Skip to main content

Mechanochemistry of Topological Complex Polymer Systems

  • Chapter
  • First Online:
Polymer Mechanochemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 369))

Abstract

Although existing since the concept of macromolecules, polymer mechanochemistry is a burgeoning field which attracts great scientific interest in its ability to bias conventional reaction pathways and its potential to fabricate mechanoresponsive materials. We review here the effect of topology on the mechanical degradation of polymer chains and the activation of mechanophores in polymer backbones. The chapter focuses on both experimental and theoretical work carried out in the past 70 years. After a general introduction (Sect. 1), where the concept, the history, and the application of polymer mechanochemistry are briefly described, flow fields to study polymer mechanochemistry are discussed (Sect. 2), results of mechanochemistry study are presented for linear polymers (Sect. 3), cyclic polymers (Sect. 4), graft polymers (Sect. 5), star-shaped polymers (Sect. 6), hyperbranched polymers and dendrimers (Sect. 7), and systems with dynamic topology (Sect. 8). Here we focus on (1) experimental results involving the topological effect on the coil-to-stretch transition and the fracture of the polymer chains, (2) the underlying mechanisms and the key factor that determines the mechanical stability of the macromolecules, (3) theoretical models that relate to the experimental observations, and (4) rational design of mechanophores in complex topology to achieve multiple activations according to the existing results observed in chain degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( \dot{\varepsilon} \) :

Strain rate

\( {\dot{\varepsilon}}_{\mathrm{A}} \) :

Critical strain rate for mechanophore activation

\( {\dot{\varepsilon}}_{\mathrm{C}} \) :

Critical strain rate for CST

\( {\dot{\varepsilon}}_{\mathrm{F}} \) :

Critical strain rate for chain scission

[η]:

Intrinsic viscosity

ΔE*(0):

Activation energy at rest (zero force)

ΔE*(F):

Activation energy of a reaction as a function of external force

ΔP A :

Pressure drop with the drag reduction agent

ΔP S :

Pressure drop with pure solvent

Δζ :

Distance from reactant to transition-state configuration along the reaction coordinate ζ

ζ :

Reaction coordinate

η Base :

Kinematic viscosity of the base oil

η Fresh :

Kinematic viscosity of the fresh unsheared lubricant

η s :

Dynamic viscosity of the fluid

η Shear :

Kinematic viscosity of the sheared lubricant

ν :

Flory exponent

ξ :

Hydrodynamic drag coefficient

ξ g :

Hydrodynamic drag coefficient of grafted chains

ρ s :

Density of the solvent

σ F :

Critical force to break a bond

σ i :

Cumulative hydrodynamic drag force on each bead

σ mid :

Maximum hydrodynamic drag force at the midpoint of a linear chain

σ mid_g :

Additional hydrodynamic drag force from side chain

σ mid_graft :

Maximum hydrodynamic drag force at the midpoint of a backbone for grating polymers

τ 0 :

Longest relaxation time of a polymer chain

a :

Radius of the beads

b :

Length of chain segment

b g :

Distance between neighboring side chains

c :

Size of the bead in the side chain

d :

Hydraulic diameter of the pipe

DB:

Degree of branching

De :

Deborah number

DRE:

Drag reduction efficiency

f :

Hydrodynamic drag force on a bead

F :

External force exerts on a chemical reaction

f arm :

Number of arms in a star-shaped molecule

k :

Rate constant

k 0 :

Rate constant at zero force

k B :

Boltzmann constant

M :

Total molecular weight of a chain

M arm :

Molecular weight of an arm in a star-shape molecule

M lim :

Limiting molecular weight of a linear polymer chain to observe mechanical degradation

M span :

Molecular weight of a spanning path in a nonlinear macromolecule

M w :

Weight averaged molecular weight

N :

Total number of repeating units of a macromolecule

N arm :

Number of repeating units of an arm

N L :

Number of repeating unit of the linear backbone for grafting chain

N lad :

Maximum number of repeating unit permissible of a linear macromolecule in a ladder-like polymer

N lin :

Maximum number of repeating unit permissible of a linear macromolecule in isolated conformations

N span :

Number of repeating units along the spanning path

p :

