Skip to main content

Description of Conical Intersections with Density Functional Methods

  • Chapter
  • First Online:
Density-Functional Methods for Excited States

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 368))

Abstract

Conical intersections are perhaps the most significant mechanistic features of chemical reactions occurring through excited states. By providing funnels for efficient non-adiabatic population transfer, conical intersections govern the branching ratio of products of such reactions, similar to what the transition states do for ground-state reactivity. In this regard, intersections between the ground and the lowest excited states play a special role, and the correct description of the potential energy surfaces in their vicinity is crucial for understanding the mechanism and dynamics of excited-state reactions. The methods of density functional theory, such as time-dependent density functional theory, are widely used to describe the excited states of large molecules. However, are these methods suitable for describing the conical intersections or do they lead to artifacts and, consequently, to erroneous description of reaction dynamics? Here we address the first part of this question and analyze the ability of several density functional approaches, including the linear-response time-dependent approach as well as the spin-flip and ensemble formalisms, to provide the correct description of conical intersections and the potential energy surfaces in their vicinity. It is demonstrated that the commonly used linear-response time-dependent theory does not yield a proper description of these features and that one should instead use alternative computational approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the chapter “Surface Hopping Dynamics with DFT Excited States” by M. Barbatti and R. Crespo-Otero.

  2. 2.

    As shown by Yarkony [74, 75], a rotation of the crossing states which orthogonalizes the BP vectors brings the vectors to a unique orientation, especially when symmetry is present. Application of such a prescription, however, modifies the BP vectors, while leaving the BP unchanged.

  3. 3.

    See also the chapter “Ensemble DFT approach to excited states of strongly correlated molecular systems” by M. Filatov.

  4. 4.

    See the chapter “Current status and recent developments in linear response time-dependent density-functional theory” by Mark E. Casida and Miquel Huix-Rotllant.

  5. 5.

    The conventional KS DFT/LR-TD-DFT calculations experienced severe convergence problems in the vicinity of the MECI point, which are reflected in the shape of the S 1 PES in the upper right panel of Fig. 5.

References

  1. McNaught AD, Wilkinson A (1997) IUPAC. Compendium of chemical terminology, 2nd edn. (The ”Gold Book”). Blackwell, Oxford

    Google Scholar 

  2. Mezey PO (1987) Potential energy hypersurfaces. Elsevier, New York

    Google Scholar 

  3. Allinger NL (1976) In: Gold V, Bethell D (eds) Advances in physical organic chemistry, vol 13. Academic, London, pp 1–82

    Google Scholar 

  4. Born M, Oppenheimer R (1927) Ann Phys 84:457

    Article  CAS  Google Scholar 

  5. Baer M (2006) Beyond Born–Oppenheimer: electronic nonadiabatic coupling terms and conical intersections. Wiley, Hoboken

    Book  Google Scholar 

  6. Atchity GJ, Xantheas SS, Ruedenberg K (1991) J Chem Phys 95:1862

    Article  Google Scholar 

  7. Domcke W, Yarkony DR, Köppel H (eds) (2004) Conical intersections. Electronic structure, dynamics and spectroscopy. Advanced series in physical chemistry, vol 15. World Scientific, Singapore

    Google Scholar 

  8. Domcke W, Yarkony DR, Köppel H (eds) (2011) Conical intersections. Theory, computation and experiment. Advanced series in physical chemistry, vol. 17 World Scientific, Singapore

    Google Scholar 

  9. Yarkony DR (1996) Rev Mod Phys 68:985

    Article  CAS  Google Scholar 

  10. Bernardi F, Olivucci M, Robb MA (1996) Chem Soc Rev 25:321

    Article  CAS  Google Scholar 

  11. Yarkony DR (2004) In: Domcke W, Yarkony DR, Köppel H (eds) Conical intersections. electronic structure, dynamics and spectroscopy. Advanced series in physical chemistry, vol 15. World Scientific, Singapore, pp 41–127

    Google Scholar 

  12. Migani A, Olivucci M (2004) In: Domcke W, Yarkony DR, Köppel H (eds) Conical intersections. electronic structure, dynamics and spectroscopy. Advanced series in physical chemistry, vol 15. World Scientific, Singapore, pp 271–320

