Skip to main content

The Cerebellar GABAAR System as a Potential Target for Treating Alcohol Use Disorder

  • Chapter
  • First Online:
The Neuropharmacology of Alcohol

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 248))

Abstract

In the brain, fast inhibitory neurotransmission is mediated primarily by the ionotropic subtype of the gamma-aminobutyric acid (GABA) receptor subtype A (GABAAR). It is well established that the brain’s GABAAR system mediates many aspects of neurobehavioral responses to alcohol (ethanol; EtOH). Accordingly, in both preclinical studies and some clinical scenarios, pharmacologically targeting the GABAAR system can alter neurobehavioral responses to acute and chronic EtOH consumption. However, many of the well-established interactions of EtOH and the GABAAR system have been identified at concentrations of EtOH ([EtOH]) that would only occur during abusive consumption of EtOH (≥40 mM), and there are still inadequate treatment options for prevention of or recovery from alcohol use disorder (AUD, including abuse and dependence). Accordingly, there is a general acknowledgement that more research is needed to identify and characterize: (1) neurobehavioral targets of lower [EtOH] and (2) associated brain structures that would involve such targets in a manner that may influence the development and maintenance of AUDs.

Nearly 15 years ago it was discovered that the GABAAR system of the cerebellum is highly sensitive to EtOH, responding to concentrations as low as 10 mM (as would occur in the blood of a typical adult human after consuming 1–2 standard units of EtOH). This high sensitivity to EtOH, which likely mediates the well-known motor impairing effects of EtOH, combined with recent advances in our understanding of the role of the cerebellum in non-motor, cognitive/emotive/reward processes has renewed interest in this system in the specific context of AUD. In this chapter we will describe recent advances in our understanding of cerebellar processing, actions of EtOH on the cerebellar GABAAR system, and the potential relationship of such actions to the development of AUD. We will finish with speculation about how cerebellar specific GABAAR ligands might be effective pharmacological agents for treating aspects of AUD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan AM, Harris RA (1986) Gamma-aminobutyric acid and alcohol actions: neurochemical studies of long sleep and short sleep mice. Life Sci 39:2005–2015

    CAS  PubMed  Google Scholar 

  • Allan AM, Harris RA (1987) Involvement of neuronal chloride channels in ethanol intoxication, tolerance, and dependence. Recent Dev Alcohol 5:313–325

    CAS  PubMed  Google Scholar 

  • Allan AM, Huidobro-Toro JP, Bleck V, Harris RA (1987) Alcohol and the GABA receptor-chloride channel complex of brain. Alcohol Alcohol Suppl 1:643–646

    CAS  PubMed  Google Scholar 

  • Allan AM, Spuhler KP, Harris RA (1988) Gamma-aminobutyric acid-activated chloride channels: relationship to genetic differences in ethanol sensitivity. J Pharmacol Exp Ther 244:866–870

    CAS  PubMed  Google Scholar 

  • Anton RF, Schacht JP, Book SW (2014) Pharmacologic treatment of alcoholism. Handb Clin Neurol 125:527–542

    PubMed  Google Scholar 

  • Avegno EM, Salling MC, Borgkvist A, Mrejeru A, Whitebirch AC, Margolis EB, Sulzer D, Harrison NL (2016) Voluntary adolescent drinking enhances excitation by low levels of alcohol in a subset of dopaminergic neurons in the ventral tegmental area. Neuropharmacology 110:386–395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bagnall MW, Zingg B, Sakatos A, Moghadam SH, Zeilhofer HU, du LS (2009) Glycinergic projection neurons of the cerebellum. J Neurosci 29:10104–10110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banks MI, Pearce RA (2000) Kinetic differences between synaptic and extrasynaptic GABA(A) receptors in CA1 pyramidal cells. J Neurosci 20:937–948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barmack NH, Yakhnitsa V (2008) Functions of interneurons in mouse cerebellum. J Neurosci 28:1140–1152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basile A, Hoffer B, Dunwiddie T (1983) Differential sensitivity of cerebellar purkinje neurons to ethanol in selectively outbred lines of mice: maintenance in vitro independent of synaptic transmission. Brain Res 264:69–78

    CAS  PubMed  Google Scholar 

  • Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB, Leggio M, Mattingley JB, Molinari M, Moulton EA, Paulin MG, Pavlova MA, Schmahmann JD, Sokolov AA (2015) Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum 14:197–220

    PubMed  Google Scholar 

  • Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175:191–217

    CAS  PubMed  Google Scholar 

  • Bell RL, Stewart RB, Woods JE, Lumeng L, Li TK, Murphy JM, McBride WJ (2001) Responsivity and development of tolerance to the motor impairing effects of moderate doses of ethanol in alcohol-preferring (P) and -nonpreferring (NP) rat lines. Alcohol Clin Exp Res 25:644–650

    CAS  PubMed  Google Scholar 

  • Bell RL, Rodd ZA, Lumeng L, Murphy JM, McBride WJ (2006) The alcohol-preferring P rat and animal models of excessive alcohol drinking. Addict Biol 11:270–288

    PubMed  Google Scholar 

  • Ben-Ari Y, Woodin MA, Sernagor E, Cancedda L, Vinay L, Rivera C, Legendre P, Luhmann HJ, Bordey A, Wenner P, Fukuda A, van den Pol AN, Gaiarsa JL, Cherubini E (2012) Refuting the challenges of the developmental shift of polarity of GABA actions: GABA more exciting than ever! Front Cell Neurosci 6:35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Billard JM, Vigot R, Batini C (1993) GABA, THIP and baclofen inhibition of Purkinje cells and cerebellar nuclei neurons. Neurosci Res 16:65–69

    CAS  PubMed  Google Scholar 

  • Bjork JM, Gilman JM (2014) The effects of acute alcohol administration on the human brain: insights from neuroimaging. Neuropharmacology 84:101–110

    CAS  PubMed  Google Scholar 

  • Bledsoe J, Semrud-Clikeman M, Pliszka SR (2009) A magnetic resonance imaging study of the cerebellar vermis in chronically treated and treatment-naive children with attention-deficit/hyperactivity disorder combined type. Biol Psychiatry 65:620–624

    PubMed  PubMed Central  Google Scholar 

  • Boehm SL, Ponomarev I, Jennings AW, Whiting PJ, Rosahl TW, Garrett EM, Blednov YA, Harris RA (2004) Gamma-aminobutyric acid A receptor subunit mutant mice: new perspectives on alcohol actions. Biochem Pharmacol 68:1581–1602

    CAS  PubMed  Google Scholar 

  • Borghese CM, Harris RA (2007) Studies of ethanol actions on recombinant delta-containing gamma-aminobutyric acid type A receptors yield contradictory results. Alcohol 41:155–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borghese CM, Storustovu S, Ebert B, Herd MB, Belelli D, Lambert JJ, Marshall G, Wafford KA, Harris RA (2006) The delta subunit of gamma-aminobutyric acid type A receptors does not confer sensitivity to low concentrations of ethanol. J Pharmacol Exp Ther 316:1360–1368

    CAS  PubMed  Google Scholar 

  • Borghese CM, Ruiz CI, Lee US, Cullins MA, Bertaccini EJ, Trudell JR, Harris RA (2016) Identification of an inhibitory alcohol binding site in GABAA rho1 receptors. ACS Chem Neurosci 7:100–108

    CAS  PubMed  Google Scholar 

  • Botta P, Mameli M, Floyd KL, Radcliffe RA, Valenzuela CF (2007a) Ethanol sensitivity of GABAergic currents in cerebellar granule neurons is not increased by a single amino acid change (R100Q) in the alpha6 GABAA receptor subunit. J Pharmacol Exp Ther 323:684–691

    CAS  PubMed  Google Scholar 

  • Botta P, Radcliffe RA, Carta M, Mameli M, Daly E, Floyd KL, Deitrich RA, Valenzuela CF (2007b) Modulation of GABAA receptors in cerebellar granule neurons by ethanol: a review of genetic and electrophysiological studies. Alcohol 41:187–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Botta P, de Souza FM, Sangrey T, De Schutter E, Valenzuela CF (2010) Alcohol excites cerebellar Golgi cells by inhibiting the Na+/K+ ATPase. Neuropsychopharmacology 35:1984–1996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Botta P, Simoes de Souza FM, Sangrey T, De Schutter E, Valenzuela CF (2012) Excitation of rat cerebellar Golgi cells by ethanol: further characterization of the mechanism. Alcohol Clin Exp Res 36:616–624

    CAS  PubMed  Google Scholar 

  • Boyle AE, Segal R, Smith BR, Amit Z (1993) Bidirectional effects of GABAergic agonists and antagonists on maintenance of voluntary ethanol intake in rats. Pharmacol Biochem Behav 46:179–182

