Skip to main content

Chemical and Biological Tools for the Preparation of Modified Histone Proteins

  • Chapter
  • First Online:
Protein Ligation and Total Synthesis II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 363))

Abstract

Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through a large network of dynamic post-translational modifications (PTMs) which ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to understand better the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. We also cover the chemical ligation techniques which have been invaluable in the generation of complex modified histones indistinguishable from their natural counterparts. We end with a prospectus on future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davey CA et al (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J Mol Biol 319:1097–1113

    Article  CAS  Google Scholar 

  2. Luger K et al (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260

    Article  CAS  Google Scholar 

  3. Lochmann B, Ivanov D (2012) Histone H3 localizes to the centromeric DNA in budding yeast. PLoS Geneti 8:e1002739

    Google Scholar 

  4. Redon C et al (2002) Histone H2A variant H2AX and H2AZ. Curr Opin Genet Dev 12:162–169

    Article  CAS  Google Scholar 

  5. Ward IM et al (2003) Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J Biol Chem 278:19579–19582

    Article  CAS  Google Scholar 

  6. Park YJ et al (2004) A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J Biol Chem 279:24274–24282

    Article  CAS  Google Scholar 

  7. Jenuwein T (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  Google Scholar 

  8. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  Google Scholar 

  9. Schwammle V et al (2014) Large scale analysis of co-existing post-translational modifications in histone tails reveals global fine structure of cross-talk. Mol Cell Proteomics 13:1855–1865

    Article  CAS  Google Scholar 

  10. Lin S, Garcia BA (2012) Examining histone posttranslational modification patterns by high-resolution mass spectrometry. Methods Enzymol 512:3–28

  11. Tan M et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028

    Article  CAS  Google Scholar 

  12. Singh MP, Wijeratne SSK, Zempleni J (2013) Biotinylation of lysine 16 in histone H4 contributes toward nucleosome condensation. Arch Biochem Biophys 529:105–111

    Article  CAS  Google Scholar 

  13. Dhall A et al (2014) Sumoylated human histone H4 prevents chromatin compaction by inhibiting long-range internucleosomal interactions. J Biol Chem 289:33827–33837

    Article  CAS  Google Scholar 

  14. Sakabe K, Wang Z, Hart GW (2010) Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci U S A 107:19915–19920

    Article  CAS  Google Scholar 

  15. Fierz B, Muir TW (2012) Chromatin as an expansive canvas for chemical biology. Nat Chem Biol 8:417–427

    Article  CAS  Google Scholar 

  16. Pick H, Kilic S, Fierz B (2014) Engineering chromatin states: chemical and synthetic biology approaches to investigate histone modification function. Biochim Biophys Acta 1839:644–656

    Article  CAS  Google Scholar 

  17. Fierz B (2014) Synthetic chromatin approaches to probe the writing and erasing of histone modifications. ChemMedChem 9:495–504

    Article  CAS  Google Scholar 

  18. Frederiks F et al (2011) A modified epigenetics toolbox to study histone modifications on the nucleosome core. ChemBioChem 12:308–313

    Article  CAS  Google Scholar 

  19. Matsubara K et al (2007) Global analysis of functional surfaces of core histones with comprehensive point mutants. Genes Cells 12:13–33

    Article  CAS  Google Scholar 

  20. Hyland EM et al (2005) Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol Cell Biol 25:10060–10070

    Article  CAS  Google Scholar 

  21. Luger K, Rechsteiner TJ, Richmond TJ (1999) Preparation of nucleosome core particle from recombinant histones. Methods Enzymol 304:1–19

    Google Scholar 

  22. Watanabe S et al (2010) Structural characterization of H3K56Q nucleosomes and nucleosomal arrays. Biochim Biophys Acta 1799:480–486

    Article  CAS  Google Scholar 

  23. Muthurajan UM et al (2004) Crystal structures of histone Sin mutant nucleosomes reveal altered protein-DNA interactions. EMBO 23:260–270

    Article  CAS  Google Scholar 

  24. Iwasaki W et al (2011) Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains. Biochemistry 50:7822–7832

    Article  CAS  Google Scholar 

  25. Yu Q et al (2011) Differential contributions of histone H3 and H4 residues to heterochromatin structure. Genetics 188:291–308

