Skip to main content

Microwave-Assisted Cationic Ring-Opening Polymerization of 2-Oxazolines

  • Chapter
  • First Online:
Book cover Microwave-assisted Polymer Synthesis

Part of the book series: Advances in Polymer Science ((POLYMER,volume 274))

Abstract

More than any other polymer class, the synthesis of (co-)poly(2-oxazoline)s has benefited tremendously from the introduction of microwave reactors into chemical laboratories. This review focuses on research activities in the area of (co-)poly(2-oxazoline)s prepared by microwave-assisted syntheses and summarizes the current state-of-the-art for microwave-assisted syntheses of 2-oxazoline monomers, microwave-assisted ring-opening (co-)polymerizations of 2-oxazolines, and prominent examples of post-polymerization modifications of (co-)poly(2-oxazoline)s. Special attention is paid to kinetic analyses of the microwave-assisted polymerization of 2-oxazolines and to the discussion of non-thermal microwave effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

Bu=Ox:

2-But-3′-enyl-2-oxazoline

CH:

Conventional heating

CROP:

Cationic ring-opening polymerization

Dc=Ox:

2-Dec-9′-enyl-2-oxazoline

DLS:

Dynamic light scattering

DP:

Degree of polymerization

EtOx:

2-Ethyl-2-oxazoline

IL:

Ionic liquid

MALDI-TOF:

Matrix-assisted laser desorption ionization – time-of-flight

MeOx:

2-Methyl-2-oxazoline

MW:

Microwave

NonOx:

2-Nonyl-2-oxazoline

pBu=Ox:

Poly(2-but-3′-enyl-2-oxazoline)

pDc=Ox:

Poly(2-dec-9′-enyl-2-oxazoline)

PEG:

Poly(ethylene glycol)

PEI:

Poly(ethylene imine)

PET:

Poly(ethylene terephthalate)

pEtOx:

Poly(2-ethyl-2-oxazoline)

PhOx:

2-Phenyl-2-oxazoline

pMeOx:

Poly(2-methyl-2-oxazoline)

pNonOx:

Poly(2-nonyl-2-oxazoline)

pPBO:

Poly(1,3-phenylene-bis-2-oxazoline)

pPhOx:

Poly(2-phenyl-2-oxazoline)

ROP:

Ring-opening polymerization

SEC:

Size-exclusion chromatography

wt%:

Weight percent

References

  1. Seeliger W, Aufderhaar E, Diepers W, Feinauer R, Nehring R, Thier W, Hellmann H (1966) Recent syntheses and reactions of cyclic imidic esters. Angew Chem Int Ed 5:875–888

    Article  CAS  Google Scholar 

  2. Tomalia DA, Sheetz DP (1966) Homopolymerization of 2-alkyl- and 2-aryl-2-oxazolines. J Polym Sci A Polym Chem 4:2253–2265

    Article  CAS  Google Scholar 

  3. Bassiri TG, Levy A, Litt M (1967) Polymerization of cyclic imino ethers. I. Oxazolines. J Polym Sci B Polym Lett 5:871–879

    Article  Google Scholar 

  4. Kagiya T, Narisawa S, Maeda T, Fukui K (1966) Ring-opening polymerisation of 2-substituted 2-oxazolines. J Polym Sci B Polym Lett 4:441–445

    Article  CAS  Google Scholar 

  5. Herrero MA, Kremsner JM, Kappe CO (2008) Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry. J Org Chem 73:36–47

    Article  CAS  Google Scholar 

  6. Hoogenboom R (2009) Poly(2-oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed 48:7978–7994

    Article  CAS  Google Scholar 

  7. Rossegger E, Schenk V, Wiesbrock F (2013) Design strategies for functionalized poly(2-oxazoline)s and derived materials. Polymers 5:956–1011

    Article  Google Scholar 

  8. Hoogenboom R (2007) Poly(2-oxazoline)s: alive and kicking. Macromol Chem Phys 208:18–25

    Article  CAS  Google Scholar 

  9. Kelly AM, Wiesbrock F (2012) Strategies for the synthesis of poly(2-oxazoline)-based hydrogels. Macromol Rapid Commun 33:1632–1647