    Google Scholar 

  13. Butler LJ (1998) Annu Rev Phys Chem 49:125

    Article  CAS  Google Scholar 

  14. Soto J, Arenas JF, Otero JC, Pelez D (2006) J Phys Chem A 110:8221

    Article  CAS  Google Scholar 

  15. Hund F (1927) Z Phys 40:742

    Article  CAS  Google Scholar 

  16. von Neumann J, Wigner E (1929) Physik Z 30:467

    Google Scholar 

  17. Teller E (1937) J Phys Chem 41:109

    Article  CAS  Google Scholar 

  18. Herzberg G, Longuet-Higgins HC (1963) Discuss Faraday Soc 35:77

    Article  Google Scholar 

  19. Longuet-Higgins HC (1975) Proc R Soc Lond Ser A 344:147

    Article  CAS  Google Scholar 

  20. Truhlar DG, Mead CA (2003) Phys Rev A 68:032501

    Article  Google Scholar 

  21. Polanyi JC (1972) Acc Chem Res 5:161

    Article  CAS  Google Scholar 

  22. Polanyi JC (1987) Science 236:680

    Article  CAS  Google Scholar 

  23. Sellner B, Barbatti M, Lischka H (2009) J Chem Phys 131:024312

    Article  Google Scholar 

  24. Robb MA (2011) In: Domcke W, Yarkony DR, Köppel H (eds) Conical intersections. Theory, computation and experiment. Advanced series in physical chemistry, vol 17. World Scientific, Singapore, pp 3–50

    Google Scholar 

  25. Docken KK, Hinze J (1972) J Chem Phys 57:4928

    Article  CAS  Google Scholar 

  26. Ruedenberg K (1976) K.R. Sundberg. In: Calais JL, Goscinski O, Linderberg J, Öhrn J (eds) Quantum science. Plenum, New York, pp 505–515

    Chapter  Google Scholar 

  27. Ruedenberg K (1979) In: Report on the NRCC 1978 workshop on post-Hartree–Fock quantum chemistry. Lawrence Berkeley Laboratory, Univ. of California, Report LBL 8233, UC4, CONF 780883, pp 46–64

    Google Scholar 

  28. Roos BO (1987) In: Lawley KP (ed) Ab initio methods in quantum chemistry II. Wiley, New York, pp 399–446

    Google Scholar 

  29. Andersson K, Malmqvist P, Roos BO (1992) J Chem Phys 96:1218

    Article  CAS  Google Scholar 

  30. Shavitt I (1977) In: Schaefer HF III (ed) Modern theoretical chemistry, vol 3. Methods of electronic structure theory. Plenum, New York, pp 189–275

    Google Scholar 

  31. Zewail AH (2000) J Phys Chem A 104:5660

    Article  CAS  Google Scholar 

  32. Zewail AH (2010) Chem Phys 378:1

    Article  CAS  Google Scholar 

  33. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  34. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  35. Gaudoin R, Burke K (2004) Phys Rev Lett 93:173001

    Article  CAS  Google Scholar 

  36. Gaudoin R, Burke K (2005) Phys Rev Lett 94:029901

    Article  Google Scholar 

  37. Ziegler T, Krykunov M, Autschbach J (2014) J Chem Theory Comput 10:3980

    Article  CAS  Google Scholar 

  38. Casida ME, Jamorski C, Bohr F, Guan JO, Salahub DR (1994) In: Karna SP, Yeates AT (ed) Nonlinear optical materials: theory and modeling, ACS symposium series, vol 628, Div Comp Chem, 1996. Symposium on nonlinear optical materials – theory and modeling, at the 208th national meeting of the American-Chemical-Society, Washington, DC, Aug 21–25, 1994, pp 145–163

    Google Scholar 

  39. Marques MAL, Gross EKU (2003) In: Fiolhais C, Nogueira F, Marques MAL (eds) A primer in density-functional theory. Lecture notes in physics, vol 620. Springer, Berlin, pp 144–184

    Google Scholar 

  40. Levine BG, Ko C, Quenneville J, Martínez TJ (2006) Mol Phys 104:1039

    Article  CAS  Google Scholar 

  41. Yang S, Martínez TJ (2011) In: Domcke W, Yarkony DR, Köppel H (eds) Conical intersections. Theory, computation and experiment, advanced series in physical chemistry, vol 17. World Scientific, Singapore, pp 347–374

    Google Scholar 

  42. Huix-Rotllant M, Filatov M, Gozem S, Schapiro I, Olivucci M, Ferré N (2013) J Chem Theory Comput 9:3917

    Article  CAS  Google Scholar 

  43. Gozem S, Melaccio F, Valentini A, Filatov M, Huix-Rotllant M, Ferré N, Frutos LM, Angeli C, Krylov AI, Granovsky AA, Lindh R, Olivucci M (2014) J Chem Theory Comput 10:3074

