Skip to main content

Functional Interactions Between Sleep and Circadian Rhythms in Learning and Learning Disabilities

  • Chapter
  • First Online:
Sleep-Wake Neurobiology and Pharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 253))

Abstract

The propensity for sleep is timed by the circadian system. Many studies have shown that learning and memory performance is affected by circadian phase. And, of course it is well established that critical processes of memory consolidation occur during and depend on sleep. This chapter presents evidence that sleep and circadian rhythms do not just have separate influences on learning and memory that happen to coincide because of the circadian timing of sleep, but rather sleep and circadian systems have a critical functional interaction in the processes of memory consolidation. The evidence comes primarily from research on two models of learning disability: Down’s syndrome model mice and Siberian hamsters. The Down’s syndrome model mouse (Ts65Dn) has severe learning disability that has been shown to be due to GABAergic over-inhibition. Short-term, chronic therapies with GABAA antagonists restore learning ability in these mice long-term, but only if the antagonist treatments are given during the dark or sleep phase of the daily rhythm. The Siberian hamster is a model circadian animal except for the fact that a light treatment that gives the animal a phase advance on one day and a phase delay on the next day can result in total circadian arrhythmia for life. Once arrhythmic, the hamsters cannot learn. Learning, but not rhythmicity, is restored by short-term chronic treatment with GABA antagonists. Like many other species, if these hamsters are made arrhythmic by SCN lesion, their learning is unaffected. However, if made arrhythmic and learning disabled by the light treatment, subsequent lesions of their SCNs restore learning. SCN lesions also appear to restore learning in the Ts65Dn mice. The collective work on these two animal models of learning disability suggests that the circadian system modulates neuroplasticity. Our hypothesis is that a previously unrecognized function of the circadian system is to dampen neuroplasticity during the sleep phase to stabilize memory transcripts during their transfer to long-term memory. Thus, sleep and circadian systems have integrated roles to play in memory consolidation and do not just have separate but coincident influences on that process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann K, Revell VL, Lao O, Rombouts EJ, Skene DJ, Kayser M (2012) Diurnal rhythms in blood cell populations and the effect of acute sleep deprivation in healthy young men. Sleep 35(7):933–934

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes CA, McNaughton BL, Goddard GV, Douglas RM, Adamec R (1977) Circadian rhythm of synaptic excitability in rat and monkey central nervous system. Science 197(4298):91–92

    Article  CAS  PubMed  Google Scholar 

  • Belenky MA, Yarom Y, Pickard GE (2008) Heterogeneous expression of gamma-aminobutyric acid-associated receptors and transporters in the rat suprachiasmatic nucleus. J Comp Neurol 506(4):708–732

    Article  CAS  PubMed  Google Scholar 

  • Belichenko PV, Masliah E, Kleschevnikov AM, Villar AJ, Epstein CJ, Salehi A, Mobley WC (2004) Synaptic structural abnormalities in the Ts65Dn mouse model of Down Syndrome. J Comp Neurol 480:281–298

    Article  PubMed  Google Scholar 

  • Borbely AA (1982) A two-process model of sleep regulation. Hum Neurobiol 1:195–204

    CAS  PubMed  Google Scholar 

  • Born J, Wilhelm I (2012) System consolidation of memory during sleep. Psychol Res 76:192–203

    Article  PubMed  Google Scholar 

  • Bowden JB, Abraham WC, Harris KM (2012) Differential effects of strain, circadian cycle, and stimulation pattern on LTP and concurrent LTD in the dentate gyrus of freely moving rats. Hippocampus 22(6):1363–1367

    Article  PubMed  Google Scholar 

  • Brioni JD, Decker MW, Gamboa LP, Izquierdo I, McGaugh JL (1990) Muscimol injections in the medial septum impair spatial learning. Brain Res 522:227–234

    Article  CAS  PubMed  Google Scholar 

  • Buhr ED, Takahashi JS (2013) Molecular components of the mammalian circadian clock. Handb Exp Pharmacol 217:3–27

    Article  CAS  Google Scholar 

  • Cain SW, Ralph MR (2009) Circadian modulation of conditioned place preference in hamsters does not require the suprachiasmatic nucleus. Neurobiol Learn Mem 91:81–84