    Article  CAS  Google Scholar 

  10. Hartlieb M, Kempe K, Schubert US (2015) Covalently cross-linked poly(2-oxazoline) materials for biomedical applications – from hydrogels to self-assembled and templated structures. J Mater Chem B 3:526–538

    Article  CAS  Google Scholar 

  11. de la Rosa VR (2014) Poly(2-oxazoline)s as materials for biomedical applications. J Mater Sci Mater Med 25:1211–1225

    Article  Google Scholar 

  12. Konradi R, Acikgoz C, Textor M (2012) Polyoxazolines for nonfouling surface coatings – a direct comparison to the gold standard PEG. Macromol Rapid Commun 33:1663–1676

    Article  CAS  Google Scholar 

  13. Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov AV, Jordan R (2012) Poly(2-oxazoline)s as polymer therapeutics. Macromol Rapid Commun 33:1613–1631

    Article  CAS  Google Scholar 

  14. Guillerm B, Monge S, Lapinte V, Robin J-J (2012) How to modulate the chemical structure of polyoxazolines by appropriate functionalization. Macromol Rapid Commun 33:1600–1612

    Article  CAS  Google Scholar 

  15. Schlaad H, Diehl C, Gress A, Meyer M, Demirel AL, Nur Y, Bertin A (2010) Poly(2-oxazoline)s as smart bioinspired polymers. Macromol Rapid Commun 31:511–525

    Article  CAS  Google Scholar 

  16. Sedlacek O, Monnery BD, Filippov SK, Hoogenboom R, Hruby M (2012) Poly(2-oxazoline)s – are they more advantageous for biomedical applications than other polymers? Macromol Rapid Commun 33:1648–1662

    Article  CAS  Google Scholar 

  17. Witte H, Seeliger W (1974) Cyclische Imidsaeureester aus Nitrilen und Aminoalkoholen. Liebigs Ann Chem 6:996–1009

    Article  Google Scholar 

  18. Beck M, Birnbrich P, Eicken U, Fischer H, Fristad WE, Hase B, Krause H-J (1994) Polyoxazoline auf fettchemischer Basis. Angew Makromol Chem 223:217–233

    Article  CAS  Google Scholar 

  19. Gress A, Voelkel A, Schlaad H (2007) Thio-click modification of poly[2-(3-butenyl)-2-oxazoline]. Macromolecules 40:7928–7933

    Article  CAS  Google Scholar 

  20. García-Tellado F, Loupy A, Petit A, Marrero-Terrero AL (2003) Solvent-free microwave-assisted efficient synthesis of 4,4-disubstituted 2-oxazolines. Eur J Org Chem 2003:4387–4391

    Article  Google Scholar 

  21. Arsalani N, Zare P, Namazi H (2009) Solvent free microwave assisted preparation of new telechelic polymers based on poly(ethylene glycol). Express Polym Lett 3(7):429–436

    Article  CAS  Google Scholar 

  22. Wei W, Zhang D, Yuan Q, Shen D, Huang B (2004) Synthesis of 2-(α-hydroxyalkyl)-2-oxazoline under microwave irradiation in bulk. Yingyong Huaxue 21(12):1329–1330

    CAS  Google Scholar 

  23. Mamaghani M, Nahmoodi NO, Fallah Ghasemi S (2010) An efficient synthesis of new chiral oxazolines. J Iran Chem Soc 7(4):972–977

    Article  CAS  Google Scholar 

  24. Katritzky AR, Cai C, Suzuki K, Singh SK (2004) Facile syntheses of oxazolines and thiazolines with N-acylbenzotriazoles under microwave irradiation. J Org Chem 69:811–814

    Article  CAS  Google Scholar 

  25. Parab YS, Shah RV, Shukla SR (2012) Microwave irradiated synthesis and characterization of 1,4-phenylene bis-oxazoline from bis-(2-hydroxyethyl) terephthalamide obtained by depolymerization of poly(ethylene terephthalate) bottle waste. Curr Chem Lett 2012:81–90