    Article  CAS  Google Scholar 

  26. Wang X, Hayes JJ (2008) Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol Cell Biol 28:227–236

    Article  CAS  Google Scholar 

  27. Allahverdi A et al (2010) The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association. Nucleic Acids Res 39:1680–1691

    Article  CAS  Google Scholar 

  28. Manohar M et al (2009) Acetylation of histone H3 at the nucleosome dyad alters DNA-histone binding. J Biol Chem 284:23312–23321

    Article  CAS  Google Scholar 

  29. North JA et al (2011) Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling. Nucleic Acids Res 39:6465–6474

    Article  CAS  Google Scholar 

  30. North JA et al (2014) Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure. Nucleic Acids Res 42:4922–4933

    Article  CAS  Google Scholar 

  31. Shimko JC et al (2011) Preparation of fully synthetic histone H3 reveals that acetyl-lysine 56 facilitates protein binding within nucleosomes. J Mol Biol 408:187–204

    Article  CAS  Google Scholar 

  32. Neumann H et al (2009) A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell 36:153–163

    Article  CAS  Google Scholar 

  33. Masumoto H et al (2005) A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436:294–298

    Article  CAS  Google Scholar 

  34. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444

    Article  CAS  Google Scholar 

  35. Chin JW (2014) Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem 83:379–408

    Article  CAS  Google Scholar 

  36. Hao B et al (2002) A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296:1462–1466

    Article  CAS  Google Scholar 

  37. Tarrant MK, Cole PA (2009) The chemical biology of protein phosphorylation. Annu Rev Biochem 78:797–825

    Article  CAS  Google Scholar 

  38. Tropberger P, Schneider R (2013) Scratching the (lateral) surface of chromatin regulation by histone modifications. Nat Struct Mol Biol 20:657–661

    Article  CAS  Google Scholar 

  39. Di Cerbo V et al. (2014) Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. Elife 3:e01632

    Google Scholar 

  40. Nguyen DP et al (2010) Genetically directing ɛ-N,N-dimethyl-l-lysine in recombinant histones. Chem Biol 17:1072–1076

    Article  CAS  Google Scholar 

  41. Wang Y-S et al (2010) A genetically encoded photocaged Nε-methyl-l-lysine. Mol BioSyst 6:1557

    Article  CAS  Google Scholar 

  42. Xie Z et al (2012) Lysine succinylation and lysine malonylation in histones. Mol Cell Proteomics 11:100–107

    Article  CAS  Google Scholar 

  43. Gattner MJ, Vrabel M, Carell T (2013) Synthesis of ε-N-propionyl-, ε-N-butyryl-, and ε-N-crotonyl-lysine containing histone H3 using the pyrrolysine system. Chem Commun 49:379

    Article  CAS  Google Scholar 

  44. Kim CH et al (2012) Site-specific incorporation of ε-N-crotonyllysine into histones. Angew Chem Int Ed 51:7246–7249

    Article  CAS  Google Scholar 

  45. Yang R et al (2009) Dual native chemical ligation at lysine. JACS Commun 131:13592–13593

    Article  CAS  Google Scholar 

  46. Li X et al (2009) A pyrrolysine analogue for site-specific protein ubiquitination. Angew Chem Int Ed 48:9184–9187

    Article  CAS  Google Scholar 

  47. Yang R et al (2014) Native chemical ubiquitination using a genetically incorporated azidonorleucine. Chem Commun 50:7971

    Article  CAS  Google Scholar 

  48. Guo J et al (2008) Site-specific incorporation of methyl- and acetyl-lysine analogues into recombinant proteins. Angew Chem Int Ed 47:6399–6401

    Article  CAS  Google Scholar 

  49. Wang ZU et al (2012) A facile method to synthesize histones with posttranslational modification mimics. Biochemistry 51:5232–5234

    Article  CAS  Google Scholar 

  50. Chalker JM et al (2011) Methods for converting cysteine to dehydroalanine on peptides and proteins. Chem Sci 2:1666

    Article  CAS  Google Scholar 

  51. Chalker JM et al (2012) Conversion of cysteine into dehydroalanine enables access to synthetic histones bearing diverse post-translational modifications. Angew Chem Int Ed Engl 51:1835–1839

