Skip to main content

Emergent Concepts of Receptor Pharmacology

  • Chapter
  • First Online:
Concepts and Principles of Pharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 260))

Abstract

Pharmacology, the chemical control of physiology, emerged as an offshoot of physiology when the physiologists using chemicals to probe physiological systems became more interested in the probes than the systems. Pharmacologists were always, and in many ways still are, bound to study drugs in systems they do not fully understand. Under these circumstances, null methods were the main ways in which conclusions about biologically active molecules were made. However, as understanding of the basic mechanisms of cellular function and biochemical systems were elucidated, so too did the understanding of how drugs affected these systems. Over the past 20 years, new ideas have emerged in the field that have completely changed and revitalized it; these are described herein. It will be seen how null methods in isolated tissues gave way to, first biochemical radioligand binding studies, and then to a wide array of functional assay technologies that can measure the effects of molecules on drug targets. In addition, the introduction of molecular dynamics, the appreciation of the allosteric nature of receptors, protein X-ray crystal structures, genetic manipulations in the form of knock-out and knock-in systems and Designer Receptors Exclusively Activated by Designer Drugs have revolutionized pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiba A, Chen C, Herrup K, Rosenmund C, Stevens CF, Tonegawa S (1994) Reduced hippocampal long-term potentiation and context-specific deficit in associateive learning in mGluR1 mutant mice. Cell 79:365–375

    CAS  PubMed  Google Scholar 

  • Alt A (2016) Overview of critical parameters for the design and execution of a high-throughput screen for allosteric ligands. Curr Protoc Pharmacol 74:9.20.1–9.20.23

    Google Scholar 

  • Ariens EJ (1954) Affinity and intrinsic activity in the theory of competitive inhibition. Arch Int Pharmacodyn Ther 99:32–49

    CAS  PubMed  Google Scholar 

  • Ariens EJ (1964) Molecular Pharmacology: V1. Academic Press, New York

    Google Scholar 

  • Ariens EJ, Van Rossum JM (1957) pDx, pAx and pDx values in the analysis of pharmacodynamics. Arch Int Pharmacodyn Ther 110:275–299

    CAS  PubMed  Google Scholar 

  • Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein–coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104:5163–5166

    PubMed  PubMed Central  Google Scholar 

  • Black JW, Leff P (1983) Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci 220:141–162

    CAS  PubMed  Google Scholar 

  • Black JW, Leff P, Shankley NP, Wood J (1985) An operational model of pharmacological agonism: the effect of E/[A] curve shape on agonist dissociation constant estimation. Br J Pharmacol 84:561–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5:789–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brust TF, Morgenweck J, Kim SA, Rose JH, Locke JL, Schmid CL, Zhou L, Stahl EL, Cameron MD, Scarry SM et al (2016) Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria. Sci Signal 9:ra11

    Google Scholar 

  • Budd DC, Willars GB, McDonald JE, Tobin AB (2001) Phosphorylation of the Gq/11-coupled M3 muscarinic rec3ptor is involved in receptor activation of the ERK1/2 mitogen-activated protein kinase pathway. J Biol Chem 276:4581–4587

    CAS  PubMed  Google Scholar 

  • Burford NT, Wehrman T, Bassoni D, O’Connell J, Banks M, Zhang L, Alt A (2014) Identification of selective agonists and positive allosteric modulators for μ- and δ-opioid receptors from a single high-throughput screen. J Biomol Screen 19:1255–1265

    CAS  PubMed  Google Scholar 

  • Byers MA, Calloway PA, Shannon L, Cunningham HD, Smith S, Li F, Fassold BC, Vines CM (2008) Arrestin 3 mediates endocytosis of CCR7 following ligation of CCL19 but not CCL21. J Immunol 181:4723–4732

    CAS  PubMed  Google Scholar 

  • Cavalli A, Lattion AL, Hummler E, Nenniger M, Pedrazzini T et al (1997) Decreased blood pressure response in mice deficient of the α1b-adrenergic receptor. Proc Natl Acad Sci U S A 94:11589–11594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Changeux J-P, Edelstein SJ (2005) Allosteric mechanisms of transduction. Science 308:1424–1428