Number of side chains in bead-rod model

R :

End-to-end distance of a polymer coil

R arm :

End-to-end distance of the arm

Re :

Reynolds number

R G :

Radius of gyration for a polymer coil

R H :

Hydrodynamic radius of a polymer coil

S 1 :

Shielding factor of the linear backbone

S 2 :

Shielding factor of the grafting chain

T :

Kelvin temperature

V :

Mean velocity of the fluid

v i :

Velocity of a bead

Wi :

Wiener index

cPPA:

Cyclic poly(o-phthalaldehyde)

CST:

Coil-to-stretch transition

FTF:

Fast-transient-flow

MC:

Merocyanine

PAA:

Poly(acrylic acid)

PAM:

Poly(acrylamide)

PB:

Polybutadiene

PDMS:

Poly(dimethylsiloxanes)

PE:

Polyethylene

PEA:

Poly(ethyl acrylate)

PEO:

Polyethylene oxide

PiBA:

Poly(iso-butyl acrylate)

PMA:

Poly(methyl acrylate)

PMMA:

Poly(methyl methacrylate)

PnBA:

Poly(n-butyl acrylate)

PS:

Polystyrene

PtBA:

Poly (tert-butyl acrylate)

QSSF:

Quasi-static-state-flow

SP:

Spiropyran

References

  1. Ostwald W (1909) Grundriss de Kolloidchemie. Verlag von Theodor Steinkoppff, Dresden

    Google Scholar 

  2. Ostwald W (1887) Lehrbuch de Allgemeinen Chemie. 2. Auflage, 2. Band, Engelmann, Leipzig

    Google Scholar 

  3. Takacs L (2013) The historical development of mechanochemistry. Chem Soc Rev 42:7649–7659

    Article  CAS  Google Scholar 

  4. Faraday M (1820) Quart J Sci Lit Art 8:374

    Google Scholar 

  5. Lea MC (1866) Researches on the latent image. Brit J Phot 13:84

    Google Scholar 

  6. Lea MC (1891) On gold-coloured allotropic silver, part I. Am J Sci 141:179–190

    Article  Google Scholar 

  7. Lea MC (1891) On allotropic silver. Part II - relations of allotropic silver with silver as it exists in silver compounds. Am J Sci 141:259–267

    Article  Google Scholar 

  8. Lea MC (1892) Disruption of the silver haloid molecule by mechanical force. Am J Sci 143:527–531

    Article  Google Scholar 

  9. Lea MC (1893) On endothermic decomposition obtained by pressure. Second part. Transformation of energy by shearing stress. Am J Sci 145:413–420

    Article  Google Scholar 

  10. Lea MC (1894) Transformation of mechanical into chemical energy. Third part. Acting of shearing stress continued. Am J Sci 147:377–381

    Article  Google Scholar 

  11. Sohma J (1989) Mechanochemistry of polymers. Prog Polym Sci 14:451–596

    Article  CAS  Google Scholar 

  12. Beyer MK, Clausen-Schaumann H (2005) Mechanochemistry: the mechanical activation of covalent bonds. Chem Rev 105:2921–2948

    Article  CAS  Google Scholar 

  13. Vasiliu-Oprea C, Dan F (2006) Macromolecular mechanochemistry. Cambridge International Science, Cambridge

    Google Scholar 

  14. Balaz P (2008) Mechanochemistry in nanoscience and minerals engineering. Spring-Verlag, Berlin/Heidelberg

    Google Scholar 

  15. Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR, White SR, Moore JS (2009) Mechanically-induced chemical changes in polymeric materials. Chem Rev 109:5755–5798

    Article  CAS  Google Scholar 

  16. Staudinger H, Bondy HF (1930) Über Isopren und Kautschuk, 19. Mitteil.: Über die Molekülgröße des Kautschuks und der Balata. Ber Dtsch Chem Ges 63:734–736

    Article  Google Scholar 

  17. Staudinger H, Heuer W (1934) Über hochpolymere Verbindungen, 93. Mitteil.: Über das Zerreißen der Faden-Moleküle des Poly-styrols. Ber Dtsch Chem Ges 67:1159–1164