    CAS  PubMed  Google Scholar 

  • Bragina L, Marchionni I, Omrani A, Cozzi A, Pellegrini-Giampietro DE, Cherubini E, Conti F (2008) GAT-1 regulates both tonic and phasic GABA(A) receptor-mediated inhibition in the cerebral cortex. J Neurochem 105:1781–1793

    CAS  PubMed  Google Scholar 

  • Brickley SG, Cull-Candy SG, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol 497(Pt 3):753–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brickley SG, Revilla V, Cull-Candy SG, Wisden W, Farrant M (2001) Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 409:88–92

    CAS  PubMed  Google Scholar 

  • Brodie MS, Appel SB (2000) Dopaminergic neurons in the ventral tegmental area of C57BL/6J and DBA/2J mice differ in sensitivity to ethanol excitation. Alcohol Clin Exp Res 24:1120–1124

    CAS  PubMed  Google Scholar 

  • Brodie MS, Shefner SA, Dunwiddie TV (1990) Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. Brain Res 508:65–69

    CAS  PubMed  Google Scholar 

  • Cagetti E, Liang J, Spigelman I, Olsen RW (2003) Withdrawal from chronic intermittent ethanol treatment changes subunit composition, reduces synaptic function, and decreases behavioral responses to positive allosteric modulators of GABAA receptors. Mol Pharmacol 63:53–64

    CAS  PubMed  Google Scholar 

  • Carta M, Mameli M, Valenzuela CF (2004) Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability. J Neurosci 24:3746–3751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cathala L, Misra C, Cull-Candy S (2000) Developmental profile of the changing properties of NMDA receptors at cerebellar mossy fiber-granule cell synapses. J Neurosci 20:5899–5905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cathala L, Brickley S, Cull-Candy S, Farrant M (2003) Maturation of EPSCs and intrinsic membrane properties enhances precision at a cerebellar synapse. J Neurosci 23:6074–6085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavdar S, Onat F, Aker R, Sehirli U, San T, Yananli HR (2001a) The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase. J Anat 198:463–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavdar S, San T, Aker R, Sehirli U, Onat F (2001b) Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat. J Anat 198:37–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavelier P, Hamann M, Rossi D, Mobbs P, Attwell D (2005) Tonic excitation and inhibition of neurons: ambient transmitter sources and computational consequences. Prog Biophys Mol Biol 87:3–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Hillman DE (1993) Colocalization of neurotransmitters in the deep cerebellar nuclei. J Neurocytol 22:81–91

    CAS  PubMed  Google Scholar 

  • Choi DS, Wei W, Deitchman JK, Kharazia VN, Lesscher HM, McMahon T, Wang D, Qi ZH, Sieghart W, Zhang C, Shokat KM, Mody I, Messing RO (2008) Protein kinase Cdelta regulates ethanol intoxication and enhancement of GABA-stimulated tonic current. J Neurosci 28:11890–11899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Church AC, Fuller JL, Dann L (1979) Alcohol intake in selected lines of mice: importance of sex and genotype. J Comp Physiol Psychol 93:242–246

    CAS  PubMed  Google Scholar 

  • Cook JB, Dumitru AM, O'Buckley TK, Morrow AL (2014) Ethanol administration produces divergent changes in GABAergic neuroactive steroid immunohistochemistry in the rat brain. Alcohol Clin Exp Res 38:90–99

    CAS  PubMed  Google Scholar 

  • Crabbe JC, Metten P, Ponomarev I, Prescott CA, Wahlsten D (2006a) Effects of genetic and procedural variation on measurement of alcohol sensitivity in mouse inbred strains. Behav Genet 36:536–552

    PubMed  Google Scholar 

  • Crabbe JC, Phillips TJ, Harris RA, Arends MA, Koob GF (2006b) Alcohol-related genes: contributions from studies with genetically engineered mice. Addict Biol 11:195–269

    CAS  PubMed  Google Scholar 

  • Crabbe JC, Bell RL, Ehlers CL (2010) Human and laboratory rodent low response to alcohol: is better consilience possible? Addict Biol 15:125–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crews FT, Morrow AL, Criswell H, Breese G (1996) Effects of ethanol on ion channels. Int Rev Neurobiol 39:283–367

    CAS  PubMed  Google Scholar 

  • Criswell HE, Ming Z, Kelm MK, Breese GR (2008) Brain regional differences in the effect of ethanol on GABA release from presynaptic terminals. J Pharmacol Exp Ther 326:596–603

    CAS  PubMed  Google Scholar 

  • Cservenka A, Nagel BJ (2012) Risky decision-making: an fMRI study of youth at high risk for alcoholism. Alcohol Clin Exp Res 36(4):604–615

    PubMed  PubMed Central  Google Scholar 

  • Cservenka A, Casimo K, Fair DA, Nagel BJ (2014) Resting state functional connectivity of the nucleus accumbens in youth with a family history of alcoholism. Psychiatry Res 221:210–219

    PubMed  Google Scholar 

  • Damji KF, Allingham RR, Pollock SC, Small K, Lewis KE, Stajich JM, Yamaoka LH, Vance JM, Pericak-Vance MA (1996) Periodic vestibulocerebellar ataxia, an autosomal dominant ataxia with defective smooth pursuit, is genetically distinct from other autosomal dominant ataxias. Arch Neurol 53:338–344

    CAS  PubMed  Google Scholar 

  • Daoust M, Lhuintre JP, Moore N, Saligaut C, Flipo JL, Boismare F (1987) Is initial sensitivity to ethanol correlated with alcohol preference in alcohol-drinking and non-drinking rats? Alcohol Alcohol 22:409–414

    CAS  PubMed  Google Scholar 

  • Dar MS (2015) Ethanol-induced cerebellar ataxia: cellular and molecular mechanisms. Cerebellum 14:447–465

    CAS  PubMed  Google Scholar 

  • Daurio AM, Aston SA, Schwandt ML, Bukhari MO, Bouhlal S, Farokhnia M, Lee MR, Leggio L (2017) Impulsive personality traits mediate the relationship between adult attention deficit hyperactivity symptoms and alcohol dependence severity. Alcohol Clin Exp Res 42(1):173–183

    PubMed  PubMed Central  Google Scholar 

  • Davies M (2003) The role of GABAA receptors in mediating the effects of alcohol in the central nervous system. J Psychiatry Neurosci 28:263–274

    PubMed  PubMed Central  Google Scholar 

  • Dayas CV, McGranahan TM, Martin-Fardon R, Weiss F (2008) Stimuli linked to ethanol availability activate hypothalamic CART and orexin neurons in a reinstatement model of relapse. Biol Psychiatry 63:152–157

    CAS  PubMed  Google Scholar 

  • De Zeeuw CI, Berrebi AS (1995) Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur J Neurosci 7:2322–2333

    PubMed  Google Scholar 

  • Deik A, Saunders-Pullman R, Luciano MS (2012) Substance of abuse and movement disorders: complex interactions and comorbidities. Curr Drug Abuse Rev 5:243–253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deitrich RA, Dunwiddie TV, Harris RA, Erwin VG (1989) Mechanism of action of ethanol: initial central nervous system actions. Pharmacol Rev 41:489–537

    CAS  PubMed  Google Scholar 

  • Dempsey CW, Richardson DE (1987) Paleocerebellar stimulation induces in vivo release of endogenously synthesized [3H]dopamine and [3H]norepinephrine from rat caudal dorsomedial nucleus accumbens. Neuroscience 21:565–571

    CAS  PubMed  Google Scholar 

  • Diaz MR, Valenzuela CF (2016) Sensitivity of GABAergic tonic currents to acute ethanol in cerebellar granule neurons is not age- or delta subunit-dependent in developing rats. Alcohol Clin Exp Res 40:83–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz MR, Wadleigh A, Hughes BA, Woodward JJ, Valenzuela CF (2011) Bestrophin1 channels are insensitive to ethanol and do not mediate tonic GABAergic currents in cerebellar granule cells. Front Neurosci 5:148

    CAS  PubMed  Google Scholar 

  • Ding ZM, Rodd ZA, Engleman EA, McBride WJ (2009) Sensitization of ventral tegmental area dopamine neurons to the stimulating effects of ethanol. Alcohol Clin Exp Res 33:1571–1581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding ZM, Oster SM, Hall SR, Engleman EA, Hauser SR, McBride WJ, Rodd ZA (2011) The stimulating effects of ethanol on ventral tegmental area dopamine neurons projecting to the ventral pallidum and medial prefrontal cortex in female Wistar rats: regional difference and involvement of serotonin-3 receptors. Psychopharmacology 216:245–255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eastes LE (2010) Alcohol withdrawal syndrome in trauma patients: a review. J Emerg Nurs 36:507–509

    PubMed  Google Scholar 

  • Ebralidze AK, Rossi DJ, Tonegawa S, Slater NT (1996) Modification of NMDA receptor channels and synaptic transmission by targeted disruption of the NR2C gene. J Neurosci 16:5014–5025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eilers J, Plant TD, Marandi N, Konnerth A (2001) GABA-mediated Ca2+ signalling in developing rat cerebellar Purkinje neurones. J Physiol 536:429–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elmer GI, Meisch RA, Goldberg SR, George FR (1990) Ethanol self-administration in long sleep and short sleep mice indicates reinforcement is not inversely related to neurosensitivity. J Pharmacol Exp Ther 254:1054–1062