    Article  CAS  Google Scholar 

  44. Shao Y, Head-Gordon M, Krylov AI (2003) J Chem Phys 118:4807

    Article  CAS  Google Scholar 

  45. Wang F, Ziegler T (2004) J Chem Phys 121:12191

    Article  CAS  Google Scholar 

  46. Rinkevicius Z, Vahtras O, Ågren H (2010) J Chem Phys 133:114104

    Article  Google Scholar 

  47. Bernard YA, Shao Y, Krylov AI (2012) J Chem Phys 136:204103

    Article  Google Scholar 

  48. Huix-Rotllant M, Natarajan B, Ipatov A, Wawire CM, Deutsch T, Casida ME (2010) Phys Chem Chem Phys 12:12811

    Article  CAS  Google Scholar 

  49. Gross EKU, Oliveira LN, Kohn W (1988) Phys Rev A 37:2805

    Article  Google Scholar 

  50. Gross EKU, Oliveira LN, Kohn W (1988) Phys Rev A 37:2809

    Article  CAS  Google Scholar 

  51. Oliveira LN, Gross EKU, Kohn W (1988) Phys Rev A 37:2821

    Article  CAS  Google Scholar 

  52. Franck O, Fromager E (2014) Mol Phys 112:1684

    Article  CAS  Google Scholar 

  53. Lieb EH (1983) Int J Quant Chem 24:243

    Article  CAS  Google Scholar 

  54. Filatov M, Shaik S (1999) Chem Phys Lett 304:429

    Article  CAS  Google Scholar 

  55. Filatov M, Shaik S (2000) J Phys Chem A 104:6628

    Article  CAS  Google Scholar 

  56. Moreira IDPR, Costa R, Filatov M, Illas F (2007) J Chem Theory Comput 3:764

    Google Scholar 

  57. Kazaryan A, Heuver J, Filatov M (2008) J Phys Chem A 112:12980

    Article  CAS  Google Scholar 

  58. Filatov M (2013) J Chem Theory Comput 9:4526

    Article  CAS  Google Scholar 

  59. Nikiforov A, Gamez JA, Thiel W, Huix-Rotllant M, Filatov M (2014) J Chem Phys 141:124122

    Article  Google Scholar 

  60. Send R, Sundholm D (2007) J Phys Chem A 111:8766

    Article  CAS  Google Scholar 

  61. Tapavicza EE, Tavernelli I, Röthlisberger U, Filippi C, Casida ME (2008) J Chem Phys 129:124108

    Article  Google Scholar 

  62. Baranovskii VI, Sizova OV (2008) J Struct Chem 49:803

    Article  CAS  Google Scholar 

  63. Delchev VB, Ivanova IP (2012) Monatshefte Chem 143:1141

    Article  CAS  Google Scholar 

  64. Mališ M, Loquais Y, Gloaguen E, Biswal HS, Piuzzi F, Tardivel B, Brenner V, Broquier M, Jouvet C, Mons M, Došlić N, Ljubić I (2012) J Am Chem Soc 134:20340