    Article  PubMed  Google Scholar 

  • Cain SW, Chalmers JA, Ralph MR (2012) Circadian modulation of passive avoidance is not eliminated in arrhythmic hamsters with suprachiasmatic nucleus lesions. Behav Brain Res 230(1):288–290

    Article  PubMed  Google Scholar 

  • Chaudhury D, Wang LM, Colwell CS (2005) Circadian regulation of hippocampal long-term potentiation. J Biol Rhythm 20:225–236

    Article  Google Scholar 

  • Colas D, Chuluun B, Warrier D, Blank M, Wetmore DZ, Buckmaster P, Garner CC, Heller HC (2013) Short-term treatment with the GABAA antagonist pentylenetetrazole produces a sustained procognitive benefit in a mouse model of Down’s syndrome. Br J Pharmacol 169:763–773

    Article  Google Scholar 

  • Colas D, Chuluun B, Garner CC, Heller HC (2017) Short-term treatment with flumazenil restores long-term object memory in a mouse model of Down syndrome. Neurobiol Learn Mem 140:11–16

    Article  CAS  PubMed  Google Scholar 

  • Costa ACS, Grybk MJ (2005) Deficits in hippocampal CA1 LTP induced by TBS but not HFS in the Ts65Dn mouse: a model of Down syndrome. Neurosci Lett 382:317–322

    Article  CAS  PubMed  Google Scholar 

  • Daan S, Beersma DGM, Borbely AA (1984) Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Phys 246:R161–RR178

    CAS  Google Scholar 

  • Degroot A, Parent MB (2001) Infusions of physostigmine into the hippocampus or the entorhinal cortex attenuate avoidance retention deficits produced by intra-septal infusions of the GABA agonist muscimol. Brain Res 920(1–2):10–18

    Article  CAS  PubMed  Google Scholar 

  • Dere E, Huston JP, De Souza Silva MA (2007) The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 31(5):673–704

    Article  CAS  PubMed  Google Scholar 

  • Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15:3526–3538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everson CA, Folley AE, Toth JM (2012) Chronically inadequate sleep results in abnormal bone formation and abnormal bone marrow in rats. Exp Biol Med 237(9):1101–1109

    Article  CAS  Google Scholar 

  • Everson CA, Henchen CJ, Szabo A, Hogg N (2014) Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. Sleep 37(12):1929–1940

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez F, Morishita W, Zuniga E, Nguyen J, Blank M, Malenka RC, Garner CC (2007) Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat Neurosci 10(4):411–413

    Article  CAS  PubMed  Google Scholar 

  • Fernandez F, Lu D, Ha P, Costacurta P, Chavez R, Heller HC, Ruby NF (2014) Dysrhythmia in the suprachiasmatic nucleus inhibits memory processing. Science 346:854–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujisawa S, Buzsaki G (2011) A 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. Neuron 72(1):153–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grone BP, Chang D, Bourgin P, Cao V, Fernald RD, Heller HC, Ruby NF (2011) Acute light exposure suppresses circadian rhythms in clock gene expression. J Biol Rhythm 26:78–81

    Article  Google Scholar 

  • Heller HC, Ruby NF, Rolls A, Makam M, Colas D (2014) Adaptive and pathological inhibition of neuroplasticity associated with circadian rhythms and sleep. Behav Neurosci 128:273–282

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson ML, Gunzelmann G, Whitney P, Hinson JM, Belenky G, Rabat A, Van Dongen HP (2013) Deconstructing and reconstructing cognitive performance in sleep deprivation. Sleep Med Rev 17(3):215–225

    Article  PubMed  Google Scholar 

  • Ji D, Wilson MA (2007) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10:100–107

    Article  CAS  PubMed  Google Scholar 

  • Kitamura T, Ogawa SK, Roy DS, Okuyama T, Morrissey MD, Smith LM, Redondo RL, Tonegawa S (2017) Engrams and circuits crucial for systems consolidation of a memory. Science 356(6333):73–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleschevnikov AM, Belichenko PV, Villar AJ, Epstein CJ, Malenka RC, Mobley WC (2004) Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. J Neurosci 24:8153–8160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krebs DL, Parent MB (2005) Hippocampal infusions of pyruvate reverse the memory-impairing effects of septal muscimol infusions. Eur J Pharmacol 520(1–3):91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriegsfeld LJ, Silver R (2006) The regulation of neuroendocrine function: timing is everything. Horm Behav 49(5):557–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriegsfeld LJ, Leak RK, Yackuli DB, LeSauter J, Silver R (2004) Organization of suprachiasmatic nucleus projections in Syrian hamsters (Mesocricetus auratus): an anterograde and retrograde analysis. J Comp Neurol 468(3):361–379