    Article  Google Scholar 

  18. Staudinger H, Leupold EO (1930) Über Isopren und Kautschuk, 18. Mitteil.: Viscositäts-Untersuchungen an Balata. Ber Dtsch Chem Ges 63:730–733

    Article  Google Scholar 

  19. Ayrey G, Moore CG, Watson WF (1956) Mastication. Part III. Chemical verification of the mechanical degradation mechanism of cold mastication. J Polym Sci 19:1–15

    Article  CAS  Google Scholar 

  20. Basedow AM, Ebert KH (1977) Ultrasonic degradation of polymers in solution. Adv Polym Sci 22:83–148

    Article  CAS  Google Scholar 

  21. Frenkel Y (1944) Acta Physicochim URSS 19:51

    CAS  Google Scholar 

  22. Kuhn W, Kuhn H (1944) Wanderungsdoppelbrechung von Fadenmolekelionen im elektrischen Feld. Helv Chim Acta 27:493–499

    Article  CAS  Google Scholar 

  23. Peterlin A (1966) Hydrodynamics of linear macromolecules. Pure Appl Chem 12:563–586

    Article  CAS  Google Scholar 

  24. Frank FC (1970) The strength and stiffness of polymers. Proc R Soc Lond A 319:127–136

    Article  CAS  Google Scholar 

  25. Marucci G (1975) Limiting concepts in extensional flow. Polym Eng Sci 15:229–233

    Article  Google Scholar 

  26. De Gennes PG (1974) Coil‐stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J Chem Phys 60:5030–5042

    Article  Google Scholar 

  27. Keller A, Odell JA (1985) The extensibility of macromolecules in solution-a new focus for macromolecular science. Colloid Polym Sci 263:181–201

    Article  CAS  Google Scholar 

  28. Odell JA, Keller A (1986) Flow-induced chain fracture of isolated linear macromolecules in solution. J Polym Sci Polym Phys 24:1889–1916

    Article  CAS  Google Scholar 

  29. Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR (2007) Biasing reaction pathways with mechanical force. Nature 446:423–427

    Article  CAS  Google Scholar 

  30. Lenhardt JM, Ong MT, Choe R, Evenhuis CR, Martinez TJ, Craig SL (2010) Trapping a diradical transition state by mechanochemical polymer extension. Science 329:1057–1060

    Article  CAS  Google Scholar 

  31. Huang Z, Boulatov R (2011) Chemomechanics: chemical kinetics for multiscale phenomena. Chem Soc Rev 40:2359–2384

    Article  CAS  Google Scholar 

  32. Davis DA, Hamilton A, Yang J, Cremar LD, Gough DV, Potisek SL, Ong MT, Braun PV, Martínez TJ, White SR, Moore JS, Sottos NR (2009) Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459:68–72

    Article  CAS  Google Scholar 

  33. Berkowski KL, Potisek SL, Hickenboth CR, Moore JS (2005) Ultrasound-induced site-specific cleavage of azo-functionalized poly(ethylene glycol). Macromolecules 38:8975–8978

    Article  CAS  Google Scholar 

  34. Gossweiler GR, Hewage GB, Soriano G, Wang Q, Welshofer GW, Zhao X, Craig SL (2014) Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery. ACS Macro Lett 216–219

    Google Scholar 

  35. Beiermann BA, Kramer SLB, Moore JS, White SR, Sottos NR (2012) Role of mechanophore orientation in mechanochemical reactions. ACS Macro Lett 1:163–166

    Article  CAS  Google Scholar 

  36. Beiermann BA, Kramer SLB, May PA, Moore JS, White SR, Sottos NR (2013) The effect of polymer chain alignment and relaxation on force-induced chemical reactions in an elastomer. Adv Funct Mater 24:1529–1537

    Google Scholar 

  37. Beiermann BA, Davis DA, Kramer SLB, Moore JS, Sottos NR, White SR (2011) Environmental effects on mechanochemical activation of spiropyran in linear PMMA. J Mater Chem 21:8443–8447

    Article  CAS  Google Scholar 

  38. Kingsbury CM, May PA, Davis DA, White SR, Moore JS, Sottos NR (2011) Shear activation of mechanophore-crosslinked polymers. J Mater Chem 21:8381–8388