    CAS  PubMed  Google Scholar 

  • Changeux JP, Edelstein S (2011) Conformational selection or induced fit? 50 years of debate resolved. F1000 Biol Rep 3:19

    PubMed  PubMed Central  Google Scholar 

  • Christopoulos A, Kenakin T (2002) G protein-coupled receptor allosterism and complexing. Pharmacol Rev 54:323–374

    CAS  PubMed  Google Scholar 

  • Coffman TM (1997) A genetic approach for studying the physiology of the type1A (AT1A) angiotensin receptor. Semin Nephrol 17:404–411

    CAS  PubMed  Google Scholar 

  • Conklin BR, Hsiao EC, Claeysen S, Dunuis A, Srinivasan S, Srinivasan S, Forsayeth JR, Guettier JM, Chang WC, Pei Y, McCarthy KD, Nissenson RA, Wess J, Bockaert J, Roth BL (2008) Engineering GPCR sigbnaling pathways with RASSLs. Nat Methods 5:673–678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coward P, Wada HG, Falk MS, Chan SD, Meng F, Akil H, Conklin BR (1998) Controlling signaling with a specifically designed Gi-coupled receptor in transgenic mice. Nat Biotechnol 17:165–169

    Google Scholar 

  • Cui Q, Karplus M (2008) Allostery and cooperativity revisited. Protein Sci 17:1295–1307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dill KA, Chan HS (1997) From Levinthal to pathways to funnels. Nat Struct Biol 4:10–19

    CAS  PubMed  Google Scholar 

  • Dong S, Rogan SC, Roth BL (2010) Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs. Nat Protoc 5:561–573

    CAS  PubMed  Google Scholar 

  • Dror RO, Jensen MO, Borhani DW, Shaw DE (2010) Exploring atomic resolution physiology on a femtosecond to millisecond timescale using molecular dynamics simulations. J Gen Physiol 135:555–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dror RO, Arlow DH, Shaw DE et al (2011) Activation mechanism of the β2-adrenergic receptor. Proc Natl Acad Sci U S A 108:18684–18689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duttaroy A, Zimliki CL, Gautam D, Cui Y, Mears D, Wess J (2004) Muscarinic stimulation of pancreatic insulin and glucagon release is abolished in M3 muscarinic acetylcholine receptor–deficient mice. Diabetes 53:1714–1720

    CAS  PubMed  Google Scholar 

  • Ehlert FJ (1988) Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol Pharmacol 33:187–194

    CAS  PubMed  Google Scholar 

  • Ehlert FJ (2005) Analysis of allosterism in functional assays. J Pharmacol Exp Ther 315:740–754

    CAS  PubMed  Google Scholar 

  • Faget L, Erbs E, Le Merrer J, Scherrer G, Matifas A, Benturquia N, Noble F, Decossas M, Koch M, Kessler P, Vonesch JL, Schwab Y, Kieffer BL, Massotte D (2012) In vivo visualization of delta opioid receptors upon physiological activation uncovers a distinct internalization profile. J Neurosci 32:7301–7310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frauenfelder H, Parak F, Young RD (1988) Conformational substates in proteins. Annu Rev Biophys Biophys Chem 17:451–479

    CAS  PubMed  Google Scholar 

  • Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603

    CAS  PubMed  Google Scholar 

  • Freire E (1998) Statistical thermodynamic linkage between conformational and binding equilibria. Adv Protein Chem 51:255–279

    CAS  PubMed  Google Scholar 

  • Furchgott RF, Harper NJ, Simmonds AB (1966) The use of β-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. In: Harper NJ, Simmonds AB (eds) Advances in drug research. Academic Press, New York, pp 21–55

    Google Scholar 

  • Gesty-Palmer D, Luttrell LM (2011) ‘Biasing’ the parathyroid hormone receptor: a novel anabolic approach to increasing bone mass? Br J Pharmacol 164:59–67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gesty-Palmer D, Chen M, Reiter E, Ahn S, Nelson CD, Wang S, Eckhard AE, Cowan CL, Spurney RF, Luttrell LM, Lefkowitz RJ (2006) Distinct β-arrestin-and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J Biol Chem 281:10856–10864