    Article  CAS  Google Scholar 

  52. Sawicka A, Seiser C (2014) Sensing core histone phosphorylation — a matter of perfect timing. Biochim Biophys Acta 1839:711–718

    Article  CAS  Google Scholar 

  53. Park HS et al (2011) Expanding the genetic code of Escherichia coli with phosphoserine. Science 333:1151–1154

    Article  CAS  Google Scholar 

  54. Lee S et al (2013) A facile strategy for selective incorporation of phosphoserine into histones. Angew Chem Int Ed 52:5771–5775

    Article  CAS  Google Scholar 

  55. Chin JW et al (2003) Progress toward an expanded eukaryotic genetic code. Chem Biol 10:511–519

    Article  CAS  Google Scholar 

  56. Lajoie MJ et al (2013) Genomically recoded organisms expand biological functions. Science 342:357–360

    Article  CAS  Google Scholar 

  57. Ambrogelly A, Palioura S, Söll D (2007) Natural expansion of the genetic code. Nat Chem Biol 3:29–35

    Article  CAS  Google Scholar 

  58. Anderson JC et al. (2004) An expanded genetic code with a functional quadruplet codon. Proc Natl Acad Sci 101:7566–7571

    Google Scholar 

  59. Wang K, Schmied WH, Chin JW (2012) Reprogramming the genetic code: from triplet to quadruplet codes. Angew Chem Int Ed 51:2288–2297

    Article  CAS  Google Scholar 

  60. Riddle DL, Carbon J (1973) Frameshift suppression: a nucleotide addition in the anticodon of a glycine transfer RNA. Nat New Biol 242:230–234

    Article  CAS  Google Scholar 

  61. Bowman A et al (2010) Probing the (H3-H4)2 histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling. Nucleic Acids Res 38:695–707

    Article  CAS  Google Scholar 

  62. Ward R et al (2009) Long distance PELDOR measurements on the histone core particle. J Am Chem Soc 131:1348–1349

    Article  CAS  Google Scholar 

  63. Tims HS, Widom J (2007) Stopped-flow fluorescence resonance energy transfer for analysis of nucleosome dynamics. Methods (San Diego, Calif.) 41:296–303

    Google Scholar 

  64. Dechassa ML et al (2008) Architecture of the SWI/SNF-nucleosome complex. Mol Cell Biol 28:6010–6021

    Article  CAS  Google Scholar 

  65. Ferreira H et al (2007) Histone tails and the H3 αN helix regulate nucleosome mobility and stability. Mol Cell Biol 27:4037–4048

    Article  CAS  Google Scholar 

  66. Kurumizaka H et al (2013) Current progress on structural studies of nucleosomes containing histone H3 variants. Curr Opin Struct Biol 23:109–115

    Article  CAS  Google Scholar 

  67. Flaus A et al (1996) Mapping nucleosome position at single base-pair resolution by using site-directed hydroxyl radicals. Proc Natl Acad Sci U S A 93:1370–1375

    Article  CAS  Google Scholar 

  68. Poirier MG et al (2009) Dynamics and function of compact nucleosome arrays. Nat Struct Mol Biol 16:938–944

    Article  CAS  Google Scholar 

  69. Simon MD et al (2007) The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128:1003–1012

    Article  CAS  Google Scholar 

  70. Kenyon G, Bruice TW (1977) Novel sulfhydryl reagents. Methods Enzymol 47:407–430

    Article  CAS  Google Scholar 

  71. Lauberth SM et al (2013) H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152:1021–1036

    Article  CAS  Google Scholar 

  72. Lu X et al (2008) The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol 15:1122–1124

    Article  CAS  Google Scholar 

  73. Xu C et al (2008) Structural basis for the recognition of methylated histone H3K36 by the Eaf3 subunit of histone deacetylase complex Rpd3S. Structure 16:1740–1750

    Article  CAS  Google Scholar 

  74. Eidahl JO et al (2013) Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res 41:3924–3936

    Article  CAS  Google Scholar 

  75. Hung T et al (2009) ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell 33:248–256

    Article  CAS  Google Scholar 

  76. Margueron R et al (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461:762–767

    Article  CAS  Google Scholar 

  77. Huang R et al (2010) Site-specific introduction of an acetyl-lysine mimic into peptides and proteins by cysteine alkylation. J Am Chem Soc 132:9986–9987

