Skip to main content

What Does the Taste System Tell Us About the Nutritional Composition and Toxicity of Foods?

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 275))

Abstract

One of the distinctive features of the human taste system is that it categorizes food into a few taste qualities – e.g., sweet, salty, sour, bitter, and umami. Here, I examined the functional significance of these taste qualities by asking what they tell us about the nutritional composition and toxicity of foods. I collected published data on the composition of raw and unprocessed foods – i.e., fruits, endosperm tissues, starchy foods, mushrooms, and meats. Sweet taste is thought to help identify foods with a high caloric or micronutrient density. However, the sweetest foods (fruits) had a relatively modest caloric density and low micronutrient density, whereas the blandest foods (endosperm tissues and meats) had a relatively high caloric and high micronutrient density. Salty taste is thought to be a proxy for foods high in sodium. Sodium levels were higher in meats than in most plant materials, but raw meats lack a salient salty taste. Sour taste (a measure of acidity) is thought to signify dangerous or spoiled foods. While this may be the case, it is notable that most ripe fruits are acidic. Umami taste is thought to reflect the protein content of food. I found that free L-glutamate (the prototypical umami tastant) concentration varies independently of protein content in foods. Bitter taste is thought to help identify poisonous foods, but many nutritious plant materials taste bitter. Fat taste is thought to help identify triglyceride-rich foods, but the role of taste versus mouthfeel in the attraction to fatty foods is unresolved. These findings indicate that the taste system provides incomplete or, in some cases, misleading information about the nutritional content and toxicity of foods. This may explain why inputs from the taste system are merged with inputs from the other cephalic senses and intestinal nutrient-sensing systems. By doing so, we create a more complete sensory representation and nutritional evaluation of foods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    CSF is a measure of the force that opposes the motion of two surfaces sliding against each other (e.g., between the tongue and palate or the cheek and teeth).

References

Download references

Acknowledgements

I thank Anthony Sclafani and Alexander Bachmanov for valuable editorial comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John I. Glendinning .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data 1

Supplementary Table 1 (XLSX 110 kb)

Data 2

Supplementary Table 2 (XLSX 34 kb)

Data 3

Supplementary Table 3 (XLSX 26 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glendinning, J.I. (2021). What Does the Taste System Tell Us About the Nutritional Composition and Toxicity of Foods?. In: Palmer, R.K., Servant, G. (eds) The Pharmacology of Taste . Handbook of Experimental Pharmacology, vol 275. Springer, Cham. https://doi.org/10.1007/164_2021_451

Download citation

Publish with us

Policies and ethics