    Article  Google Scholar 

  26. Clarke DS, Wood R (1996) A facile one stage synthesis of oxazolines under microwave irradiation. Synth Commun 26(7):1335–1340

    Article  CAS  Google Scholar 

  27. Oussaid B, Berlan J, Soufiaoui M, Garrigues B (1995) Improved synthesis of oxazoline under microwave irradiation. Synth Commun 25(5):659–665

    Article  CAS  Google Scholar 

  28. Fraga-Dubreuil J, Cherouvrier JR, Bazureau JP (2000) Clean solvent-free dipolar cycloaddition reactions assisted by focused microwave irradiations for the synthesis of new ethyl 4-cyano-2-oxazoline-4-carboxylates. Green Chem 2:226–229

    Article  CAS  Google Scholar 

  29. Benfatti F, Cardillo G, Gentilucci L, Tolomelli A, Monari M, Piccinelli F (2007) A microwave-enhanced, Lewis acid-catalyzed synthesis of 1,3-dioxanes and oxazolines from epoxides. Adv Synth Catal 349:1256–1264

    Article  CAS  Google Scholar 

  30. Silva S, Tardy S, Routier S, Suzenet F, Tatibouet A, Rauter AP, Rollin P (2008) 1,3-Oxazoline and 1,3-oxazolidine-2-thiones as substrates in direct modified Stille and Suzuki cross-coupling. Tetrahedron Lett 49(39):5583–5586

    Article  CAS  Google Scholar 

  31. Wiesbrock F, Hoogenboom R, Abeln CH, Schubert US (2004) Single-mode microwave ovens as new reaction devices: accelerating the living polymerization of 2-ethyl-2-oxaoline. Macromol Rapid Commun 25:1895–1899

    Article  CAS  Google Scholar 

  32. Wiesbrock F, Hoogenboom R, Leenen MAM, Meier MAR, Schubert US (2005) Investigation of the living cationic ring-opening polymerization of 2-methyl-, 2-ethyl-, 2-nonyl-, and 2-phenyl-2-oxazoline in a single-mode microwave reactor. Macromolecules 38:5025–5034

    Article  CAS  Google Scholar 

  33. Sinnwell S, Ritter H (2005) Microwave accelerated polymerization of 2-phenyl-2-oxazoline. Macromol Rapid Commun 26:160–163

    Article  CAS  Google Scholar 

  34. Hoogenboom R, Leenen MAM, Wiesbrock F, Schubert US (2005) Microwave accelerated polymerization of 2-phenyl-2-oxazoline: microwave or temperature effects? Macromol Rapid Commun 26:1773–1778

    Article  CAS  Google Scholar 

  35. Hoogenboom R, Fijten MWM, Thijs HML, Van Lankwelt BM, Schubert US (2005) Microwave-assisted synthesis and properties of a series of poly(2-alkyl-2-oxazoline)s. Des Monomers Polym 8(6):659–671

    Article  CAS  Google Scholar 

  36. Hoogenboom R, Wiesbrock F, Leenen MAM, Meier MAR, Schubert US (2005) Accelerating the living polymerization of 2-nonyl-2-oxazoline by implementing a microwave synthesizer into a high-throughput experimentation workflow. J Comb Chem 7(1):10–13

    Article  CAS  Google Scholar 

  37. Glassner M, D’hooge DR, Park JY, van Steenberge PHM, Monnery BD, Reyniers M-F, Hoogenboom R (2015) Systematic investigation of alkyl sulfonate initiators for the cationic ring-opening polymerization of 2-oxazolines revealing optimal combinations of monomers and initiators. Eur Polym J 65:298–304

    Article  CAS  Google Scholar 

  38. Vergaelen M, Verbraeken B, Monnery BD, Hoogenboom R (2015) Sulfolane as common rate accelerating solvent for the cationic ring-opening polymerization of 2-oxazolines. ACS Macro Lett 4:825–828

    Article  CAS  Google Scholar 

  39. Hu F, Xie S, Jiang L, Shen Z (2014) Living cationic ring-opening polymerization of 2-oxazolines initiated by rare-earth metal triflates. RSC Adv 4:59917–59926