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackiewicz M, Shickley KR, Romer MA, Galante RJ, Zimmerman JE, Naidoo N, Baldwin DA, Jensen ST, Churchill GA, Pack AI (2007) Macromolecule biosynthesis – a key function of sleep. Physiol Genomics 31:441

    Article  CAS  PubMed  Google Scholar 

  • Mistlberber RE, de Groot MH, Bossert JM, Marchant EG (1996) Discrimination of circadian phase in intact and suprachiasmatic nuclei-ablated rats. Brain Res 739(1–2):12–18

    Article  Google Scholar 

  • Moore RY, Speh JC (1993) GABA is the principal neurotransmitter of the circadian system. Neurosci Lett 150(1):112–116

    Article  CAS  PubMed  Google Scholar 

  • Morin LP, Goodless-Sanchez N, Smale L (1994) Projections of the suprachiasmatic nuclei, subparaventricular zone and retrochiasmatic area in the golden hamster. J Neurosci 61(2):391–410

    Article  CAS  Google Scholar 

  • Mulder C, Van Der Zee EA, Hut RA, Gerkema MP (2013) Time-place learning and memory persist in mice lacking functional Per1 and Per2 clock genes. J Biol Rhythm 28(6):367–379

    Article  CAS  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1):171–175

    Article  PubMed  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon Press, Oxford 570 pp

    Google Scholar 

  • Parent MB, Laurey PT, Wilkniss S, GoldP E (1997) Intraseptal infusions of muscimol impair spontaneous alternation performance: infusions of glucose into the hippocampus, but not the medial septum, reverse the deficit. Neurobiol Learn Mem 68(1):75–85

    Article  CAS  PubMed  Google Scholar 

  • Phan TX, Chan GC, Sindreu CB, Eckel-Mahan KL, Storm DR (2011) The diurnal oscillation of MAP (mitogen-activated protein) kinase and adenylyl cyclase activities in the hippocampus depends on the suprachiasmatic nucleus. J Neurosci 31:10640–10647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prendergast BJ, Cisse YM, Cable EJ, Zucker I (2012) Dissociation of ultradian and circadian phenotypes in female and male Siberian hamsters. J Biol Rhythm 27:287–298

    Article  CAS  Google Scholar 

  • Ramirez S, Liu X, Lin R, Suh J, Pignatelli M, Redondo R, Ryan T, Tonegawa S (2013) Creating a false memory in the hippocampus. Science 341:387–389

    Article  CAS  PubMed  Google Scholar 

  • Rasch B, Born J (2014) About sleep’s role in memory. Physiol Rev 93(2):681–766

    Article  Google Scholar 

  • Rasch B, Buchel C, Gais S, Born J (2007) Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 315:1426–1429

    Article  CAS  PubMed  Google Scholar 

  • Rolls A, Makam M, Kroeger D, Colas D, de Lecea L, Heller HC (2013) Sleep to forget: interference of fear memories during sleep. Mol Psychiatry 18:1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolls A, Pang WW, Ibarrra I, Colas D, Bonnavion P, Korin B, Heller HC, Weissman IL, deLecea L (2015) Sleep disruption impairs haematopoietic stem cell transplantation in mice. Nat Commun 6:8516

    Article  CAS  PubMed  Google Scholar 

  • Ruby N, Sara A, Kang T, Franken P, Heller HC (1996) Siberian hamsters free run or become arrhythmic after a phase delay of the photocycle. Am J Phys 40(4):R881–R876

    Google Scholar 

  • Ruby NF, Barakat MT, Heller HC (2004) Phenotypic differences in reentrainment behavior and sensitivity to nighttime light pulses in Siberian hamsters. J Biol Rhythm 19:1–12