    Article  Google Scholar 

  65. Baranovskii VI, Mal’tsev DA, Sizova OV (2013) Russ Chem Bull 61:973

    Article  Google Scholar 

  66. Kumar A, Sevilla MD (2013) Photochem Photobiol Sci 12:1328

    Article  CAS  Google Scholar 

  67. Zwijnenburg MA (2013) Phys Chem Chem Phys 15:11119

    Article  CAS  Google Scholar 

  68. Moreno M, Ortiz-Sanchez JM, Gelabert R, Lluch JM (2013) Phys Chem Chem Phys 15:20236

    Article  CAS  Google Scholar 

  69. Kobayashi R, Amos RD (2013) Mol Phys 111:1574

    Article  CAS  Google Scholar 

  70. Talhi O, Lopes GR, Santos SM, Pinto DCGA, Silva AMS (2014) J Phys Org Chem 27:756

    Article  CAS  Google Scholar 

  71. Wiebeler C, Bader CA, Meier C, Schumacher S (2014) Phys Chem Chem Phys 16:14531

    Article  CAS  Google Scholar 

  72. Belfon KAA, Gough JD (2014) Chem Phys Lett 593:174

    Article  CAS  Google Scholar 

  73. Baranovskii VI, Maltsev DA (2014) Comp Theor Chem 1043:71

    Article  CAS  Google Scholar 

  74. Yarkony DR (2001) J Phys Chem A 105:6277

    Article  CAS  Google Scholar 

  75. Yarkony DR (2000) J Chem Phys 112:2111

    Article  CAS  Google Scholar 

  76. Toniolo A, Ben-Nun M, Martínez TJ (2002) J Phys Chem A 106:4679

    Article  CAS  Google Scholar 

  77. Maeda S, Ohno K, Morokuma K (2010) J Chem Theory Comput 6:1538

    Article  CAS  Google Scholar 

  78. Bonačić-Koutecký V, Koutecký J, Michl J (1987) Angew Chem Int Ed 26:170

    Article  Google Scholar 

  79. Haas Y, Cogan S, Zilberg S (2005) Int J Quant Chem 102:961

    Article  CAS  Google Scholar 

  80. Dick B, Haas Y, Zilberg S (2008) Chem Phys 347:65

    Article  CAS  Google Scholar 

  81. Filatov M, Olivucci M (2014) J Org Chem 79:3587

    Article  CAS  Google Scholar 

  82. Schipper PRT, Gritsenko OV, Baerends EJ (1998) Theor Chem Acc 99:329

    Article  CAS  Google Scholar 

  83. Schipper PRT, Gritsenko OV, Baerends EJ (1999) J Chem Phys 111:4056

    Article  CAS  Google Scholar 

  84. Morrison RC (2002) J Chem Phys 117:10506

    Article  CAS  Google Scholar 

  85. Salem L, Rowland C (1972) Angew Chem Int Ed 11:92

    Article  CAS  Google Scholar 

  86. Ziegler T, Rauk A, Baerends EJ (1977) Theor Chim Acta 43:261

    Article  CAS  Google Scholar 

  87. Filatov M, Shaik S (1998) Chem Phys Lett 288:689

    Article  CAS  Google Scholar 

  88. Krykunov M, Ziegler T (2013) J Chem Theory Comput 9:2761

    Article  CAS  Google Scholar 

  89. Krykunov M, Seth M, Ziegler T (2014) J Chem Phys 140:18A502

    Google Scholar 

  90. Filatov M, Huix-Rotllant M (2014) J Chem Phys 141:024112

    Article  Google Scholar 

  91. Filatov M (2014) J Chem Phys 141:124123

    Article  Google Scholar 

  92. Maitra NT, Zhang F, Cave R, Burke K (2004) J Chem Phys 120:5932

    Article  CAS  Google Scholar 

  93. Cave RJ, Zhang F, Maitra NT, Burke K (2004) Chem Phys Lett 389:39

    Article  CAS  Google Scholar 

  94. Huix-Rotllant M, Ipatov A, Rubio A, Casida ME (2011) Chem Phys 391:120

    Article  CAS  Google Scholar 

  95. Cordova F, Doriol LJ, Ipatov A, Casida ME, Filippi C, Vela A (2007) J Chem Phys 127:164111

    Article  Google Scholar 

  96. Xu X, Gozem S, Olivucci M, Truhlar DG (2013) J Phys Chem Lett 4:253

    Article  CAS  Google Scholar 

  97. Yarkony DR (1999) J Phys Chem A 103:6658

    Article  CAS  Google Scholar 

  98. Gozem S, Schapiro I, Ferré N, Olivucci M (2012) Science 337:1225

    Article  CAS  Google Scholar 

  99. Schreiber M, Silva-Junior MR, Sauer SPA, Thiel W (2008) J Chem Phys 128:134110

    Article  Google Scholar 

  100. Leopold DG, Hemley RJ, Vaida V, Roebber JL (1981) J Chem Phys 75:4758

    Article  CAS  Google Scholar 

  101. Valsson O, Angeli C, Filippi C (2012) Phys Chem Chem Phys 14:11015

    Article  CAS  Google Scholar 

  102. Chiang SY, Bahou M, Wu YJ, Lee YP (2002) J Chem Phys 117:4306

    Article  CAS  Google Scholar 

  103. Rice JK, Baronavski AP (1992) J Phys Chem 96:3359

    Article  CAS  Google Scholar 

  104. Filippi C, Zaccheddu M, Buda F (2009) J Chem Theory Comput 5:2074

    Article  CAS  Google Scholar 

  105. Ben-Nun M, Martínez TJ (2000) Chem Phys 259:237

    Article  CAS  Google Scholar 

  106. Quenneville J, Martínez TJ (2003) J Phys Chem A 107:829

    Article  CAS  Google Scholar 

  107. Barbatti M, Paier J, Lischka H (2004) J Chem Phys 121:11614

    Article  CAS  Google Scholar 

  108. Virshup AM, Chen J, Martínez TJ (2012) J Chem Phys 137:22A519

    Google Scholar 

  109. Gozem S, Huntress M, Schapiro I, Lindh R, Granovsky AA, Angeli C, Olivucci M (2012) J Chem Theory Comput 8:4069

    Article  CAS  Google Scholar 

  110. Gozem S, Krylov AI, Olivucci M (2013) J Chem Theory Comput 9:284

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Filatov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huix-Rotllant, M., Nikiforov, A., Thiel, W., Filatov, M. (2015). Description of Conical Intersections with Density Functional Methods. In: Ferré, N., Filatov, M., Huix-Rotllant, M. (eds) Density-Functional Methods for Excited States. Topics in Current Chemistry, vol 368. Springer, Cham. https://doi.org/10.1007/128_2015_631

Download citation

Publish with us

Policies and ethics