    Article  CAS  Google Scholar 

  40. Fimberger M, Luef KP, Payerl C, Fischer RC, Stelzer F, Kállay M, Wiesbrock F (2015) The π-electron delocalization in 2-oxazolines revisited: quantification and comparison with its analogue in esters. Materials 8:5385–5397

    Article  Google Scholar 

  41. Lobert M, Köhn U, Hoogenboom R, Schubert US (2008) Synthesis and microwave assisted polymerization of fluorinated 2-phenyl-2-oxazolines: the fastest 2-oxazoline monomer to date. Chem Commun 2008(12):1458–1460

    Google Scholar 

  42. Lobert M, Thijs HML, Erdmenger T, Eckardt R, Ulbricht C, Hoogenboom R, Schubert US (2008) Synthesis, microwave-assisted polymerization, and polymer properties of fluorinated 2-phenyl-2-oxazolines: a systematic study. Chem Eur J 14:10396–10407

    Article  CAS  Google Scholar 

  43. Bloksma MM, Rogers S, Schubert US, Hoogenboom R (2010) Secondary structure formation of main-chain chiral poly(2-oxazoline)s in solution. Soft Matter 6:994–1003

    Article  CAS  Google Scholar 

  44. Bloksma MM, Rogers S, Schubert US, Hoogenboom R (2011) Main-chain chiral poly(2-oxazoline)s: influence of alkyl side-chains on secondary structure formation in solution. J Polym Sci A Polym Chem 49:2790–2801

    Article  CAS  Google Scholar 

  45. Bloksma MM, Weber C, Perevyazko IY, Kuse A, Baumgärtel A, Vollrath A, Hoogenboom R, Schubert US (2011) Poly(2-cyclopropyl-2-oxazoline): from rate acceleration by cyclopropyl to thermoresponsive properties. Macromolecules 44:4057–4064

    Article  CAS  Google Scholar 

  46. Bloksma MM, Paulus RM, Van Kuringen HPC, Van der Woerdt F, Lambermont-Thijs HML, Schubert US, Hoogenboom R (2012) Thermoresponsive poly(2-oxazoline)s. Macromol Rapid Commun 33:92–96

    Article  CAS  Google Scholar 

  47. Sinnwell S, Ritter H (2006) Microwave accelerated polymerization of 2-phenyl-5,6-dihydro-4H-1,3-oxazine: kinetics and influence of end-groups on glass transition temperature. Macromol Rapid Commun 27:1335–1340

    Article  CAS  Google Scholar 

  48. Bouten PJM, Hertsen D, Vergaelen M, Monnery BD, Boerman MA, Goossens H, Catak S, van Hest JCM, van Speybroeck V, Hoogenboom R (2015) Accelerated living cationic ring-opening polymerization of a methyl ester functionalized 2-oxazoline monomer. Polym Chem 6:514–518

    Article  CAS  Google Scholar 

  49. Bouten PJM, Hertsen D, Vergaelen M, Monnery BD, Catak S, van Hest JCM, van Speybroeck V, Hoogenboom R (2015) J Polym Sci A Polym Chem 53:2649–2661

    Google Scholar 

  50. Hoogenboom R, Schubert US (2006) Microwave-assisted cationic ring-opening polymerization of a soy-based 2-oxazoline monomer. Green Chem 8:895–899

    Article  CAS  Google Scholar 

  51. Hoogenboom R, Leenen MAM, Huang H, Fustin C-A, Gohy J-F, Schubert US (2006) Microwave-assisted synthesis and micellization behavior of soy-based copoly(2-oxazoline)s. Colloid Polym Sci 284:1313–1318

    Article  CAS  Google Scholar 

  52. Guerrero-Sanchez C, Hoogenboom R, Schubert US (2006) Fast and “green” living cationic ring opening polymerization of 2-ethyl-2-oxazoline in ionic liquids under microwave irradiation. Chem Commun 2006(36):3797–3799