    CAS  PubMed  Google Scholar 

  • Enoch MA, Hodgkinson CA, Shen PH, Gorodetsky E, Marietta CA, Roy A, Goldman D (2016) GABBR1 and SLC6A1, two genes involved in modulation of GABA synaptic transmission, influence risk for alcoholism: results from three ethnically diverse populations. Alcohol Clin Exp Res 40:93–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein JN, Casey BJ, Tonev ST, Davidson MC, Reiss AL, Garrett A, Hinshaw SP, Greenhill LL, Glover G, Shafritz KM, Vitolo A, Kotler LA, Jarrett MA, Spicer J (2007) ADHD- and medication-related brain activation effects in concordantly affected parent-child dyads with ADHD. J Child Psychol Psychiatry 48:899–913

    PubMed  Google Scholar 

  • Erwin VG, McClearn GE, Kuse AR (1980) Interrelationships of alcohol consumption, actions of alcohol, and biochemical traits. Pharmacol Biochem Behav 13(Suppl 1):297–302

    CAS  PubMed  Google Scholar 

  • Fallon JH, Koziell DA, Moore RY (1978) Catecholamine innervation of the basal forebrain. II. Amygdala, suprarhinal cortex and entorhinal cortex. J Comp Neurol 180:509–532

    CAS  PubMed  Google Scholar 

  • Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, Zago S, Priori A (2012) Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cognit Emot 26:786–799

    Google Scholar 

  • Fidler TL, Bakner L, Cunningham CL (2004) Conditioned place aversion induced by intragastric administration of ethanol in rats. Pharmacol Biochem Behav 77:731–743

    CAS  PubMed  Google Scholar 

  • Fidler TL, Dion AM, Powers MS, Ramirez JJ, Mulgrew JA, Smitasin PJ, Crane AT, Cunningham CL (2011) Intragastric self-infusion of ethanol in high- and low-drinking mouse genotypes after passive ethanol exposure. Genes Brain Behav 10:264–275

    CAS  PubMed  Google Scholar 

  • Finn DA, Ford MM, Wiren KM, Roselli CE, Crabbe JC (2004) The role of pregnane neurosteroids in ethanol withdrawal: behavioral genetic approaches. Pharmacol Ther 101:91–112

    CAS  PubMed  Google Scholar 

  • Freund RK, Wang Y, Palmer MR (1993) Differential effects of ethanol on the firing rates of Golgi-like neurons and Purkinje neurons in cerebellar slices in vitro. Neurosci Lett 164:9–12

    CAS  PubMed  Google Scholar 

  • Fritz BM, Grahame NJ, Boehm SL (2012) Selection for high alcohol preference drinking in mice results in heightened sensitivity and rapid development of acute functional tolerance to alcohol’s ataxic effects. Genes Brain Behav 12(1):78–86

    PubMed  PubMed Central  Google Scholar 

  • Gallaher EJ, Jones GE, Belknap JK, Crabbe JC (1996) Identification of genetic markers for initial sensitivity and rapid tolerance to ethanol-induced ataxia using quantitative trait locus analysis in BXD recombinant inbred mice. J Pharmacol Exp Ther 277:604–612

    CAS  PubMed  Google Scholar 

  • Gan G, Guevara A, Marxen M, Neumann M, Junger E, Kobiella A, Mennigen E, Pilhatsch M, Schwarz D, Zimmermann US, Smolka MN (2014) Alcohol-induced impairment of inhibitory control is linked to attenuated brain responses in right fronto-temporal cortex. Biol Psychiatry 76:698–707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gatto GJ, McBride WJ, Murphy JM, Lumeng L, Li TK (1994) Ethanol self-infusion into the ventral tegmental area by alcohol-preferring rats. Alcohol 11:557–564

    CAS  PubMed  Google Scholar 

  • George F, Chu NS (1984) Effects of ethanol on Purkinje cells recorded from cerebellar slices. Alcohol 1:353–358

    CAS  PubMed  Google Scholar 

  • Gessa GL, Muntoni F, Collu M, Vargiu L, Mereu G (1985) Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Res 348:201–203

    CAS  PubMed  Google Scholar 

  • Gilman JM, Ramchandani VA, Davis MB, Bjork JM, Hommer DW (2008) Why we like to drink: a functional magnetic resonance imaging study of the rewarding and anxiolytic effects of alcohol. J Neurosci 28:4583–4591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glykys J, Mann EO, Mody I (2008) Which GABA(A) receptor subunits are necessary for tonic inhibition in the hippocampus? J Neurosci 28:1421–1426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grahame NJ, Cunningham CL (1997) Intravenous ethanol self-administration in C57BL/6J and DBA/2J mice. Alcohol Clin Exp Res 21:56–62

    CAS  PubMed  Google Scholar 

  • Haines DE, May PJ, Dietrichs E (1990) Neuronal connections between the cerebellar nuclei and hypothalamus in Macaca fascicularis: cerebello-visceral circuits. J Comp Neurol 299:106–122

    CAS  PubMed  Google Scholar 

  • Hamann M, Rossi DJ, Attwell D (2002) Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron 33:625–633

    CAS  PubMed  Google Scholar 

  • Hamlin AS, Newby J, McNally GP (2007) The neural correlates and role of D1 dopamine receptors in renewal of extinguished alcohol-seeking. Neuroscience 146:525–536

    CAS  PubMed  Google Scholar 

  • Hanchar HJ, Wallner M, Olsen RW (2004) Alcohol effects on gamma-aminobutyric acid type A receptors: are extrasynaptic receptors the answer? Life Sci 76:1–8

    CAS  PubMed  Google Scholar 

  • Hanchar HJ, Dodson PD, Olsen RW, Otis TS, Wallner M (2005) Alcohol-induced motor impairment caused by increased extrasynaptic GABA(A) receptor activity. Nat Neurosci 8:339–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanchar HJ, Chutsrinopkun P, Meera P, Supavilai P, Sieghart W, Wallner M, Olsen RW (2006) Ethanol potently and competitively inhibits binding of the alcohol antagonist Ro15-4513 to alpha4/6beta3delta GABAA receptors. Proc Natl Acad Sci U S A 103:8546–8551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harper JW, Heath RG (1973) Anatomic connections of the fastigial nucleus to the rostral forebrain in the cat. Exp Neurol 39:285–292

    CAS  PubMed  Google Scholar 

  • Harris RA, Allan AM, Daniell LC, Nixon C (1988) Antagonism of ethanol and pentobarbital actions by benzodiazepine inverse agonists: neurochemical studies. J Pharmacol Exp Ther 247:1012–1017

    CAS  PubMed  Google Scholar 

  • Hasin DS, Stinson FS, Ogburn E, Grant BF (2007) Prevalence, correlates, disability, and comorbidity of DSM-IV alcohol abuse and dependence in the United States: results from the National Epidemiologic Survey on alcohol and related conditions. Arch Gen Psychiatry 64:830–842

    PubMed  Google Scholar 

  • Hauser SR, Ding ZM, Getachew B, Toalston JE, Oster SM, McBride WJ, Rodd ZA (2011) The posterior ventral tegmental area mediates alcohol-seeking behavior in alcohol-preferring rats. J Pharmacol Exp Ther 336:857–865

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Q, Titley H, Grasselli G, Piochon C, Hansel C (2013) Ethanol affects NMDA receptor signaling at climbing fiber-Purkinje cell synapses in mice and impairs cerebellar LTD. J Neurophysiol 109:1333–1342

    CAS  PubMed  Google Scholar 

  • Heath RG, Harper JW (1974) Ascending projections of the cerebellar fastigial nucleus to the hippocampus, amygdala, and other temporal lobe sites: evoked potential and histological studies in monkeys and cats. Exp Neurol 45:268–287

    CAS  PubMed  Google Scholar 

  • Heath RG, Dempesy CW, Fontana CJ, Myers WA (1978) Cerebellar stimulation: effects on septal region, hippocampus, and amygdala of cats and rats. Biol Psychiatry 13:501–529

    CAS  PubMed  Google Scholar 

  • Heigele S, Sultan S, Toni N, Bischofberger J (2016) Bidirectional GABAergic control of action potential firing in newborn hippocampal granule cells. Nat Neurosci 19:263–270

    CAS  PubMed  Google Scholar 

  • Helms CM, Rossi DJ, Grant KA (2012) Neurosteroid influences on sensitivity to ethanol. Front Endocrinol 3:10

    CAS  Google Scholar 

  • Herting MM, Fair D, Nagel BJ (2011) Altered fronto-cerebellar connectivity in alcohol-naive youth with a family history of alcoholism. NeuroImage 54:2582–2589