    CAS  PubMed  Google Scholar 

  • Gesty-Palmer D, Yuan L, Martin B, Wood WH III, Lee MH, Janech MG, Tsoi LC, Zheng WJ, Luttrell LM, Maudsley S (2013) β-Arrestin-selective G proteincoupled receptor agonists engender unique biological efficacy in vivo. Mol Endocrinol 27:296–314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giguere PM, Kroeze WK, Roth BL (2014) Tuning up the right signal: chemical and genetic approaches to study GPCR function. Curr Opin Cell Biol 27:51–55

    CAS  PubMed  Google Scholar 

  • Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ, Freedman BI, Quinones MP, Bamshad MJ et al (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307:1434–1440

    CAS  PubMed  Google Scholar 

  • Hall DA (2000) Modeling the functional effects of allosteric modulators at pharmacological receptors: an extension of the two-state model of receptor activation. Mol Pharmacol 58:1412–1423

    CAS  PubMed  Google Scholar 

  • Hall DA (2006) Predicting dose-response curve behavior: mathematical models of allosteric-ligand interactions. In: Bowery NG (ed) Allosteric receptor modulation in drug targeting. Taylor and Francis, New York, pp 39–78

    Google Scholar 

  • Hauser MA, Legler DF (2016) Common and biased signaling pathways of the chemokine receptor CCR7 elicited by its ligands CCL19 and CCL21 in leukocytes. J Leukoc Biol 99:869–882

    CAS  PubMed  Google Scholar 

  • Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Disc 16:829–842

    CAS  Google Scholar 

  • Hilser J, Freire E (1997) Predicting the equilibrium protein folding pathway: structure-based analysis of staphylococcal nuclease. Proteins 27:171–183

    CAS  PubMed  Google Scholar 

  • Hilser VJ, Dowdy D, Oas TG, Freire E (1998) The structural distribution of cooperative interactions in proteins: analysis of the native state ensemble. Proc Natl Acad Sci U S A 95:9903–9908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilser VJ, García-Moreno EB, Oas TG, Kapp G, Whitten ST (2006) A statistical thermodynamic model of the protein ensemble. Chem Rev 106:1545–1558

    CAS  PubMed  Google Scholar 

  • Hu J, Stern M, Gimenez LE, Wanka L, Zhu L, Rossi M, Meister J, Inoue A, Beck-Sickinger AG, Gurevich VV, Wess J (2016) A G prptein designer G protein coupled receptor useful for studying the physiological relevance of the Gq/11-dependent signaling pathways. J Biol Chem 291:7809–7820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang XP, Karpiak J, Kroeze WK, Zhu H, Chen X, Moy SS, Saddoris KA, Nikolova VD, Farrell MS, Mangano SW, Deshpande DA, Jiang A, Penn RB, Jin J, Koller BH, Kenakin T, Shoichet BK, Roth BL (2015) Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. Nature 527:477–483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ichikawa O, Fujimoto K, Yamada A, Okazaki S, Yamazaki K (2016) G-protein/β-arrestin-linked fluctuating network of G-protein-coupled receptors for predicting drug efficacy and bias using short-term molecular dynamics simulation. PLoS One 11:e0155516

    Google Scholar 

  • Ito M, Oliverio MI, Mannon PJ, Best CF, Maeda N et al (1995) Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc Natl Acad Sci U S A 92:3521–3585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jarpe MB, Knall C, Mitchell FM, Buhl AM, Duzic E, Johnson GL (1998) [D-Arg1, D-Phe5,D-Trp7,9,Leu11]substance P acts as a biased agonist toward neuropeptide and chemokine receptors. J Biol Chem 273:3097–3104

    CAS  PubMed  Google Scholar 

  • Kelly E (2013) Efficacy and ligand bias at the μ-opioid receptor. Br J Pharmacol 169:1430–1446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kenakin T (1995) Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol Sci 16:232–238

    CAS  PubMed  Google Scholar 

  • Kenakin T (2002) Drug efficacy at G protein-coupled receptors. Annu Rev Pharmacol Toxicol 42:349–379

    CAS  PubMed  Google Scholar 

  • Kenakin T (2005) New concepts in drug discovery: collateral efficacy and permissive antagonism. Nat Rev Drug Discov 4:919–927