    Article  Google Scholar 

  53. Guerrero-Sanchez C, Lobert M, Hoogenboom R, Schubert US (2007) Microwave-assisted homogeneous polymerizations in water-soluble ionic liquids: an alternative and green approach for polymer synthesis. Macromol Rapid Commun 28:456–464

    Article  CAS  Google Scholar 

  54. Hoogenboom R, Paulus RM, Pilotti A, Schubert US (2006) Scale-up of microwave-assisted polymerizations in batch mode: the cationic ring-opening polymerization of 2-ethyl-2-oxazoline. Macromol Rapid Commun 27:1556–1560

    Article  CAS  Google Scholar 

  55. Paulus RM, Erdmenger T, Becer CR, Hoogenboom R, Schubert US (2007) Scale-up of microwave-assisted polymerizations in continuous-flow mode: cationic ring-opening polymerization of 2-ethyl-2-oxazoline. Macromol Rapid Commun 28:484–491

    Article  CAS  Google Scholar 

  56. Wiesbrock F, Hoogenboom R, Leenen M, Van Nispen SFGM, Van der Loop M, Abeln CH, Van den Berg AMJ, Schubert US (2005) Microwave-assisted synthesis of a 42-membered library of diblock copoly(2-oxazoline)s and chain-extended homo poly(2-oxazoline)s and their thermal characterization. Macromolecules 38:7957–7966

    Article  CAS  Google Scholar 

  57. Kranenburg JM, Tweedie CA, Hoogenboom R, Wiesbrock F, Thijs HML, Hendriks CE, Van Vliet KJ, Schubert US (2007) Elastic moduli for a diblock copoly(2-oxazoline) library obtained by high-throughput screening. J Mater Chem 17:2713–2721

    Article  CAS  Google Scholar 

  58. Hoogenboom R, Wiesbrock F, Huang H, Leenen MAM, Thijs HML, Van Nispen SFGM, Van der Loop M, Fustin C-A, Jonas AM, Gohy J-F, Schubert US (2006) Microwave-assisted cationic ring-opening polymerization of 2-oxazolines: a powerful method for the synthesis of amphiphilic triblock copolymers. Macromolecules 39:4719–4725

    Article  CAS  Google Scholar 

  59. Hoogenboom R, Wiesbrock F, Leenen MAM, Thijs HML, Huang H, Fustin C-A, Guillet P, Gohy J-F, Schubert US (2007) Synthesis and aqueous micellization of amphiphilic tetrablock ter- and quaterpoly(2-oxazoline)s. Macromolecules 40:2837–2843

    Article  CAS  Google Scholar 

  60. Kempe K, Baumgärtel A, Hoogenboom R, Schubert US (2010) Design of new amphiphilic triblock copoly(2-oxazoline)s containing a fluorinated segment. J Polym Sci A Polym Chem 48:5100–5108

    Article  CAS  Google Scholar 

  61. Fijten MWM, Kranenburg JM, Thijs HML, Paulus RM, Van Lankvelt BM, De Hullu J, Springintveld M, Thielen DJG, Tweedie CA, Hoogenboom R, Van Vliet KJ, Schubert US (2007) Synthesis and structure–property relationships of random and block copolymers: a direct comparison for copoly(2-oxazoline)s. Macromolecules 40:5879–5886

    Article  CAS  Google Scholar 

  62. Wijnans S, De Gans B-J, Wiesbrock F, Hoogenboom R, Schubert US (2004) Characterization of a poly(2-oxazoline) library by high-throughput, automated contact-angle measurements and surface-energy calculations. Macromol Rapid Commun 25:1958–1962

    Article  CAS  Google Scholar 

  63. Hoeppener S, Wiesbrock F, Hoogenboom R, Thijs HML, Schubert US (2006) Morphologies of spin-coated films of a library of diblock copoly(2-oxazoline)s and their correlation to the corresponding surface energies. Macromol Rapid Commun 27:405–411

    Article  CAS  Google Scholar 

  64. Kempe K, Jacobs S, Lambermont-Thijs HML, Fijten MWM, Hoogenboom R, Schubert US (2010) Rational design of an amorphous poly(2-oxazoline) with a low glass-transition temperature: monomer synthesis, copolymerization and properties. Macromolecules 43:4098–4104