    PubMed  Google Scholar 

  • Hill SY (2010) Neural plasticity, human genetics, and risk for alcohol dependence. Int Rev Neurobiol 91:53–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill SY, Muddasani S, Prasad K, Nutche J, Steinhauer SR, Scanlon J, McDermott M, Keshavan M (2007) Cerebellar volume in offspring from multiplex alcohol dependence families. Biol Psychiatry 61:41–47

    PubMed  Google Scholar 

  • Hill SY, Wang S, Carter H, Tessner K, Holmes B, McDermott M, Zezza N, Stiffler S (2011) Cerebellum volume in high-risk offspring from multiplex alcohol dependence families: association with allelic variation in GABRA2 and BDNF. Psychiatry Res 194:304–313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill SY, Lichenstein SD, Wang S, O'Brien J (2016) Volumetric differences in cerebellar lobes in individuals from multiplex alcohol dependence families and controls: their relationship to externalizing and internalizing disorders and working memory. Cerebellum 15:744–754

    PubMed  Google Scholar 

  • Hodge CW, Mehmert KK, Kelley SP, McMahon T, Haywood A, Olive MF, Wang D, Sanchez-Perez AM, Messing RO (1999) Supersensitivity to allosteric GABA(A) receptor modulators and alcohol in mice lacking PKCepsilon. Nat Neurosci 2:997–1002

    CAS  PubMed  Google Scholar 

  • Hotson JR (1984) Clinical detection of acute vestibulocerebellar disorders. West J Med 140:910–913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CM, Huang RH (2007) Ethanol inhibits the sensory responses of cerebellar granule cells in anesthetized cats. Alcohol Clin Exp Res 31:336–344

    CAS  PubMed  Google Scholar 

  • Ikai Y, Takada M, Shinonaga Y, Mizuno N (1992) Dopaminergic and non-dopaminergic neurons in the ventral tegmental area of the rat project, respectively, to the cerebellar cortex and deep cerebellar nuclei. Neuroscience 51:719–728

    CAS  PubMed  Google Scholar 

  • Ikai Y, Takada M, Mizuno N (1994) Single neurons in the ventral tegmental area that project to both the cerebral and cerebellar cortical areas by way of axon collaterals. Neuroscience 61:925–934

    CAS  PubMed  Google Scholar 

  • Inglis FM, Moghaddam B (1999) Dopaminergic innervation of the amygdala is highly responsive to stress. J Neurochem 72:1088–1094

    CAS  PubMed  Google Scholar 

  • Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9:304–313

    CAS  PubMed  Google Scholar 

  • Ito M, Yoshida M, Obata K, Kawai N, Udo M (1970) Inhibitory control of intracerebellar nuclei by the purkinje cell axons. Exp Brain Res 10:64–80

    CAS  PubMed  Google Scholar 

  • Jahnsen H (1986) Extracellular activation and membrane conductances of neurones in the guinea-pig deep cerebellar nuclei in vitro. J Physiol 372:149–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen JP, Nipper MA, Helms ML, Ford MM, Crabbe JC, Rossi DJ, Finn DA (2017) Ethanol withdrawal-induced dysregulation of neurosteroid levels in plasma, cortex, and hippocampus in genetic animal models of high and low withdrawal. Psychopharmacology 234(18):2793–2811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia F, Pignataro L, Harrison NL (2007) GABAA receptors in the thalamus: alpha4 subunit expression and alcohol sensitivity. Alcohol 41:177–185

    CAS  PubMed  Google Scholar 

  • Jia F, Chandra D, Homanics GE, Harrison NL (2008) Ethanol modulates synaptic and extrasynaptic GABAA receptors in the thalamus. J Pharmacol Exp Ther 326:475–482

    CAS  PubMed  Google Scholar 

  • Jones RM, Lichtenstein P, Grann M, Langstrom N, Fazel S (2011) Alcohol use disorders in schizophrenia: a national cohort study of 12,653 patients. J Clin Psychiatry 72:775–779

    PubMed  Google Scholar 

  • Kakihana R, Brown DR, McClearn GE, Tabershaw IR (1966) Brain sensitivity to alcohol in inbred mouse strains. Science 154:1574–1575

    CAS  PubMed  Google Scholar 

  • Kaplan JS, Mohr C, Rossi DJ (2013) Opposite actions of alcohol on tonic GABA(A) receptor currents mediated by nNOS and PKC activity. Nat Neurosci 16:1783–1793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan JS, Mohr C, Hostetler CM, Ryabinin AE, Finn DA, Rossi DJ (2016a) Alcohol suppresses tonic GABAA receptor currents in cerebellar granule cells in the prairie vole: a neural signature of high-alcohol-consuming genotypes. Alcohol Clin Exp Res 40:1617–1626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan JS, Nipper MA, Richardson BD, Jensen J, Helms M, Finn DA, Rossi DJ (2016b) Pharmacologically counteracting a phenotypic difference in cerebellar GABAA receptor response to alcohol prevents excessive alcohol consumption in a high alcohol-consuming rodent genotype. J Neurosci 36:9019–9025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23:8432–8444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelm MK, Criswell HE, Breese GR (2008) The role of protein kinase A in the ethanol-induced increase in spontaneous GABA release onto cerebellar Purkinje neurons. J Neurophysiol 100:3417–3428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelm MK, Criswell HE, Breese GR (2011) Ethanol-enhanced GABA release: a focus on G protein-coupled receptors. Brain Res Rev 65:113–123

    CAS  PubMed  Google Scholar 

  • Klemm WR, Stevens RE III (1974) Alcohol effects on EEG and multiple-unit activity in various brain regions of rats. Brain Res 70:361–368

    CAS  PubMed  Google Scholar 

  • Klemm WR, Mallari CG, Dreyfus LR, Fiske JC, Forney E, Mikeska JA (1976) Ethanol-induced regional and dose-response differences in multiple-unit activity in rabbits. Psychopharmacology 49:235–244

    CAS  PubMed  Google Scholar 

  • Knoflach F, Benke D, Wang Y, Scheurer L, Luddens H, Hamilton BJ, Carter DB, Mohler H, Benson JA (1996) Pharmacological modulation of the diazepam-insensitive recombinant gamma-aminobutyric acidA receptors alpha 4 beta 2 gamma 2 and alpha 6 beta 2 gamma 2. Mol Pharmacol 50:1253–1261

    CAS  PubMed  Google Scholar 

  • Koller WC (1983) Alcoholism in essential tremor. Neurology 33:1074–1076

    CAS  PubMed  Google Scholar 

  • Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238

    PubMed  Google Scholar 

  • Korpi ER, Debus F, Linden AM, Malecot C, Leppa E, Vekovischeva O, Rabe H, Bohme I, Aller MI, Wisden W, Luddens H (2007) Does ethanol act preferentially via selected brain GABAA receptor subtypes? The current evidence is ambiguous. Alcohol 41:163–176

    CAS  PubMed  Google Scholar 

  • Koyama S, Brodie MS, Appel SB (2007) Ethanol inhibition of m-current and ethanol-induced direct excitation of ventral tegmental area dopamine neurons. J Neurophysiol 97:1977–1985

    CAS  PubMed  Google Scholar 

  • Krook-Magnuson E, Szabo GG, Armstrong C, Oijala M, Soltesz I (2014) Cerebellar directed optogenetic intervention inhibits spontaneous hippocampal seizures in a mouse model of temporal lobe epilepsy. eNeuro 1:e.2014. https://doi.org/10.1523/ENEURO.0005-14.2014

    Article  PubMed  Google Scholar 

  • Kumar S, Porcu P, Werner DF, Matthews DB, Diaz-Granados JL, Helfand RS, Morrow AL (2009) The role of GABA(A) receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology 205:529–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo SH, Wang J, Tate WJ, Pan MK, Kelly GC, Gutierrez J, Cortes EP, Vonsattel JG, Louis ED, Faust PL (2017) Cerebellar pathology in early onset and late onset essential tremor. Cerebellum 16:473–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kutlu MG, Gould TJ (2016) Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learn Mem 23:515–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Yoon BE, Berglund K, Oh SJ, Park H, Shin HS, Augustine GJ, Lee CJ (2010) Channel-mediated tonic GABA release from glia. Science 330:790–796

    CAS  PubMed  Google Scholar 

  • Levisohn L, Cronin-Golomb A, Schmahmann JD (2000) Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain 123(Pt 5):1041–1050

    PubMed  Google Scholar 

  • Lex BW, Lukas SE, Greenwald NE, Mendelson JH (1988) Alcohol-induced changes in body sway in women at risk for alcoholism: a pilot study. J Stud Alcohol 49:346–356