    CAS  PubMed  Google Scholar 

  • Kenakin TP (2009) Cellular assays as portals to seven-transmembrane receptor-based drug discovery. Nat Rev Drug Disc 8:617–626

    CAS  Google Scholar 

  • Kenakin TP (2010) Ligand detection in the allosteric world. J Biomol Screen 15:119–130

    CAS  PubMed  Google Scholar 

  • Kenakin TP (2012) Biased signalling and allosteric machines: new vistas and challenges for drug discovery. Br J Pharmacol 165:1659–1669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kenakin TP (2013) Making receptors a reality: the 2012 Nobel Prize in Chemistry. Trends Pharmacol Sci 34:2–5

    CAS  PubMed  Google Scholar 

  • Kenakin T (2015) New lives for seven transmembrane receptors as drug targets. Trends Pharmacol Sci 36:705–706

    CAS  PubMed  Google Scholar 

  • Kenakin T (2017) A system-independent scale of agonism and allosteric modulation for assessment of selectivity, bias, and receptor mutation. Mol Pharmacol 92:1–11

    Google Scholar 

  • Kenakin TP, Morgan PH (1989) Theoretical effects of single and multiple transducer receptor coupling proteins on estimates of the relative potency of agonists. Mol Pharmacol 35:214–222

    CAS  PubMed  Google Scholar 

  • Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S (2012) A simple method for quantifying functional selectivity and agonist bias. ACS Chem Neurosci 3:193–203

    CAS  PubMed  Google Scholar 

  • Kilts JD, Connery HS, Arrington EG, Lewis MM, Lawler CP, Oxford GS, O’Malley KL, Todd RD, Blake BL, Nichols DE et al (2002) Functional selectivity of dopamine receptor agonists. II. Actions of dihydrexidine in D2L receptor-transfected MN9D cells and pituitary lactotrophs. J Pharmacol Exp Ther 301:1179–1189

    CAS  PubMed  Google Scholar 

  • Kobilka BK, Frielle T, Collins S, Yang-Feng T, Kobilka TS, Francke U, Lefkowitz RJ, Caron MG (1987) An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 329:75–79

    CAS  PubMed  Google Scholar 

  • Koblish M, Carr R III, Siuda ER, Rominger DH, Gowen-MacDonald W, Cowan CL, Crombie AL, Violin JD, Lark MW (2017) TRV0109101, a G protein-biased agonist of the m-opioid receptor, does not promote opioid-induced mechanical allodynia following chronic administration. J Pharmacol Exp Ther 362:254–262

    CAS  PubMed  Google Scholar 

  • Kohout TA, Nicholas SL, Perry SJ, Reinhart G, Junger S, Struthers RS (2004) Differential desensitization, receptor phosphorylation, beta-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J Biol Chem 279:23214–23222

    CAS  PubMed  Google Scholar 

  • Kong KC, Butcher AJ, McWilliams P, Jones D, Wess J, Hamdan FF, Werry T, Rosethorne EM, Charlton SJ, Munson SE, Cragg HA, Smart AD, Tobin AB (2010) M3-muscarinic receptor promotes insulin release via receptor phosphorylation/arrestin-dependent activation of protein kinase D1. Proc Natl Acad Sci U S A 107(21181–86):157

    Google Scholar 

  • Kudlacek O, Waldhoer M, Kassack MU, Nickel P, Salmi JI, Freissmuth M, Nanoff C (2002) Biased inhibition by a suramin analogue of A1-adenosine receptor/G protein coupling in fused receptor/G protein tandems: the A1-adenosine receptor is predominantly coupled to Goa in human brain. Naunyn Schmiedebergs Arch Pharmacol 365:8–16

    CAS  PubMed  Google Scholar 

  • Lawler CP, Prioleau C, Lewis MM, Mak C, Jiang D, Schetz JA, Gonzalez AM, Sibley DR, Mailman RB (1999) Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 20:612–627

    CAS  PubMed  Google Scholar 

  • Liapakis G, Cordomi A, Pardo L (2012) The G protein-coupled receptor family: actors with many faces. Curr Pharm Des 18:175–185