    Article  CAS  Google Scholar 

  65. Kempe K, Rettler EF-J, Paulus RM, Kuse A, Hoogenboom R, Schubert US (2013) A systematic investigation of the effect of side chain branching on the glass transition temperature and mechanical properties of aliphatic (co-)poly(2-oxazoline)s. Polymer 54:2036–2042

    Article  CAS  Google Scholar 

  66. Hoogenboom R, Thijs HML, Fijten MWM, Schubert US (2007) Synthesis, characterization, and cross-linking of a library of statistical copolymers based on 2-“soy alkyl”-2-oxazoline and 2-ethyl-2-oxazoline. J Polym Sci A Polym Chem 45:5371–5379

    Article  CAS  Google Scholar 

  67. Lambermont-Thijs HML, Fijten MWM, Van der Linden AJT, Van Lankvelt BM, Bloksma MM, Schubert US, Hoogenboom R (2011) Efficient cationic ring-opening polymerization of diverse cyclic imino ethers: unexpected copolymerization behavior. Macromolecules 44:4320–4325

    Article  CAS  Google Scholar 

  68. Hoogenboom R, Wiesbrock F, Leenen MAM, Van der Loop M, Van Nispen SFGM, Schubert US (2007) Kinetic investigations on microwave-assisted statistical terpolymerizations of 2-oxazoline monomers. Aust J Chem 60:656–661

    Article  CAS  Google Scholar 

  69. Hoogenboom R, Thijs HML, Fijten MWM, Van Lankvelt BM, Schubert US (2007) One-pot synthesis of 2-phenyl-2-oxazoline-containing quasi-diblock copoly(2-oxazoline)s under microwave irradiation. J Polym Sci A Polym Chem 45:416–422

    Article  CAS  Google Scholar 

  70. Lambermont-Thijs HML, Jochems MJHC, Hoogenboom R, Schubert US (2009) Synthesis and properties of gradient copolymers based on 2-phenyl-2-oxazoline and 2-nonyl-2-oxazoline. J Polym Sci A Polym Chem 47:6433–6440

    Article  CAS  Google Scholar 

  71. Lobert M, Hoogenboom R, Fustin C-A, Gohy J-F, Schubert US (2008) Amphiphilic gradient copolymers containing fluorinated 2-phenyl-2-oxazolines: microwave-assisted one-pot synthesis and self-assembly in water. J Polym Sci A Polym Chem 46:5859–5868

    Article  CAS  Google Scholar 

  72. Lava K, Verbraeken B, Hoogenboom R (2015) Poly(2-oxazoline)s and click chemistry: a versatile toolbox toward multi-functional polymers. Eur Polym J 65:98–111

    Article  CAS  Google Scholar 

  73. Luxenhofer R, Jordan R (2006) Click chemistry with poly(2-oxazoline)s. Macromolecules 39:3509–3516

    Article  CAS  Google Scholar 

  74. Lav T-X, Lemechko P, Renard E, Amiel C, Langlois V, Volet G (2013) Development of a new azido-oxazoline monomer for the preparation of amphiphilic graft copolymers by combination of cationic ring-opening polymerization and click chemistry. React Funct Polym 73:1001–1008

    Article  CAS  Google Scholar 

  75. Le Fer G, Amiel C, Volet G (2015) Copolymers based on azidopentyl-2-oxazoline: synthesis, characterization and LCST behavior. Eur Polym J 71:523–533

    Article  Google Scholar 

  76. Taubmann C, Luxenhofer R, Cesana S, Jordan R (2005) First aldehyde-functionalized poly(2-oxazoline)s for chemoselective ligation. Macromol Biosci 5:603–612

    Article  CAS  Google Scholar 

  77. Legros C, de Pauw-Gillet M-C, Tam KC, Lecommandoux S, Taton D (2015) Aldehyde-functional copolymers based on poly(2-oxazoline) for post-polymerization modification. Eur Polym J 62:322–330