    Article  CAS  Google Scholar 

  39. Lee CK, Davis DA, White SR, Moore JS, Sottos NR, Braun PV (2010) Force-induced redistribution of a chemical equilibrium. J Am Chem Soc 132:16107–16111

    Article  CAS  Google Scholar 

  40. Degen CM, May PA, Moore JS, White SR, Sottos NR (2013) Time-dependent mechanochemical response of SP-cross-linked PMMA. Macromolecules 46:8917–8921

    Article  CAS  Google Scholar 

  41. Lee CK, Beiermann BA, Silberstein MN, Wang J, Moore JS, Sottos NR, Braun PV (2013) Exploiting force sensitive spiropyrans as molecular level probes. Macromolecules 46:3746–3752

    Article  CAS  Google Scholar 

  42. Chen Y, Zhang H, Fang X, Lin Y, Xu Y, Weng W (2014) Mechanical activation of mechanophore enhanced by strong hydrogen bonding interactions. ACS Macro Lett 3:141–145

    Article  CAS  Google Scholar 

  43. Jiang S, Zhang L, Xie T, Lin Y, Zhang H, Xu Y, Weng W, Dai L (2013) Mechanoresponsive PS-PnBA-PS triblock copolymers via covalently embedding mechanophore. ACS Macro Lett 705–709

    Google Scholar 

  44. Fang X, Zhang H, Chen Y, Lin Y, Xu Y, Weng W (2013) Biomimetic modular polymer with tough and stress sensing properties. Macromolecules 46:6566–6574

    Article  CAS  Google Scholar 

  45. Hong G, Zhang H, Lin Y, Chen Y, Xu Y, Weng W, Xia H (2013) Mechanoresponsive healable metallosupramolecular polymers. Macromolecules 46:8649–8656

    Article  CAS  Google Scholar 

  46. Lenhardt JM, Black AL, Beiermann BA, Steinberg BD, Rahman F, Samborski T, Elsakr J, Moore JS, Sottos NR, Craig SL (2011) Characterizing the mechanochemically active domains in gem-dihalocyclopropanated polybutadiene under compression and tension. J Mater Chem 21:8454–8459

    Article  CAS  Google Scholar 

  47. Lenhardt JM, Black AL, Craig SL (2009) gem-Dichlorocyclopropanes as abundant and efficient mechanophores in polybutadiene copolymers under mechanical stress. J Am Chem Soc 131:10818–10819

    Article  CAS  Google Scholar 

  48. Black Ramirez AL, Ogle JW, Schmitt AL, Lenhardt JM, Cashion MP, Mahanthappa MK, Craig SL (2011) Microstructure of copolymers formed by the reagentless, mechanochemical remodeling of homopolymers via pulsed ultrasound. ACS Macro Lett 1:23–27

    Article  CAS  Google Scholar 

  49. Diesendruck CE, Steinberg BD, Sugai N, Silberstein MN, Sottos NR, White SR, Braun PV, Moore JS (2012) Proton-coupled mechanochemical transduction: a mechanogenerated acid. J Am Chem Soc 134:12446–12449

    Article  CAS  Google Scholar 

  50. Lenhardt JM, Ogle JW, Ong MT, Choe R, Martinez TJ, Craig SL (2011) Reactive cross-talk between adjacent tension-trapped transition states. J Am Chem Soc 133:3222–3225

    Article  CAS  Google Scholar 

  51. Klukovich HM, Kean ZS, Ramirez ALB, Lenhardt JM, Lin J, Hu X, Craig SL (2012) Tension trapping of carbonyl ylides facilitated by a change in polymer backbone. J Am Chem Soc 134:9577–9580

    Article  CAS  Google Scholar 

  52. Kryger MJ, Ong MT, Odom SA, Sottos NR, White SR, Martinez TJ, Moore JS (2010) Masked cyanoacrylates unveiled by mechanical force. J Am Chem Soc 132:4558–4559

    Article  CAS  Google Scholar 

  53. Kean ZS, Niu Z, Hewage GB, Rheingold AL, Craig SL (2013) Stress-responsive polymers containing cyclobutane core mechanophores: reactivity and mechanistic insights. J Am Chem Soc 135:13598–13604