    CAS  PubMed  Google Scholar 

  • Link RE, Desai K, Hein L, Stevens ME, Chruscinski A, Bernstein D, Barsh GS, Kobilka BK (1996) Cardiovascular regulation in mice lacking α2-adrenergic receptor subtypes b and c. Science 273(803–5):88

    Google Scholar 

  • M’Kadmi C, Lyris J-P, Onfroy L, Gales C, Sauliere A, Gagne D, Damian M, Mary S, Maingot M, Denoyelle S, Verdie P, Fehrentz J-A, Martinez J, Baneres J-L, Marie J (2015) Angonism, antagonism, and inverse agonism bias at the ghrelin receptor signaling. J Biol Chem 290:27021–27039

    PubMed  PubMed Central  Google Scholar 

  • MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE (1996) Central hypotensive effects of the α2a-adrenergic receptor subtype. Science 273:801–803

    CAS  PubMed  Google Scholar 

  • Manglik A, Kobilka B (2014) The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin. Curr Opin Cell Biol 27:136–143

    CAS  PubMed  Google Scholar 

  • Manglik A, Kim TH, Masureel M, Altenbach C, Yang Z, Hilger D, Lerch MT, Kobilka TS, Thian FS, Hubbell WL, Prosser RS, Kobilka BK (2015) Structural insights into the dynamic process of beta-2 adrenergic receptor signaling. Cell 161:1101–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manning DR (2002) Measures of efficacy using G proteins as endpoints: differential engagement of G proteins through single receptors. Mol Pharmacol 62:451–452

    CAS  PubMed  Google Scholar 

  • Michel MC, Alewijnse AE (2007) Ligand-directed signaling: 50 ways to find a lover. Mol Pharmacol 72:1097–1099

    CAS  PubMed  Google Scholar 

  • Miller DW, Dill KA (1997) Ligand binding to proteins: the binding landscape model. Protein Sci 6:2166–2179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monod J, Wyman J, Changeux J-P (1965) On the nature of allosteric transitions; a plausible model. J Mol Biol 12:88–118

    CAS  PubMed  Google Scholar 

  • Motlagh HN, Wrabl JO, Hilser VJ (2014) The ensemble nature of allostery. Nature 508:331–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muniz-Medina VM, Jones S, Maglich JM, Galardi C, Hollingsworth RE, Kazmierski WM, Ferris RG, Edelstein MP, Chiswell KE, Kenakin TP (2009) The relative activity of “function sparing” HIV-1 entry inhibitors on viral entry and CCR5 internalization: is allosteric functional selectivity a valuable therapeutic property? Mol Pharmacol 75:490–501

    CAS  PubMed  Google Scholar 

  • Naylor J, Suckow AT, Seth A, Baker DJ, Sermadiras I, Ravn P, Howers R, Li J, Snaith MR, Coghlan MP, Hornigold DC (2016) Use of CRISPR/Cas9-engineered INS-1 pancreatic β-cells to define the pharmacology of dual GIPR/GLP-1R agonists. Biochem J 473:2881–2891

    CAS  PubMed  Google Scholar 

  • Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A et al (2013) The dynamic process of beta(2)-adrenergic receptor activation. Cell 152:532–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Onaran HO, Costa T (1997) Agonist efficacy and allosteric models of receptor action. Ann N Y Acad Sci 812:98–115

    CAS  PubMed  Google Scholar 

  • Onaran HO, Scheer A, Cotecchia S, Costa T (2000) A look at receptor efficacy. Fromthesignalingnetworkofthecelltotheintramolecularmotionofthereceptor. In: Kenakin TP, Angus JA (eds) The pharmacology of functional, biochemical, and recombinant systems, Handbook of experimental pharmacology, vol 148. Springer, Heidelberg, pp 217–280

    Google Scholar 

  • Onaran HO, Ambrosio C, Ugur Ö, Madaras Koncz E, Grò MC, Vezzi V, Rajagopal S, Costa T (2017) Systematic errors in detecting biased agonism: analysis of current methods and development of a new model-free approach. Sci Rep 7:44247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park PS (2012) Ensemble of G protein-coupled receptor active states. Curr Med Chem 19:1146–1154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Bencsik M, Louie A, Lu W, Millard S, Nguyen P, Burghardt A, Majumdar S, Wronski TJ, Halloran B, Conklin BR, Nissenson RA (2008) Conditional expression of a Gi-coupled receptor in osteoblasts results in trabecular osteopenia. Endocrinology 149:1329–1337

