyer JS (2019) Astrocytes regulate the development and maturation of retinal ganglion cells derived from human pluripotent stem cells. Stem Cell Reports 12:201–212

    Article  CAS  PubMed  Google Scholar 

  • Vander Wall KB, Huang KC, Pan Y, Lavekar SS, Fligor CM, Allsop AR, Lentsch KA, Dang P, Zhang C, Tseng HC et al (2020) Retinal ganglion cells with a glaucoma OPTN(E50K) mutation exhibit neurodegenerative phenotypes when derived from three-dimensional retinal organoids. Stem Cell Reports 15:52–66

    Article  CAS  PubMed  Google Scholar 

  • Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC (2016) Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 51:1–40

    Article  CAS  PubMed  Google Scholar 

  • Victor MB, Richner M, Hermanstyne TO, Ransdell JL, Sobieski C, Deng PY, Klyachko VA, Nerbonne JM, Yoo AS (2014) Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron 84:311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahlin KJ, Maruotti JA, Sripathi SR, Ball J, Angueyra JM, Kim C, Grebe R, Li W, Jones BW, Zack DJ (2017) Photoreceptor outer segment-like structures in long-term 3D retinas from human pluripotent stem cells. Sci Rep 7:766

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, He Q, Zhang K, Sun H, Zhang G, Liang H, Guo J, Hao L, Ke J, Chen S (2020) Quick commitment and efficient reprogramming route of direct induction of retinal ganglion cell-like neurons. Stem Cell Reports 15:1095–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitmore AV, Libby RT, John SW (2005) Glaucoma: thinking in new ways-a rôle for autonomous axonal self-destruction and other compartmentalised processes? Prog Retin Eye Res 24:639–662

    Article  PubMed  Google Scholar 

  • Wong RCB, Lim SY, Hung SSC, Jackson S, Khan S, Van Bergen NJ, De Smit E, Liang HH, Kearns LS, Clarke L et al (2017) Mitochondrial replacement in an iPSC model of Leber’s hereditary optic neuropathy. Aging (Albany NY) 9:1341–1350

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Kaczynski TJ, Sethuramanujam S, Li R, Jain V, Slaughter M, Mu X (2015) Two transcription factors, Pou4f2 and Isl1, are sufficient to specify the retinal ganglion cell fate. Proc Natl Acad Sci U S A 112:E1559–E1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao D, Deng Q, Guo Y, Huang X, Zou M, Zhong J, Rao P, Xu Z, Liu Y, Hu Y et al (2020) Generation of self-organized sensory ganglion organoids and retinal ganglion cells from fibroblasts. Sci Adv 6:eaaz5858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Cao H, Guo S, Zhu H, Tao H, Zhang L, Chen Z, Sun T, Chi S, Hu Q (2020a) Small molecular compounds efficiently convert human fibroblasts directly into neurons. Mol Med Rep 22:4763–4771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang TC, Yarmishyn AA, Yang YP, Lu PC, Chou SJ, Wang ML, Lin TC, Hwang DK, Chou YB, Chen SJ et al (2020b) Mitochondrial transport mediates survival of retinal ganglion cells in affected LHON patients. Hum Mol Genet 29:1454–1464

    Article  CAS  PubMed  Google Scholar 

  • You Y, Gupta VK, Li JC, Klistorner A, Graham SL (2013) Optic neuropathies: characteristic features and mechanisms of retinal ganglion cell loss. Rev Neurosci 24:301–321

    Article  PubMed  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  • Yu DY, Cringle SJ, Balaratnasingam C, Morgan WH, Yu PK, Su EN (2013) Retinal ganglion cells: energetics, compartmentation, axonal transport, cytoskeletons and vulnerability. Prog Retin Eye Res 36:217–246

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H, Steinberg GK, Edwards MS, Li G et al (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89:37–53

    Article  CAS  PubMed  Google Scholar 

  • Zhang KY, Tuffy C, Mertz JL, Quillen S, Wechsler L, Quigley HA, Zack DJ, Johnson TV (2021) Role of the internal limiting membrane in structural engraftment and topographic spacing of transplanted human stem cell-derived retinal ganglion cells. Stem Cell Reports 16:149–167

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Sun R, Luo X, Wang F, Sun X (2021) The interaction between microglia and macroglia in glaucoma. Front Neurosci 15:610788

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao LH, Peters A, Park TS, Zambidis ET, Meyer JS et al (2014) Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 5:4047

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason S. Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, KC., Gomes, C., Meyer, J.S. (2023). Retinal Ganglion Cells in a Dish: Current Strategies and Recommended Best Practices for Effective In Vitro Modeling of Development and Disease. In: Kuehn, M.H., Zhu, W. (eds) Human iPSC-derived Disease Models for Drug Discovery. Handbook of Experimental Pharmacology, vol 281. Springer, Cham. https://doi.org/10.1007/164_2023_642

Download citation

Publish with us

Policies and ethics