    CAS  PubMed  Google Scholar 

  • Liang J, Zhang N, Cagetti E, Houser CR, Olsen RW, Spigelman I (2006) Chronic intermittent ethanol-induced switch of ethanol actions from extrasynaptic to synaptic hippocampal GABAA receptors. J Neurosci 26:1749–1758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang J, Spigelman I, Olsen RW (2009) Tolerance to sedative/hypnotic actions of GABAergic drugs correlates with tolerance to potentiation of extrasynaptic tonic currents of alcohol-dependent rats. J Neurophysiol 102:224–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lisberger SG, Fuchs AF (1978) Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. J Neurophysiol 41:764–777

    CAS  PubMed  Google Scholar 

  • Lorenz-Guertin JM, Jacob TC (2017) GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 78(3):238–270

    PubMed  PubMed Central  Google Scholar 

  • Loughlin SE, Fallon JH (1983) Dopaminergic and non-dopaminergic projections to amygdala from substantia nigra and ventral tegmental area. Brain Res 262:334–338

    CAS  PubMed  Google Scholar 

  • Louis ED, Kuo SH, Wang J, Tate WJ, Pan MK, Kelly GC, Gutierrez J, Cortes EP, Vonsattel JG, Faust PL (2017) Cerebellar pathology in familial vs. sporadic essential tremor. Cerebellum 16:786–791

    PubMed  PubMed Central  Google Scholar 

  • Luddens H, Pritchett DB, Kohler M, Killisch I, Keinanen K, Monyer H, Sprengel R, Seeburg PH (1990) Cerebellar GABAA receptor selective for a behavioural alcohol antagonist. Nature 346:648–651

    CAS  PubMed  Google Scholar 

  • Mackiewicz Seghete KL, Cservenka A, Herting MM, Nagel BJ (2013) Atypical spatial working memory and task-general brain activity in adolescents with a family history of alcoholism. Alcohol Clin Exp Res 37:390–398

    PubMed  Google Scholar 

  • Malila A (1978) Intoxicating effects of three aliphatic alcohols and barbital on two rat strains genetically selected for their ethanol intake. Pharmacol Biochem Behav 8:197–201

    CAS  PubMed  Google Scholar 

  • Marchant NJ, Hamlin AS, McNally GP (2009) Lateral hypothalamus is required for context-induced reinstatement of extinguished reward seeking. J Neurosci 29:1331–1342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchant NJ, Millan EZ, McNally GP (2012) The hypothalamus and the neurobiology of drug seeking. Cell Mol Life Sci 69:581–597

    CAS  PubMed  Google Scholar 

  • McCaul ME, Turkkan JS, Svikis DS, Bigelow GE (1991) Familial density of alcoholism: effects on psychophysiological responses to ethanol. Alcohol 8:219–222

    CAS  PubMed  Google Scholar 

  • McCool BA, Chappell AM (2012) Using monosodium glutamate to initiate ethanol self-administration in inbred mouse strains. Addict Biol 17:121–131

    CAS  PubMed  Google Scholar 

  • McCool BA, Chappell AM (2014) Persistent enhancement of ethanol drinking following a monosodium glutamate-substitution procedure in C57BL6/J and DBA/2J mice. Alcohol 48:55–61

    CAS  PubMed  Google Scholar 

  • McDaid J, McElvain MA, Brodie MS (2008) Ethanol effects on dopaminergic ventral tegmental area neurons during block of Ih: involvement of barium-sensitive potassium currents. J Neurophysiol 100:1202–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meera P, Olsen RW, Otis TS, Wallner M (2010) Alcohol- and alcohol antagonist-sensitive human GABAA receptors: tracking delta subunit incorporation into functional receptors. Mol Pharmacol 78:918–924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meera P, Wallner M, Otis TS (2011) Molecular basis for the high THIP/gaboxadol sensitivity of extrasynaptic GABAA receptors. J Neurophysiol 106(4):2057–2064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:458–461

    CAS  PubMed  Google Scholar 

  • Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21:700–712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mihic SJ (1999) Acute effects of ethanol on GABAA and glycine receptor function. Neurochem Int 35:115–123

    CAS  PubMed  Google Scholar 

  • Millard WJ (1983) Self-administration of ethanol by genetically heterogeneous mice (RU:NCS): relationship to sensitivity and tolerance. Drug Alcohol Depend 12:333–338

    CAS  PubMed  Google Scholar 

  • Mitchell SJ, Silver RA (2003) Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38:433–445

    CAS  PubMed  Google Scholar 

  • Mitchell JM, O’Neil JP, Janabi M, Marks SM, Jagust WJ, Fields HL (2012) Alcohol consumption induces endogenous opioid release in the human orbitofrontal cortex and nucleus accumbens. Sci Transl Med 4:116ra6

    PubMed  Google Scholar 

  • Mitchell JM, O’Neil JP, Jagust WJ, Fields HL (2013) Catechol-O-methyltransferase genotype modulates opioid release in decision circuitry. Clin Transl Sci 6:400–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mittleman G, Goldowitz D, Heck DH, Blaha CD (2008) Cerebellar modulation of frontal cortex dopamine efflux in mice: relevance to autism and schizophrenia. Synapse 62:544–550

    CAS  PubMed  Google Scholar 

  • Mody I (2001) Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances. Neurochem Res 26:907–913

    CAS  PubMed  Google Scholar 

  • Mody I, Pearce RA (2004) Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci 27:569–575

    CAS  PubMed  Google Scholar 

  • Mohr C, Kolotushkina O, Kaplan JS, Welsh J, Daunais JB, Grant KA, Rossi DJ (2013) Primate cerebellar granule cells exhibit a tonic GABAAR conductance that is not affected by alcohol: a possible cellular substrate of the low level of response phenotype. Front Neural Circuits 7:189

    PubMed  PubMed Central  Google Scholar 

  • Moldavan MG, Cravetchi O, Allen CN (2017) GABA transporters regulate tonic and synaptic GABAA receptor-mediated currents in the Suprachiasmatic nucleus neurons. J Neurophysiol 118(6):3092–3106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monaghan PL, Beitz AJ, Larson AA, Altschuler RA, Madl JE, Mullett MA (1986) Immunocytochemical localization of glutamate-, glutaminase- and aspartate aminotransferase-like immunoreactivity in the rat deep cerebellar nuclei. Brain Res 363:364–370

    CAS  PubMed  Google Scholar 

  • Moore EM, Serio KM, Goldfarb KJ, Stepanovska S, Linsenbardt DN, Boehm SL (2007) GABAergic modulation of binge-like ethanol intake in C57BL/6J mice. Pharmacol Biochem Behav 88:105–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morikawa H, Morrisett RA (2010) Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs. Int Rev Neurobiol 91:235–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mostile G, Jankovic J (2010) Alcohol in essential tremor and other movement disorders. Mov Disord 25:2274–2284

    PubMed  Google Scholar 

  • Mothersill O, Knee-Zaska C, Donohoe G (2015) Emotion and theory of mind in schizophrenia-investigating the role of the cerebellum. Cerebellum 15(3):357–368

    Google Scholar 

  • Mrejeru A, Marti-Prats L, Avegno EM, Harrison NL, Sulzer D (2015) A subset of ventral tegmental area dopamine neurons responds to acute ethanol. Neuroscience 290:649–658

    CAS  PubMed  Google Scholar 

  • Mulder MJ, Baeyens D, Davidson MC, Casey BJ, van den BE, van Engeland H, Durston S (2008) Familial vulnerability to ADHD affects activity in the cerebellum in addition to the prefrontal systems. J Am Acad Child Adolesc Psychiatry 47:68–75

    PubMed  Google Scholar 

  • Newlin DB, Renton RM (2010) High risk groups often have higher levels of alcohol response than low risk: the other side of the coin. Alcohol Clin Exp Res 34:199–202

    PubMed  Google Scholar 

  • Newlin DB, Thomson JB (1990) Alcohol challenge with sons of alcoholics: a critical review and analysis. Psychol Bull 108:383–402

    CAS  PubMed  Google Scholar 

  • Newman PP, Reza H (1979) Functional relationships between the hippocampus and the cerebellum: an electrophysiological study of the cat. J Physiol 287:405–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nie Z, Madamba SG, Siggins GR (1994) Ethanol inhibits glutamatergic neurotransmission in nucleus accumbens neurons by multiple mechanisms. J Pharmacol Exp Ther 271:1566–1573

    CAS  PubMed  Google Scholar 

  • Nie Z, Madamba SG, Siggins GR (2000) Ethanol enhances gamma-aminobutyric acid responses in a subpopulation of nucleus accumbens neurons: role of metabotropic glutamate receptors. J Pharmacol Exp Ther 293:654–661

    CAS  PubMed  Google Scholar 

  • Nie Z, Zorrilla EP, Madamba SG, Rice KC, Roberto M, Siggins GR (2009) Presynaptic CRF1 receptors mediate the ethanol enhancement of GABAergic transmission in the mouse central amygdala. Sci World J 9:68–85