    Article  CAS  Google Scholar 

  78. Kempe K, Vollrath A, Schaefer HW, Poehlmann TG, Biskup C, Hoogenboom R, Hornig S, Schubert US (2010) Multifunctional poly(2-oxazoline) nanoparticles for biological applications. Macromol Rapid Commun 31:1869–1873

    Article  CAS  Google Scholar 

  79. Mero A, Pasut G, Dalla Via L, Fijten MWM, Schubert US, Hoogenboom R, Veronese FM (2008) Synthesis and characterization of poly(2-ethyl-2-oxazoline)-conjugates with proteins and drugs: suitable alternatives to PEG-conjugates. J Control Release 125:87–95

    Article  CAS  Google Scholar 

  80. Kempe K, Neuwirth T, Czaplewska J, Gottschaldt M, Hoogenboom R, Schubert US (2011) Poly(2-oxazoline) glycopolymers with tunable LCST behavior. Polym Chem 2:1737–1743

    Article  Google Scholar 

  81. Haensch C, Erdmenger T, Fijten MWM, Hoeppner S, Schubert US (2009) Fast surface modification by microwave assisted click reactions on silicon substrates. Langmuir 25(14):8019–8024

    Article  CAS  Google Scholar 

  82. Kempe K, Hoogenboom R, Schubert US (2011) A green approach for the synthesis and thiol-ene modification of alkene functionalized poly(2-oxazoline)s. Macromol Rapid Commun 32:1484–1489

    Article  CAS  Google Scholar 

  83. Schenk V, Ellmaier L, Rossegger E, Edler M, Griesser T, Weidinger G, Wiesbrock F (2012) Water-developable poly(2-oxazoline)-based negative photoresists. Macromol Rapid Commun 33:396–400

    Article  CAS  Google Scholar 

  84. Wiesbrock F, Stelzer F, Schenk V, Ellmaier L, Polymer Competence Center Leoben GmbH, Austria Technologie & Systemtechnik AG (2013) Patent WO 2013/036979

    Google Scholar 

  85. Petit C, Luef KP, Edler M, Griesser T, Kremsner JM, Stadler A, Grassl B, Reynaud S, Wiesbrock F (2015) Microwave-assisted syntheses in recyclable ionic liquids: photoresists based on renewable resources. ChemSusChem. doi:10.1002/cssc.201500847

    Google Scholar 

  86. Huang H, Hoogenboom R, Leenen MAM, Guillet P, Jonas AM, Schubert US, Gohy J-F (2006) Solvent induced morphological transistion in core-cross-linked block copolymer micelles. J Am Chem Soc 128:3784–3788

    Article  CAS  Google Scholar 

  87. Farrugia BL, Kempe K, Schubert US, Hoogenboom R, Dargaville TR (2013) Poly(2-oxazoline) hydrogels for controlled fibroblast attachment. Biomacromolecules 14:2724–2732

    Article  CAS  Google Scholar 

  88. Kelly AM, Hecke A, Wirnsberger B, Wiesbrock F (2011) Synthesis of poly(2-oxazoline)-based hydrogels with tailor-made swelling degrees capable of stimuli-triggered compound release. Macromol Rapid Commun 32:1815–1819

    Article  CAS  Google Scholar 

  89. Li T, Tang H, Wu P (2015) Structural investigation of thermo-responsive poly(2-isopropyl-2-oxazoline) hydrogel across the volume phase transition. Soft Matter 11:1911–1918

    Article  CAS  Google Scholar 

  90. Dargaville TR, Forster R, Farrugia BL, Kempe K, Voorhaar L, Schubert US, Hoogenboom R (2012) Poly(2-oxazoline) hydrogel monoliths via thiol-ene coupling. Macromol Rapid Commun 33:1695–1700

    Article  CAS  Google Scholar 

  91. Dargaville TR, Holier BG, Shokoohmand A, Hoogenboom R (2014) Poly(2-oxazoline) hydrogels as next generation three-dimensional cell supports. Cell Adh Migr 8(2):88–93