    Article  CAS  Google Scholar 

  54. Kean ZS, Ramirez ALB, Yan YF, Craig SL (2012) Bicyclo 3.2.0 heptane mechanophores for the non-scissile and photochemically reversible generation of reactive bis-enones. J Am Chem Soc 134:12939–12942

    Article  CAS  Google Scholar 

  55. Klukovich HM, Kean ZS, Iacono ST, Craig SL (2011) Mechanically induced scission and subsequent thermal remending of perfluorocyclobutane polymers. J Am Chem Soc 133:17882–17888

    Article  CAS  Google Scholar 

  56. Kryger MJ, Munaretto AM, Moore JS (2011) Structure–mechanochemical activity relationships for cyclobutane mechanophores. J Am Chem Soc 133:18992–18998

    Article  CAS  Google Scholar 

  57. Konda SSM, Brantley JN, Varghese BT, Wiggins KM, Bielawski CW, Makarov DE (2013) Molecular catch bonds and the anti-Hammond effect in polymer mechanochemistry. J Am Chem Soc 135:12722–12729

    Article  CAS  Google Scholar 

  58. Wiggins KM, Syrett JA, Haddleton DM, Bielawski CW (2011) Mechanically facilitated retro 4 + 2 cycloadditions. J Am Chem Soc 133:7180–7189

    Article  CAS  Google Scholar 

  59. Brantley JN, Konda SSM, Makarov DE, Bielawski CW (2012) Regiochemical effects on molecular stability: a mechanochemical evaluation of 1,4- and 1,5-disubstituted triazoles. J Am Chem Soc 134:9882–9885

    Article  CAS  Google Scholar 

  60. Brantley JN, Wiggins KM, Bielawski CW (2011) Unclicking the click: mechanically facilitated 1,3-dipolar cycloreversions. Science 333:1606–1609

    Article  CAS  Google Scholar 

  61. Chen Y, Spiering AJH, Karthikeyan S, Peters GWM, Meijer EW (2012) Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nat Chem 4:559–562

    Article  CAS  Google Scholar 

  62. Tennyson AG, Wiggins KM, Bielawski CW (2010) Mechanical activation of catalysts for C − C bond forming and anionic polymerization reactions from a single macromolecular reagent. J Am Chem Soc 132:16631–16636

    Article  CAS  Google Scholar 

  63. Paulusse JMJ, Sijbesma RP (2008) Selectivity of mechanochemical chain scission in mixed palladium(II) and platinum(II) coordination polymers. Chem Commun 4416–4418

    Google Scholar 

  64. Piermattei A, Karthikeyan S, Sijbesma RP (2009) Activating catalysts with mechanical force. Nat Chem 1:133–137

    Article  CAS  Google Scholar 

  65. Larsen MB, Boydston AJ (2013) “Flex-activated” mechanophores: using polymer mechanochemistry to direct bond bending activation. J Am Chem Soc 135:8189–8192

    Article  CAS  Google Scholar 

  66. Larsen MB, Boydston AJ (2014) Successive mechanochemical activation and small molecule release in an elastomeric material. J Am Chem Soc 136:1276–1279

    Article  CAS  Google Scholar 

  67. Brantley JN, Wiggins KM, Bielawski CW (2013) Polymer mechanochemistry: the design and study of mechanophores. Polym Int 62:2–12

    Article  CAS  Google Scholar 

  68. Woodward RB, Hoffmann R (1969) The conservation of orbital symmetry. Angew Chem Int Ed 8:781–853

    Article  CAS  Google Scholar 

  69. Wiggins KM, Brantley JN, Bielawski CW (2012) Polymer mechanochemistry: force enabled transformations. ACS Macro Lett 1:623–626

    Article  CAS  Google Scholar 

  70. Black AL, Lenhardt JM, Craig SL (2011) From molecular mechanochemistry to stress-responsive materials. J Mater Chem 21:1655–1663

    Article  CAS  Google Scholar 

  71. Wu D, Lenhardt JM, Black AL, Akhremitchev BB, Craig SL (2010) Molecular stress relief through a force-induced irreversible extension in polymer contour length. J Am Chem Soc 132:15936–15938