    Article  CAS  Google Scholar 

  78. Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49:1540–1573

    Article  CAS  Google Scholar 

  79. Li F et al (2011) A direct method for site-specific protein acetylation. Angew Chem Int Ed 50:9611–9614

    Article  CAS  Google Scholar 

  80. Le D et al. (2013) Site-Specific and Regiospecific Installation of Methylarginine Analogues into Recombinant Histones and Insights into Effector Protein Binding. J Am Chem Soc 135:2879–2882.

    Article  CAS  Google Scholar 

  81. Chatterjee A et al (2010) Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation. Nat Chem Biol 6:267–269

    Article  CAS  Google Scholar 

  82. Whitcomb SJ et al (2012) Histone monoubiquitylation position determines specificity and direction of enzymatic cross-talk with histone methyltransferases Dot1L and PRC2. J Biol Chem 287:23718–23725

    Article  CAS  Google Scholar 

  83. Dawson PE et al (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    Article  CAS  Google Scholar 

  84. He S et al. (2003) Facile synthesis of site-specifically acetylated and methylated histone proteins: reagents for evaluation of the histone code hypothesis. Proc Natl Acad Sci 100:12033–12038

    Google Scholar 

  85. Shogren-Knaak MA, Fry CJ, Peterson CL (2003) A native peptide ligation strategy for deciphering nucleosomal histone modifications. J Biol Chem 278:15744–15748

    Article  CAS  Google Scholar 

  86. Fierz B et al (2011) Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat Chem Biol 7:113–119

    Article  CAS  Google Scholar 

  87. Nguyen DP et al (2014) Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J Am Chem Soc 136:2240–2243

    Article  CAS  Google Scholar 

  88. Fry CJ, Shogren-Knaak MA, Peterson CL (2004) Histone H3 amino-terminal tail phosphorylation and acetylation: synergistic or independent transcriptional regulatory marks? Cold Spring Harb Symp Quant Biol 69:219–226

    Article  CAS  Google Scholar 

  89. Shogren-Knaak M (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847

    Article  CAS  Google Scholar 

  90. Ferreira H, Flaus A, Owen-Hughes T (2007) Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J Mol Biol 374:563–579

    Article  CAS  Google Scholar 

  91. Liu Y et al (2011) Influence of histone tails and H4 tail acetylations on nucleosome-nucleosome interactions. J Mol Biol 414:749–764

    Article  CAS  Google Scholar 

  92. Chiang KP et al (2009) A semisynthetic strategy to generate phosphorylated and acetylated histone H2B. Chembiochem 10:2182–2187

    Article  CAS  Google Scholar 

  93. Casadio F et al (2013) H3R42me2a is a histone modification with positive transcriptional effects. PNAS 110:14894–14899

    Article  CAS  Google Scholar 

  94. Kim J et al (2013) The n-SET domain of Set1 regulates H2B ubiquitylation-dependent H3K4 methylation. Mol Cell 49:1121–1133

    Article  CAS  Google Scholar 

  95. Chen Z, Gryzbowski AT, Ruthenburg AJ (2014) Traceless semisynthesis of a set of histone 3 species bearing specific lysine methylation marks. ChemBioChem 15:2071–2075

    Article  CAS  Google Scholar 

  96. Hackeng TM, Dawson PE (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci U S A 96:10069–10073

    Article  Google Scholar 

  97. Li S, Shogren-Knaak MA (2008) Cross-talk between histone H3 tails produces cooperative nucleosome acetylation. Proc Natl Acad Sci 105:18243–18248

    Google Scholar 

  98. Fry CJ et al (2006) The LRS and SIN domains: two structurally equivalent but functionally distinct nucleosomal surfaces required for transcriptional silencing. Mol Cell Biol 26:9045–9059

    Article  CAS  Google Scholar 

  99. Zhu Y, van der Donk W (2001) Convergent synthesis of peptide conjugates using dehydroalanines for chemoselective ligations. Org Lett 3:1189–1192