    CAS  Google Scholar 

  • Nie H, Rewal M, Gill TM, Ron D, Janak PH (2011) Extrasynaptic delta-containing GABAA receptors in the nucleus accumbens dorsomedial shell contribute to alcohol intake. Proc Natl Acad Sci U S A 108:4459–4464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolaou K, Critchley H, Duka T (2013a) Alcohol affects neuronal substrates of response inhibition but not of perceptual processing of stimuli signalling a stop response. PLoS One 8:e76649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolaou K, Field M, Critchley H, Duka T (2013b) Acute alcohol effects on attentional bias are mediated by subcortical areas associated with arousal and salience attribution. Neuropsychopharmacology 38:1365–1373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak KL, McBride WJ, Lumeng L, Li TK, Murphy JM (1998) Blocking GABA(A) receptors in the anterior ventral tegmental area attenuates ethanol intake of the alcohol-preferring P rat. Psychopharmacology 139:108–116

    CAS  PubMed  Google Scholar 

  • Oades RD, Halliday GM (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 434:117–165

    CAS  PubMed  Google Scholar 

  • Okamoto T, Harnett MT, Morikawa H (2006) Hyperpolarization-activated cation current (Ih) is an ethanol target in midbrain dopamine neurons of mice. J Neurophysiol 95:619–626

    CAS  PubMed  Google Scholar 

  • Olsen RW, Hanchar HJ, Meera P, Wallner M (2007) GABAA receptor subtypes: the “one glass of wine” receptors. Alcohol 41:201–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ostroumov A, Thomas AM, Kimmey BA, Karsch JS, Doyon WM, Dani JA (2016) Stress increases ethanol self-administration via a shift toward excitatory GABA signaling in the ventral tegmental area. Neuron 92:493–504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer MR, Sorensen SM, Freedman R, Olson L, Hoffer B, Seiger A (1982) Differential ethanol sensitivity of intraocular cerebellar grafts in long-sleep and short-sleep mice. J Pharmacol Exp Ther 222:480–487

    CAS  PubMed  Google Scholar 

  • Palmer MR, Basile AS, Proctor WR, Baker RC, Dunwiddie TV (1985) Ethanol tolerance of cerebellar purkinje neurons from selectively outbred mouse lines: in vivo and in vitro electrophysiological investigations. Alcohol Clin Exp Res 9:291–296

    CAS  PubMed  Google Scholar 

  • Palmer MR, van Horne CG, Harlan JT, Moore EA (1988) Antagonism of ethanol effects on cerebellar Purkinje neurons by the benzodiazepine inverse agonists Ro 15-4513 and FG 7142: electrophysiological studies. J Pharmacol Exp Ther 247:1018–1024

    CAS  PubMed  Google Scholar 

  • Park HM, Choi IS, Nakamura M, Cho JH, Lee MG, Jang IS (2011) Multiple effects of allopregnanolone on GABAergic responses in single hippocampal CA3 pyramidal neurons. Eur J Pharmacol 652:46–54

    CAS  PubMed  Google Scholar 

  • Paulus KS, Magnano I, Conti M, Galistu P, D'Onofrio M, Satta W, Aiello I (2004) Pure post-stroke cerebellar cognitive affective syndrome: a case report. Neurol Sci 25:220–224

    CAS  PubMed  Google Scholar 

  • Perciavalle V, Berretta S, Raffaele R (1989) Projections from the intracerebellar nuclei to the ventral midbrain tegmentum in the rat. Neuroscience 29:109–119

    CAS  PubMed  Google Scholar 

  • Peris J, Coleman-Hardee M, Burry J, Pecins-Thompson M (1992) Selective changes in GABAergic transmission in substantia nigra and superior colliculus caused by ethanol and ethanol withdrawal. Alcohol Clin Exp Res 16:311–319

    CAS  PubMed  Google Scholar 

  • Phillips TJ, Reed C (2014) Targeting GABAB receptors for anti-abuse drug discovery. Expert Opin Drug Discovery 9:1307–1317

    CAS  Google Scholar 

  • Pina MM, Young EA, Ryabinin AE, Cunningham CL (2015) The bed nucleus of the stria terminalis regulates ethanol-seeking behavior in mice. Neuropharmacology 99:627–638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815–850

    CAS  PubMed  Google Scholar 

  • Ponomarev I, Crabbe JC (2002) A novel method to assess initial sensitivity and acute functional tolerance to hypnotic effects of ethanol. J Pharmacol Exp Ther 302:257–263

    CAS  PubMed  Google Scholar 

  • Porcu P, Morrow AL (2014) Divergent neuroactive steroid responses to stress and ethanol in rat and mouse strains: relevance for human studies. Psychopharmacology 231:3257–3272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pugh JR, Jahr CE (2011) Axonal GABAA receptors increase cerebellar granule cell excitability and synaptic activity. J Neurosci 31:565–574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pugh JR, Jahr CE (2013) Activation of axonal receptors by GABA spillover increases somatic firing. J Neurosci 33:16924–16929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi ZH, Song M, Wallace MJ, Wang D, Newton PM, McMahon T, Chou WH, Zhang C, Shokat KM, Messing RO (2007) Protein kinase C epsilon regulates gamma-aminobutyrate type A receptor sensitivity to ethanol and benzodiazepines through phosphorylation of gamma2 subunits. J Biol Chem 282:33052–33063

    CAS  PubMed  Google Scholar 

  • Quinn PD, Fromme K (2011) Subjective response to alcohol challenge: a quantitative review. Alcohol Clin Exp Res 35:1759–1770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ragge NK, Hartley C, Dearlove AM, Walker J, Russell-Eggitt I, Harris CM (2003) Familial vestibulocerebellar disorder maps to chromosome 13q31-q33: a new nystagmus locus. J Med Genet 40:37–41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaker MJ, Ford MM, Fretwell AM, Finn DA (2011) Alteration of ethanol drinking in mice via modulation of the GABA(A) receptor with ganaxolone, finasteride, and gaboxadol. Alcohol Clin Exp Res 35(11):1994–2007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaker MJ, Strong MN, Ford MM, Finn DA (2012) Effect of ganaxolone and THIP on operant and limited-access ethanol self-administration. Neuropharmacology 63:555–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaker MJ, Strong-Kaufman MN, Ford MM, Phillips TJ, Finn DA (2015) Effect of nucleus accumbens shell infusions of ganaxolone or gaboxadol on ethanol consumption in mice. Psychopharmacology 232:1415–1426

    CAS  PubMed  Google Scholar 

  • Rautakorpi I, Marttila RJ, Rinne UK (1983) Alcohol consumption of patients with essential tremor. Acta Neurol Scand 68:177–179

    CAS  PubMed  Google Scholar 

  • Reilly MT, Milner LC, Shirley RL, Crabbe JC, Buck KJ (2008) 5-HT2C and GABAB receptors influence handling-induced convulsion severity in chromosome 4 congenic and DBA/2J background strain mice. Brain Res 1198:124–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rewal M, Jurd R, Gill TM, He DY, Ron D, Janak PH (2009) Alpha4-containing GABAA receptors in the nucleus accumbens mediate moderate intake of alcohol. J Neurosci 29:543–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rewal M, Donahue R, Gill TM, Nie H, Ron D, Janak PH (2012) Alpha4 subunit-containing GABAA receptors in the accumbens shell contribute to the reinforcing effects of alcohol. Addict Biol 17:309–321

    CAS  PubMed  Google Scholar 

  • Richardson BD, Rossi DJ (2017) Recreational concentrations of alcohol enhance synaptic inhibition of cerebellar unipolar brush cells via pre- and postsynaptic mechanisms. J Neurophysiol 118:267–279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson BD, Ling LL, Uteshev VV, Caspary DM (2011) Extrasynaptic GABA(A) receptors and tonic inhibition in rat auditory thalamus. PLoS One 6:e16508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riley EP, Worsham ED, Lester D, Freed EX (1977) Selective breeding of rats for differences in reactivity to alcohol. An approach to an animal model of alcoholism. II. Behavioral measures. J Stud Alcohol 38:1705–1717

    CAS  PubMed  Google Scholar 

  • Roberto M, Madamba SG, Moore SD, Tallent MK, Siggins GR (2003) Ethanol increases GABAergic transmission at both pre- and postsynaptic sites in rat central amygdala neurons. Proc Natl Acad Sci U S A 100:2053–2058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rochefort C, Arabo A, Andre M, Poucet B, Save E, Rondi-Reig L (2011) Cerebellum shapes hippocampal spatial code. Science 334:385–389

    CAS  PubMed  Google Scholar 

  • Rodd ZA, Bell RL, Zhang Y, Murphy JM, Goldstein A, Zaffaroni A, Li TK, McBride WJ (2005) Regional heterogeneity for the intracranial self-administration of ethanol and acetaldehyde within the ventral tegmental area of alcohol-preferring (P) rats: involvement of dopamine and serotonin. Neuropsychopharmacology 30:330–338