    Article  Google Scholar 

  92. Hartlieb M, Pretzel D, Kempe K, Fritzsche C, Paulus RM, Gottschaldt M, Schuber US (2013) Cationic poly(2-oxazoline) hydrogels for reversible DNA binding. Soft Matter 9:4693–4704

    Article  CAS  Google Scholar 

  93. Cesana S, Auernheimer J, Jordan R, Kessler H, Nuyken O (2006) First poly(2-oxazoline)s with pendant amino groups. Macromol Chem Phys 207:183–192

    Article  CAS  Google Scholar 

  94. Hartlieb M, Schubert S, Kempe K, Windhab N, Schubert US (2015) Stabilization of factor VIII by poly(2-oxazoline) hydrogels. J Polym Sci A Polym Chem 53:10–14

    Article  CAS  Google Scholar 

  95. Schenk V, Rossegger E, Ebner C, Bangerl F, Reichmann K, Hoffmann B, Höpfner M, Wiesbrock F (2014) RGD-functionalization of poly(2-oxazoline)-based networks for enhanced adhesion to cancer cells. Polymers 6:264–279

    Article  Google Scholar 

  96. Tauhardt L, Kempe K, Knop K, Altuntas E, Jäger M, Schubert S, Fischer D, Schubert US (2011) Linear polyethyleneimine: optimized synthesis and characterization – on the way to “pharmagrade” batches. Macromol Chem Phys 212:1918–1924

    CAS  Google Scholar 

  97. De la Rosa VR, Bauwens E, Monnery BD, De Geest BG, Hoogenboom R (2014) Fast and accurate partial hydrolysis of poly(2-ethyl-2-oxazoline) into tailored linear polyethlenimine copolymers. Polym Chem 5:4957–4964

    Article  Google Scholar 

  98. Van Kuringen HPC, Lenoir J, Adriaens E, Bender J, De Geest BG, Hoogenboom R (2012) Partial hydrolysis of poly(2-ethyl-2-oxazoline) and potential implications for biomedical applications? Macromol Biosci 12:1114–1123

    Article  Google Scholar 

  99. Lambermont-Thijs HML, Heuts JPA, Hoeppener S, Hoogenboom R, Schubert US (2011) Selective partial hydrolysis of amphiphilic copoly(2-oxazoline)s as basis for temperature and pH responsive micelles. Polym Chem 2:313–322

    Article  CAS  Google Scholar 

  100. Van Kuringen HPC, De la Rosa VR, Fijten MWM, Heuts JPA, Hoogenboom R (2012) Enhanced selectivity for the hydrolysis of block copoly(2-oxazoline)s in ethanol-water resulting in linear poly(ethylene imine) copolymers. Macromol Rapid Commun 33:827–832

    Article  Google Scholar 

  101. Kelly AM, Kaltenhauser V, Mühlbacher I, Rametsteiner K, Kren H, Slugovc C, Stelzer F, Wiesbrock F (2013) Poly(2-oxazoline)-derived contact biocides: contributions to the understanding of antimicrobial activity. Macromol Biosci 13:116–125

    Article  CAS  Google Scholar 

Download references

Acknowledgement

F.W. and K.P.L. would like to gratefully acknowledge the Austrian Science Fund FWF for funding of the project I1123-N19 (MimiFlow). The work was performed at the PCCL in the context of the project PolyComp within the framework of the COMET-program of the Federal Ministry for Transport, Innovation and Technology and Federal Ministry for Economy, Family and Youth. The PCCL is funded by the Austrian Government and the State Governments of Styria, Lower Austria and Upper Austria. U.S.S. thanks the Carl-Zeiss Foundation and the TMWWdG (State of Thuringia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Wiesbrock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luef, K.P., Hoogenboom, R., Schubert, U.S., Wiesbrock, F. (2015). Microwave-Assisted Cationic Ring-Opening Polymerization of 2-Oxazolines. In: Hoogenboom, R., Schubert, U., Wiesbrock, F. (eds) Microwave-assisted Polymer Synthesis. Advances in Polymer Science, vol 274. Springer, Cham. https://doi.org/10.1007/12_2015_340

Download citation

Publish with us

Policies and ethics