    Article  CAS  Google Scholar 

  100. Wan Q, Danishefsky SJ (2007) Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew Chem Int Ed 46:9248–9252

    Article  CAS  Google Scholar 

  101. Fierz B et al (2012) Stability of nucleosomes containing homogenously ubiquitylated H2A and H2B prepared using semisynthesis. J Am Chem Soc 134:19548–19551

    Article  CAS  Google Scholar 

  102. Wong CTT et al (2014) Realizing serine/threonine ligation: scope and limitations and mechanistic implication thereof. Front Chem 2:28

    Google Scholar 

  103. Haase C, Rohde H, Seitz O (2008) Native chemical ligation at valine. Angew Chem Int Ed 47:6807–6810

    Article  CAS  Google Scholar 

  104. Crich D, Banerjee A (2007) Native chemical ligation at phenylalanine. JACS Commun 129:10064–10065

    Article  CAS  Google Scholar 

  105. Mersfelder EL, Parthun MR (2006) The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res 34:2653–2662

    Article  CAS  Google Scholar 

  106. Jack AM, Hake S (2014) Getting down to the core of histone modifications. Chromosoma 123:355–371

    Article  CAS  Google Scholar 

  107. Wood DW, Camarero JA (2014) Intein applications: from protein purification and labeling to metabolic control methods. J Biol Chem 289:14512–14519

    Article  CAS  Google Scholar 

  108. Ayers B et al (1999) Introduction of unnatural amino acids into proteins using expressed protein ligation. Pept Sci 51:343–354

    Article  CAS  Google Scholar 

  109. McGinty RK et al (2008) Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453:812–816

    Article  CAS  Google Scholar 

  110. Shimko JC et al. (2013) Preparing semisynthetic and fully synthetic histones H3 and H4 to modify the nucleosome core. Methods Mol Biol 981:177–192

    Google Scholar 

  111. Simon M et al (2011) Histone fold modifications control nucleosome unwrapping and disassembly. Proc Natl Acad Sci U S A 108:12711–12716

    Article  CAS  Google Scholar 

  112. Javaid S et al (2009) Nucleosome remodeling by hMSH2-hMSH6. Mol Cell 36:1086–1094

    Article  CAS  Google Scholar 

  113. Kruger W et al (1995) Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev 9:2770–2779

    Article  CAS  Google Scholar 

  114. Hurd PJ et al (2009) Phosphorylation of histone H3 Thr-45 is linked to apoptosis. J Biol Chem 284:16675–16683

    Article  CAS  Google Scholar 

  115. Ulyanova NP, Schnitzler GR (2005) Human SWI/SNF generates abundant, structurally altered dinucleosomes on polynucleosomal templates. Mol Cell Biol 25:11156–11170

    Article  CAS  Google Scholar 

  116. Schnitzler GR, Sif S, Kingston RE (1998) Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell 94:17–27

    Article  CAS  Google Scholar 

  117. McGinty RK et al (2009) Structure–activity analysis of semisynthetic nucleosomes: mechanistic insights into the stimulation of dot1l by ubiquitylated histone H2B. ACS Chem Biol 4:958–968

    Article  CAS  Google Scholar 

  118. Nguyen UTT et al (2014) Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat Methods 11:834–840

    Article  CAS  Google Scholar 

  119. Mahto SK et al (2011) A reversible protection strategy to improve Fmoc-SPPS of peptide thioesters by the N-acylurea approach. ChemBioChem 12:2488–2494

    Article  CAS  Google Scholar 

  120. Fang GM, Wang JX, Liu L (2012) Convergent chemical synthesis of proteins by ligation of peptide hydrazides. Angew Chem Int Ed Engl 51:10347–10350

    Article  CAS  Google Scholar 

  121. Li J et al (2014) One-pot native chemical ligation of peptide hydrazides enables total synthesis of modified histones. Org Biomol Chem 12:5435

    Article  CAS  Google Scholar 

  122. Siman P et al (2013) Convergent chemical synthesis of histone H2B protein for the site-specific ubiquitination at Lys34. Angew Chem Int Ed 52:8059–8063

    Article  CAS  Google Scholar 

  123. Jbara M, Seenaiah M, Brik A (2014) Solid phase chemical ligation employing a Rink amide linker for the synthesis of histone H2B protein. Chem Commun 50:12534–12537