    CAS  PubMed  Google Scholar 

  • Rodd-Henricks ZA, McKinzie DL, Crile RS, Murphy JM, McBride WJ (2000) Regional heterogeneity for the intracranial self-administration of ethanol within the ventral tegmental area of female Wistar rats. Psychopharmacology 149:217–224

    CAS  PubMed  Google Scholar 

  • Rogers J, Siggins GR, Schulman JA, Bloom FE (1980) Physiological correlates of ethanol intoxication tolerance, and dependence in rat cerebellar Purkinje cells. Brain Res 196:183–198

    CAS  PubMed  Google Scholar 

  • Rogers TD, Dickson PE, Heck DH, Goldowitz D, Mittleman G, Blaha CD (2011) Connecting the dots of the cerebro-cerebellar role in cognitive function: neuronal pathways for cerebellar modulation of dopamine release in the prefrontal cortex. Synapse 65:1204–1212

    CAS  PubMed  Google Scholar 

  • Rogers TD, Dickson PE, McKimm E, Heck DH, Goldowitz D, Blaha CD, Mittleman G (2013) Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder. Cerebellum 12:547–556

    CAS  PubMed  Google Scholar 

  • Rossi DJ, Hamann M (1998) Spillover-mediated transmission at inhibitory synapses promoted by high affinity alpha6 subunit GABA(A) receptors and glomerular geometry. Neuron 20:783–795

    CAS  PubMed  Google Scholar 

  • Rossi DJ, Hamann M, Attwell D (2003) Multiple modes of GABAergic inhibition of rat cerebellar granule cells. J Physiol 548:97–110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santhakumar V, Wallner M, Otis TS (2007) Ethanol acts directly on extrasynaptic subtypes of GABAA receptors to increase tonic inhibition. Alcohol 41:211–221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santhakumar V, Meera P, Karakossian MH, Otis TS (2013) A reinforcing circuit action of extrasynaptic GABAA receptor modulators on cerebellar granule cell inhibition. PLoS One 8:e72976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki K, Jinnai K, Gemba H, Hashimoto S, Mizuno N (1979) Projection of the cerebellar dentate nucleus onto the frontal association cortex in monkeys. Exp Brain Res 37:193–198

    CAS  PubMed  Google Scholar 

  • Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378

    PubMed  Google Scholar 

  • Schmahmann JD (2010) The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 20:236–260

    PubMed  Google Scholar 

  • Schmahmann JD, Caplan D (2006) Cognition, emotion and the cerebellum. Brain 129:290–292

    PubMed  Google Scholar 

  • Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121(Pt 4):561–579

    PubMed  Google Scholar 

  • Schmahmann JD, MacMore J, Vangel M (2009) Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience 162:852–861

    CAS  PubMed  Google Scholar 

  • Schneider F, Habel U, Wagner M, Franke P, Salloum JB, Shah NJ, Toni I, Sulzbach C, Honig K, Maier W, Gaebel W, Zilles K (2001) Subcortical correlates of craving in recently abstinent alcoholic patients. Am J Psychiatry 158:1075–1083

    CAS  PubMed  Google Scholar 

  • Schousboe A, Madsen KK, Barker-Haliski ML, White HS (2014) The GABA synapse as a target for antiepileptic drugs: a historical overview focused on GABA transporters. Neurochem Res 39:1980–1987

    CAS  PubMed  Google Scholar 

  • Schraa-Tam CK, Rietdijk WJ, Verbeke WJ, Dietvorst RC, van den Berg WE, Bagozzi RP, De Zeeuw CI (2012) fMRI activities in the emotional cerebellum: a preference for negative stimuli and goal-directed behavior. Cerebellum 11:233–245

    PubMed  Google Scholar 

  • Schroeder D, Nasrallah HA (1982) High alcoholism rate in patients with essential tremor. Am J Psychiatry 139:1471–1473

    CAS  PubMed  Google Scholar 

  • Schuckit MA (1985) Ethanol-induced changes in body sway in men at high alcoholism risk. Arch Gen Psychiatry 42:375–379

    CAS  PubMed  Google Scholar 

  • Schuckit MA, Smith TL (1996) An 8-year follow-up of 450 sons of alcoholic and control subjects. Arch Gen Psychiatry 53:202–210

    CAS  PubMed  Google Scholar 

  • Schuckit MA, Tsuang JW, Anthenelli RM, Tipp JE, Nurnberger JI Jr (1996) Alcohol challenges in young men from alcoholic pedigrees and control families: a report from the COGA project. J Stud Alcohol 57:368–377

    CAS  PubMed  Google Scholar 

  • Schuckit MA, Smith TL, Danko GP, Isacescu V (2003) Level of response to alcohol measured on the self-rating of the effects of alcohol questionnaire in a group of 40-year-old women. Am J Drug Alcohol Abuse 29:191–201

    PubMed  Google Scholar 

  • Schuckit MA, Smith TL, Kalmijn J, Danko GP (2005) A cross-generational comparison of alcohol challenges at about age 20 in 40 father-offspring pairs. Alcohol Clin Exp Res 29:1921–1927

    PubMed  Google Scholar 

  • Schuckit MA, Smith TL, Trim RS, Heron J, Horwood J, Davis J, Hibbeln J (2008) The self-rating of the effects of alcohol questionnaire as a predictor of alcohol-related outcomes in 12-year-old subjects. Alcohol Alcohol 43:641–646

    PubMed  PubMed Central  Google Scholar 

  • Schuckit MA, Smith TL, Trim RS, Allen RC, Fukukura T, Knight EE, Cesario EM, Kreikebaum SA (2011) A prospective evaluation of how a low level of response to alcohol predicts later heavy drinking and alcohol problems. Am J Drug Alcohol Abuse 37:479–486

    PubMed  Google Scholar 

  • Sharma VK, Hill SY (2017) Differentiating the effects of familial risk for alcohol dependence and prenatal exposure to alcohol on offspring brain morphology. Alcohol Clin Exp Res 41:312–322

    PubMed  PubMed Central  Google Scholar 

  • Siggins GR, French E (1979) Central neurons are depressed by iontophoretic and micropressure application of ethanol and tetrahydropapaveroline. Drug Alcohol Depend 4:239–243

    CAS  PubMed  Google Scholar 

  • Silberman Y, Ariwodola OJ, Weiner JL (2009) Differential effects of GABAB autoreceptor activation on ethanol potentiation of local and lateral paracapsular GABAergic synapses in the rat basolateral amygdala. Neuropharmacology 56:886–895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snelling C, Tanchuck-Nipper MA, Ford MM, Jensen JP, Cozzoli DK, Ramaker MJ, Helms M, Crabbe JC, Rossi DJ, Finn DA (2014) Quantification of ten neuroactive steroids in plasma in withdrawal seizure-prone and -resistant mice during chronic ethanol withdrawal. Psychopharmacology 231:3401–3414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen S, Palmer M, Dunwiddie T, Hoffer B (1980) Electrophysiological correlates of ethanol-induced sedation in differentially sensitive lines of mice. Science 210:1143–1145

    CAS  PubMed  Google Scholar 

  • Sorensen S, Dunwiddie T, McClearn G, Freedman R, Hoffer B (1981) Ethanol-induced depressions in cerebellar and hippocampal neurons of mice selectively bred for differences in ethanol sensitivity: an electrophysiological study. Pharmacol Biochem Behav 14:227–234

    CAS  PubMed  Google Scholar 

  • Spanagel R (2009) Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol Rev 89:649–705

    CAS  PubMed  Google Scholar 

  • Spuhler K, Deitrich RA (1984) Correlative analysis of ethanol-related phenotypes in rat inbred strains. Alcohol Clin Exp Res 8:480–484

    CAS  PubMed  Google Scholar 

  • Steffensen SC, Walton CH, Hansen DM, Yorgason JT, Gallegos RA, Criado JR (2009) Contingent and non-contingent effects of low-dose ethanol on GABA neuron activity in the ventral tegmental area. Pharmacol Biochem Behav 92:68–75

    CAS  PubMed  Google Scholar 

  • Stell BM, Mody I (2002) Receptors with different affinities mediate phasic and tonic GABA(A) conductances in hippocampal neurons. J Neurosci 22:RC223

    PubMed  PubMed Central  Google Scholar 

  • Stell BM, Brickley SG, Tang CY, Farrant M, Mody I (2003) Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc Natl Acad Sci U S A 100:14439–14444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stobbs SH, Ohran AJ, Lassen MB, Allison DW, Brown JE, Steffensen SC (2004) Ethanol suppression of ventral tegmental area GABA neuron electrical transmission involves N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 311:282–289

    CAS  PubMed  Google Scholar 

  • Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage 44:489–501

    PubMed  Google Scholar 

  • Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844

    PubMed  PubMed Central  Google Scholar 

  • Stoodley CJ, Valera EM, Schmahmann JD (2010) An fMRI study of intra-individual functional topography in the human cerebellum. Behav Neurol 23:65–79