    Article  Google Scholar 

  • Ruby NF, Hwang C, Wessells C, Fernandez F, Zhang P, Sapolsky R, Heller HC (2008) Hippocampal-dependent learning requires a functional circadian system. Proc Natl Acad Sci U S A 105(40):15593–15598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruby NF, Fernandez F, Zhang P, Klima J, Heller HC, Garner CC (2010) Circadian locomotor rhythms are normal in Ts65Dn “Down syndrome” mice and unaffected by pentylenetetrazole. J Biol Rhythm 25:63–66

    Article  CAS  Google Scholar 

  • Ruby NF, Fernandez F, Garrett A, Klima J, Zhang P, Sapolsky R, Heller HC (2013) Spatial memory and long-term object recognition are impaired by circadian arrhythmia and restored by the GABAA antagonist pentylenetetrazole. PLoS One 8(8):e72433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudoy J, Voss JL, Westerberg CE, Paller KA (2009) Strengthening individual memories by reactivating them during sleep. Science 326:1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seregaza S, Roubertoux PL, Jamon M, Sounireu-Mourat B (2006) Mouse models of cognitive disorders in trisomy 21: a review. Behav Genet 36:387–404

    Article  PubMed  Google Scholar 

  • Siapas AG, Lubenov EV, Wilson MA (2005) Prefrontal phase locking to hippocampal theta oscillations. Neuron 45(1):141–151

    Article  Google Scholar 

  • Siarey RJ, Stoll J, Rapoport SI, Galdzicki Z (1997) Altered long-term potentiation in the young and old Ts65Dn mouse, a model for Down Syndrome. Neuropharmacology 36(11–12):1549–1554

    Article  CAS  PubMed  Google Scholar 

  • Silver R, LeSauter J, Tresco PA, Lehman MN (1996) A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382(6594):810–813

    Article  CAS  PubMed  Google Scholar 

  • Smarr BL, Jennings KJ, Driscoll JR, Kriegsfeld LJ (2014) A time to remember: the role of circadian clocks in learning and memory. Behav Neurosci 128(3):283–303

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephan FK, Kovacevic NS (1978) Multiple retention deficit in passive avoidance in rats is eliminated by suprachiasmatic lesions. Behav Biol 22(4):456–462

    Article  CAS  PubMed  Google Scholar 

  • Van Cauter E, Latta F, Nedeltcheva A, Spiegel K, Leproult R, Vandenbril C, Weiss R, Mockel J, Legros JJ, Copinschi G (2004) Reciprocal interactions between the GH axis and sleep. Growth Hormon IGF Res 14(Suppl A):S10–S17

    Article  Google Scholar 

  • Van Cauter E, Spiegel K, Tasali E, Leproult R (2008) Metabolic consequences of sleep and sleep loss. Sleep Med 9(Suppl 1):S23–S28

    Article  PubMed  PubMed Central  Google Scholar 

  • Van der Zee EA, Havekes R, Bar RP, Hut RA, Nijholt IM, Jacobs EH, Gerkema MP (2011) Circadian time-place learning in mice depends on Cry genes. Curr Biol 18:844–848

    Google Scholar 

  • Wardlaw SM, Phan TX, Saraf A, Chen X, Storm DR (2014) Genetic disruption of the core circadian clock impairs hippocampus-dependent memory. Learn Mem 21(8):417–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts AG, Swanson LW, Sanchez-Watts G (1987) Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol 258:204–229

    Article  CAS  PubMed  Google Scholar 

  • Wilson M, McNaughton B (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265:676–679

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 111(45):16219–16224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to many colleagues who contributed to studies from our own laboratory that constitute the body of this chapter. In particular, they include Damien Colas, Craig Garner, Fabian Fernandez, Bayarsaikhan Chuluun, Asya Rolls, Megha Makam, and many Stanford University undergraduates. This work was supported by LumindRDS Foundation and NIMH MH095837.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Craig Heller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heller, H.C., Ruby, N.F. (2018). Functional Interactions Between Sleep and Circadian Rhythms in Learning and Learning Disabilities. In: Landolt, HP., Dijk, DJ. (eds) Sleep-Wake Neurobiology and Pharmacology . Handbook of Experimental Pharmacology, vol 253. Springer, Cham. https://doi.org/10.1007/164_2018_176

Download citation

Publish with us

Policies and ethics