    Article  CAS  Google Scholar 

  124. Linghu C et al (2013) Discovering common combinatorial histone modification patterns in the human genome. Gene 518:171–178

    Article  CAS  Google Scholar 

  125. Zheng C, Hayes JJ (2003) Intra- and inter-nucleosomal protein-DNA interactions of the core histone tail domains in a model system. J Biol Chem 278:24217–24224

    Article  CAS  Google Scholar 

  126. Mohberg J, Rusch HP (1969) Isolation of the nuclear histones from the myxomycete, Physarum polycephalum. Arch Biochem Biophys 134:577–589

    Article  CAS  Google Scholar 

  127. Thiriet C, Hayes JJ (1999) Histone proteins in vivo: cell-cycle-dependent physiological effects of exogenous linker histones incorporated into Physarum polycephalum. Methods 17:140–150

    Article  CAS  Google Scholar 

  128. Prior CP et al (1980) Incorporation of exogenous pyrene-labeled histone into Physarum chromatin: a system for studying changes in nucleosomes assembled in vivo. Cell 20:597–608

    Article  CAS  Google Scholar 

  129. Adamatzky A (2013) Slimeware: engineering devices with slime mold. Artificial Life 19:317–330

    Article  Google Scholar 

  130. Taylor B et al (2014) Physarum polycephalum: towards a biological controller. Biosystems 127C:42–46

    Google Scholar 

  131. Ejlassi-Lassallette A et al (2010) H4 replication-dependent diacetylation and Hat1 promote S-phase chromatin assembly in vivo. Mol Biol Cell 22:245–255

    Article  CAS  Google Scholar 

  132. Thiriet C, Hayes JJ (2001) A novel labeling technique reveals a function for histone H2A/H2B dimer tail domains in chromatin assembly in vivo. Genes Dev 15:2048–2053

    Article  CAS  Google Scholar 

  133. Studitsky VM, Clark DJ, Felsenfeld G (1994) A histone octamer can step around a transcribing polymerase without leaving the template. Cell 76:371–382

    Article  CAS  Google Scholar 

  134. Kireeva ML et al (2002) Nucleosome remodeling induced by RNA polymerase II: loss of the H2A-H2B dimer during transcription. Mol Cell 9:541–552

    Article  CAS  Google Scholar 

  135. Nishiyama A et al (2008) Intracellular delivery of acetyl-histone peptides inhibits native bromodomain-chromatin interactions and impairs mitotic progression. FEBS Lett 582:1501–1507

    Article  CAS  Google Scholar 

  136. Heo K et al (2013) Cell-penetrating H4 tail peptides potentiate p53-mediated transactivation via inhibition of G9a and HDAC1. Oncogene 32:2510–2520

    Article  CAS  Google Scholar 

  137. Keller AA et al (2014) Transduction of proteins into Leishmania tarentolae by formation of non-covalent complexes with cell-penetrating peptides. J Cell Biochem 115:243–252

    Article  CAS  Google Scholar 

  138. Rosenbluh J et al (2004) Non-endocytic penetration of core histones into petunia protoplasts and cultured cells: a novel mechanism for the introduction of macromolecules into plant cells. Biochim Biophys Acta 1664:230–240

    Article  CAS  Google Scholar 

  139. Hariton-Gazal E et al (2003) Direct translocation of histone molecules across cell membranes. J Cell Sci 116:4577–4586

    Article  CAS  Google Scholar 

  140. Balicki D et al. (2002) Structure and function correlation in histone H2A peptide-mediated gene transfer. Proc Natl Acad Sci 99:7467–7471

    Google Scholar 

  141. Kaouass M, Beaulieu R, Balicki D (2006) Histonefection: Novel and potent non-viral gene delivery. J Control Release 113:245–254

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer J. Ottesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Howard, C.J., Yu, R.R., Gardner, M.L., Shimko, J.C., Ottesen, J.J. (2015). Chemical and Biological Tools for the Preparation of Modified Histone Proteins. In: Liu, L. (eds) Protein Ligation and Total Synthesis II. Topics in Current Chemistry, vol 363. Springer, Cham. https://doi.org/10.1007/128_2015_629

Download citation

Publish with us

Policies and ethics