    CAS  PubMed  Google Scholar 

  • Poulin B, Butcher A, McWilliams P, Bourgognon JM, Pawlak R, Kong KC, Bottrill A, Mistry S, Rosethorne EM, Charlton SJ, Tobin AB (2010) The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc Natl Acad Sci U S A 107:9440–9445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan AA, Becker JA, Scherrer G, Tryoen-Toth P, Filliol D, Matifas A, Massotte D, Gavériaux-Ruff C, Kieffer BL (2009) In vivo delta opioid receptor internalization controls behavioral effects of agonists. PLoS One 4:e5425

    PubMed  PubMed Central  Google Scholar 

  • Price MR, Baillie GL, Thomas A, Stevenson LA, Easson M, Goodwin R, McLean A, McIntosh L, Goodwin G, Walker G et al (2005) Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol 68:1484–1495

    CAS  PubMed  Google Scholar 

  • Raehal KM, Walker JK, Bohn LM (2005) Morphine side effects in b-arrestin 2 knockout mice. J Pharmacol Exp Ther 314:1195–1201

    CAS  PubMed  Google Scholar 

  • Rang HP (2009) The receptor concept: pharmacology’s big idea. Br J Pharmacol 147:S9–S16

    Google Scholar 

  • Rasmussen SG, Choi HJ, Fung JJ, Paron L, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahar RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469:175–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Redfern CH, Coward P, Degtyarev MY, Lee EK, Kwa AT, Salomonis N, Cotte N, Nanevicz T, Fidelman N, Desai K, Vranizan K, Lee EK, Coward P, Shah N, Warrington JA, Fishman GI, Bernstein D, Baker AJ, Conklin BR (1999) Conditional expression and signaling of a specifically designed Gi-coupled receptor in transgenic mice. Nat Biotechnol 17:165–169

    CAS  PubMed  Google Scholar 

  • Rees S, Morrow D, Kenakin T (2002) GPCR drug discovery through the exploitation of allosteric drug binding sites. Receptors Channels 8:261–268

    CAS  PubMed  Google Scholar 

  • Rohrer DK, Chruscinski A, Schauble EH, Bernstein D, Kobilka BK (1999) Cardiovascular and metabolic alterations in mice lacking both β1- and β2-adrenergic receptors. J Biol Chem 274:16701–16708

    CAS  PubMed  Google Scholar 

  • Roth BL, Chuang DM (1987) Multiple mechanisms of serotonergic signal transduction. Life Sci 41:1051–1064

    CAS  PubMed  Google Scholar 

  • Samama P, Cotecchia S, Costa T, Lefkowitz RJ (1993) A mutation-induced activated state of the β2-adrenergic receptor: extending the ternary complex model. J Biol Chem 268:4625–4636

    CAS  PubMed  Google Scholar 

  • Saudou F, Amara DA, Dierich A, LeMeur M, Ramboz S, Segu L, Buhot MC, Hen R (1994) Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265:1875–1878

    CAS  PubMed  Google Scholar 

  • Scherrer G, Tryoen-Toth P, Filliol D, Matifas A, Laustriat D, Cao YQ, Basbaum AI, Dierich A, Vonesh J-L, Gavériaux-Ruff C, Kieffer BL (2006) Knockin mice expressing fluorescent δ-opioid receptors uncover Gprotein–coupled receptor dynamics in vivo. Proc Natl Acad Sci U S A 103:9691–9696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scherrer G, Imamachi N, Cao YQ, Contet C, Mennicken F, O’Donnell D, Kieffer BL, Basbaum AI (2009) Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell 137:1148–1159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR, Roth BL, Mailman R (2003) Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28:1400–1411

    CAS  PubMed  Google Scholar 

  • Shenoy SK, Lefkowitz RJ (2011) β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32:521–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sora I, Takahashi N, Funada M, Ujike H, Revay RS, Donovan DM, Miner LL, Uhl GR (1997) Opiate receptor knockout mice define μ receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci U S A 94:1544–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg PH, Journot L (1993) Differential signal transduction by five splice variants of the PACAP receptor. Nature 365:170–175