    PubMed  PubMed Central  Google Scholar 

  • Stoodley CJ, Valera EM, Schmahmann JD (2012) Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. NeuroImage 59:1560–1570

    PubMed  Google Scholar 

  • Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434

    CAS  PubMed  Google Scholar 

  • Tabakoff B, Kiianmaa K (1982) Does tolerance develop to the activating, as well as the depressant, effects of ethanol? Pharmacol Biochem Behav 17:1073–1076

    CAS  PubMed  Google Scholar 

  • Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, Borgatti R (2007) Disorders of cognitive and affective development in cerebellar malformations. Brain 130:2646–2660

    PubMed  Google Scholar 

  • ten Bruggencate G, Teichmann R, Weller E (1972) Neuronal activity in the lateral vestibular nucleus of the cat. 3. Inhibitory actions of cerebellar Purkinje cells evoked via mossy and climbing fibre afferents. Pflugers Arch 337:147–162

    PubMed  Google Scholar 

  • Teune TM, van der Burg J, De Zeeuw CI, Voogd J, Ruigrok TJ (1998) Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in the rat. J Comp Neurol 392:164–178

    CAS  PubMed  Google Scholar 

  • Thach WT (1968) Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol 31:785–797

    CAS  PubMed  Google Scholar 

  • Thach WT (1970) Discharge of cerebellar neurons related to two maintained postures and two prompt movements. II. Purkinje cell output and input. J Neurophysiol 33:537–547

    CAS  PubMed  Google Scholar 

  • Theile JW, Morikawa H, Gonzales RA, Morrisett RA (2008) Ethanol enhances GABAergic transmission onto dopamine neurons in the ventral tegmental area of the rat. Alcohol Clin Exp Res 32:1040–1048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Theile JW, Morikawa H, Gonzales RA, Morrisett RA (2009) Role of 5-hydroxytryptamine2C receptors in Ca2+-dependent ethanol potentiation of GABA release onto ventral tegmental area dopamine neurons. J Pharmacol Exp Ther 329:625–633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Theile JW, Morikawa H, Gonzales RA, Morrisett RA (2011) GABAergic transmission modulates ethanol excitation of ventral tegmental area dopamine neurons. Neuroscience 172:94–103

    CAS  PubMed  Google Scholar 

  • Tomasi D, Volkow ND (2011) Association between functional connectivity hubs and brain networks. Cereb Cortex 21:2003–2013

    PubMed  PubMed Central  Google Scholar 

  • Trudell JR, Messing RO, Mayfield J, Harris RA (2014) Alcohol dependence: molecular and behavioral evidence. Trends Pharmacol Sci 35:317–323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyzio R, Cossart R, Khalilov I, Minlebaev M, Hubner CA, Represa A, Ben-Ari Y, Khazipov R (2006) Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science 314:1788–1792

    CAS  PubMed  Google Scholar 

  • Valenzuela CF, Jotty K (2015) Mini-review: effects of ethanol on GABAA receptor-mediated neurotransmission in the cerebellar cortex – recent advances. Cerebellum 14:438–446

    CAS  PubMed  Google Scholar 

  • Varagic Z, Ramerstorfer J, Huang S, Rallapalli S, Sarto-Jackson I, Cook J, Sieghart W, Ernst M (2013) Subtype selectivity of alpha+beta-site ligands of GABAA receptors: identification of the first highly specific positive modulators at alpha6beta2/3gamma2 receptors. Br J Pharmacol 169:384–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volkow ND, Ma Y, Zhu W, Fowler JS, Li J, Rao M, Mueller K, Pradhan K, Wong C, Wang GJ (2008) Moderate doses of alcohol disrupt the functional organization of the human brain. Psychiatry Res 162:205–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wadiche JI, Jahr CE (2005) Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nat Neurosci 8:1329–1334

    CAS  PubMed  Google Scholar 

  • Wagner MJ, Kim TH, Savall J, Schnitzer MJ, Luo L (2017) Cerebellar granule cells encode the expectation of reward. Nature 544:96–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wall MJ, Usowicz MM (1997) Development of action potential-dependent and independent spontaneous GABAA receptor-mediated currents in granule cells of postnatal rat cerebellum. Eur J Neurosci 9:533–548

    CAS  PubMed  Google Scholar 

  • Wallner M, Hanchar HJ, Olsen RW (2003) Ethanol enhances alpha 4 beta 3 delta and alpha 6 beta 3 delta gamma-aminobutyric acid type A receptors at low concentrations known to affect humans. Proc Natl Acad Sci U S A 100:15218–15223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watson TC, Becker N, Apps R, Jones MW (2014) Back to front: cerebellar connections and interactions with the prefrontal cortex. Front Syst Neurosci 8:4

    PubMed  PubMed Central  Google Scholar 

  • Weber AM, Soreni N, Noseworthy MD (2014) A preliminary study on the effects of acute ethanol ingestion on default mode network and temporal fractal properties of the brain. MAGMA 27:291–301

    CAS  PubMed  Google Scholar 

  • Wegelius K, Honkanen A, Korpi ER (1994) Benzodiazepine receptor ligands modulate ethanol drinking in alcohol-preferring rats. Eur J Pharmacol 263:141–147

    CAS  PubMed  Google Scholar 

  • Weitlauf C, Woodward JJ (2008) Ethanol selectively attenuates NMDAR-mediated synaptic transmission in the prefrontal cortex. Alcohol Clin Exp Res 32:690–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh JP, Yuen G, Placantonakis DG, Vu TQ, Haiss F, O'Hearn E, Molliver ME, Aicher SA (2002) Why do Purkinje cells die so easily after global brain ischemia? Aldolase C, EAAT4, and the cerebellar contribution to posthypoxic myoclonus. Adv Neurol 89:331–359

    PubMed  Google Scholar 

  • Welsh JP, Han VZ, Rossi DJ, Mohr C, Odagiri M, Daunais JB, Grant KA (2011) Bidirectional plasticity in the primate inferior olive induced by chronic ethanol intoxication and sustained abstinence. Proc Natl Acad Sci U S A 108:10314–10319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf U, Rapoport MJ, Schweizer TA (2009) Evaluating the affective component of the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 21:245–253

    PubMed  Google Scholar 

  • Xiao C, Shao XM, Olive MF, Griffin WC III, Li KY, Krnjevic K, Zhou C, Ye JH (2009) Ethanol facilitates glutamatergic transmission to dopamine neurons in the ventral tegmental area. Neuropsychopharmacology 34:307–318

    CAS  PubMed  Google Scholar 

  • Yang X, Criswell HE, Breese GR (2000) Ethanol modulation of gamma-aminobutyric acid (GABA)-mediated inhibition of cerebellar Purkinje neurons: relationship to GABAb receptor input. Alcohol Clin Exp Res 24:682–690

    CAS  PubMed  Google Scholar 

  • Ye Z, McGee TP, Houston CM, Brickley SG (2013) The contribution of delta subunit-containing GABAA receptors to phasic and tonic conductance changes in cerebellum, thalamus and neocortex. Front Neural Circuits 7:203

    PubMed  PubMed Central  Google Scholar 

  • Yoneyama N, Crabbe JC, Ford MM, Murillo A, Finn DA (2008) Voluntary ethanol consumption in 22 inbred mouse strains. Alcohol 42:149–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W, Krook-Magnuson E (2015) Cognitive collaborations: bidirectional functional connectivity between the cerebellum and the hippocampus. Front Syst Neurosci 9:177

    PubMed  PubMed Central  Google Scholar 

  • Zamudio-Bulcock PA, Homanics GE, Woodward JJ (2018) Loss of ethanol inhibition of NMDAR-mediated currents and plasticity of cerebellar synapses in mice expressing the GluN1(F639A) subunit. Alcohol Clin Exp Res. https://doi.org/10.1111/acer.13597

  • Zhang XY, Wang JJ, Zhu JN (2016) Cerebellar fastigial nucleus: from anatomic construction to physiological functions. Cerebellum Ataxias 3:9

    PubMed  PubMed Central  Google Scholar 

  • Zhu JN, Wang JJ (2008) The cerebellum in feeding control: possible function and mechanism. Cell Mol Neurobiol 28:469–478

    PubMed  Google Scholar 

  • Zhu JN, Yung WH, Kwok-Chong CB, Chan YS, Wang JJ (2006) The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev 52:93–106

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute on Alcohol Abuse and Alcoholism Grants R01AA-012439 and R01AA-026078, and Washington State University Alcohol and Drug Abuse Research Program (ADARP) grant to D.J.R., and by an ADARP postdoctoral grant to B.D.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rossi, D.J., Richardson, B.D. (2018). The Cerebellar GABAAR System as a Potential Target for Treating Alcohol Use Disorder. In: Grant, K., Lovinger, D. (eds) The Neuropharmacology of Alcohol . Handbook of Experimental Pharmacology, vol 248. Springer, Cham. https://doi.org/10.1007/164_2018_109

Download citation

Publish with us

Policies and ethics