    CAS  PubMed  Google Scholar 

  • Stephenson RP (1956) A modification of receptor theory. Br J Pharmacol Chemother 11:379–393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stockton JM, Birdsall NJ, Burgen AS, Hulme EC (1983) Modification of the binding properties of muscarinic receptors by gallamine. Mol Pharmacol 23:551–557

    CAS  PubMed  Google Scholar 

  • Susulic VS, Frederich RC, Lawitts J, Tozzo E, Kahn BB, Harper M-E, Himms-Hagen J, Flier JS, Lowell BB (1995) Targeted disruption of the β3adrenergic receptor gene. J Biol Chem 270:29483–29492

    CAS  PubMed  Google Scholar 

  • Thompson GL, Lane JR, Coudrat T, Sexton PM, Chistopoulos A, Canals M (2016) Systematic analysis of factors influencing observations of biased agonism at the mu-opioid receptor. Biochem Pharmacol 113:70–87

    CAS  PubMed  Google Scholar 

  • Torrecilla I, Spragg FJ, Poulin B, McWilliams PJ, Mistry SC et al (2007) Phosphorylation and regulation of a G protein-coupled receptor by protein kinase CK2. J Cell Biol 177:127–137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urban DJ, Roth BL (2015) DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol 55:399–417

    CAS  PubMed  Google Scholar 

  • Vardy E, Roth BL (2013) Conformational ensembles in GPCR activation. Cell 152:385–386

    CAS  PubMed  Google Scholar 

  • Violin JD, Dewire SM, Barnes WG, Lefkowitz RJ (2006) G protein-coupled receptor kinase and b-arrestin-mediated desensitization of the angiotensin II type 1A receptor elucidated by diacylglycerol dynamics. J Biol Chem 281:36411–36419

    CAS  PubMed  Google Scholar 

  • Violin JD, DeWire SM, Yamashita D, Rominger DH, Nguyen L, Schiller K, Whalen EJ, Gowen M, Lark MW (2010) Selectively engaging b-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J Pharmacol Exp Ther 335:572–579

    CAS  PubMed  Google Scholar 

  • Wang S, Wacker D, Anat Levit A, Che T, Betz RM, McCorvy JD, Venkatakrishnan AJ, Huang XP, Dror RO, Shoichet BK, Roth BL (2017) D4 dopamine receptor high-resolution structures enable the discovery of selective agonists. Science 358:381–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whistler JL, Enquist J, Marley A, Fong J, Gladher F, Tsuruda P, Murray SR, von Zastrow M (2002) Modulation of postendocytic sorting of G protein-coupled receptors. Science 297:615–620

    CAS  PubMed  Google Scholar 

  • White KL, Scopton AP, Rives ML, Bikbulatov RV, Polepally PR, Brown PJ, Kenakin T, Javitch JA, Zjawiony JK, Roth BL (2014) Identification of novel functionally selective k-opioid receptor scaffolds. Mol Pharmacol 85:83–90

    PubMed  PubMed Central  Google Scholar 

  • Willins DL, Berry SA, Alsayegh L, Backstrom JR, Sanders-Bush E, Friedman L, Roth BL (1999) Clozapine and other 5-hydroxytryptamine-2A receptor antagonists alter the subcellular distribution of 5-hydroxytryptamine-2A receptors in vitro and in vivo. Neuroscience 91:599–606

    CAS  PubMed  Google Scholar 

  • Woodward C (1993) Is the slow exchange core the protein folding core? Trends Biochem Sci 18:359–360

    CAS  PubMed  Google Scholar 

  • Xu M, Moratalla R, Gold LH, Hiroi N, Koob GF et al (1994) Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 79:729–742

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Kenakin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kenakin, T. (2019). Emergent Concepts of Receptor Pharmacology. In: Barrett, J., Page, C., Michel, M. (eds) Concepts and Principles of Pharmacology. Handbook of Experimental Pharmacology, vol 260. Springer, Cham. https://doi.org/10.1007/164_2019_297

Download citation

Publish with us

Policies and ethics