    Article  CAS  Google Scholar 

  72. Ramirez ALB, Kean ZS, Orlicki JA, Champhekar M, Elsakr SM, Krause WE, Craig SL (2013) Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat Chem 5:757–761

    Article  CAS  Google Scholar 

  73. Brantley JN, Wiggins KM, Bielawski CW (2013) Squeezing new life out of polymers. Angew Chem Int Ed 52:3806–3808

    Article  CAS  Google Scholar 

  74. Baytekin HT, Baytekin B, Grzybowski BA (2012) Mechanoradicals created in “polymeric sponges” drive reactions in aqueous media. Angew Chem Int Ed 51:3596–3600

    Article  CAS  Google Scholar 

  75. Chen XX, Dam MA, Ono K, Mal A, Shen HB, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295:1698–1702

    Article  CAS  Google Scholar 

  76. Reutenauer P, Buhler E, Boul PJ, Candau SJ, Lehn JM (2009) Room temperature dynamic polymers based on Diels-Alder chemistry. Chem Eur J 15:1893–1900

    Article  CAS  Google Scholar 

  77. Jakobs RTM, Ma S, Sijbesma RP (2013) Mechanocatalytic polymerization and cross-linking in a polymeric matrix. ACS Macro Lett 2:613–616

    Article  CAS  Google Scholar 

  78. Ducrot E, Chen Y, Bulters M, Sijbesma RP, Creton C (2014) Toughening elastomers with sacrificial bonds and watching them break. Science 344:186–189

    Article  CAS  Google Scholar 

  79. Pike M, Watson WF (1952) Mastication of rubber. I. Mechanism of plasticizing by cold mastication. J Polym Sci 9:229–251

    Article  CAS  Google Scholar 

  80. Angier DJ, Chambers WT, Watson WF (1957) Mastication of rubber. VI. Viscosity and molecular weight relationships for natural rubber after cold mastication. J Polym Sci 25:129–138

    Article  CAS  Google Scholar 

  81. Berman NS (1978) Drag reduction by polymers. Annu Rev Fluid Mech 10:47–64

    Article  CAS  Google Scholar 

  82. Bekard IB, Asimakis P, Bertolini J, Dunstan DE (2011) The effects of shear flow on protein structure and function. Biopolymers 95:733–745

    CAS  Google Scholar 

  83. Batchelor AW, Stachowiak GW (1996) Arthritis and the interacting mechanisms of synovial joint lubrication. 1. Operating conditions and the environment. J Orthop Rheumatol 9:3–10

    Google Scholar 

  84. Turssi CP, Purquerio BDM, Serra MC (2003) Wear of dental resin composites: insights into underlying processes and assessment methods - a review. J Biomed Mater Res B Appl Biomater 65B:280–285

    Article  CAS  Google Scholar 

  85. Wu T, Zivanovic S, Hayes DG, Weiss J (2008) Efficient reduction of chitosan molecular weight by high-intensity ultrasound: underlying mechanism and effect of process parameters. J Agric Food Chem 56:5112–5119

    Article  CAS  Google Scholar 

  86. van den Einde RM, Akkermans C, van der Goot AJ, Boom RM (2004) Molecular breakdown of corn starch by thermal and mechanical effects. Carbohydr Polym 56:415–422

    Article  CAS  Google Scholar 

  87. van den Einde RM, van der Goot AJ, Boom RM (2003) Understanding molecular weight reduction of starch during heating-shearing processes. J Food Sci 68:2396–2404

    Article  Google Scholar 

  88. Striegel AM (2007) Influence of anomeric configuration on mechanochemical degradation of polysaccharides: cellulose versus amylose. Biomacromolecules 8:3944–3949

    Article  CAS  Google Scholar 

  89. Buchholz BA, Zahn JM, Kenward M, Slater GW, Barron AE (2004) Flow-induced chain scission as a physical route to narrowly distributed, high molar mass polymers. Polymer 45:1223–1234

    Article  CAS  Google Scholar 

  90. Hariadi RF, Yurke B (2010) Elongational-flow-induced scission of DNA nanotubes in laminar flow. Phys Rev E 82:046307

    Article  CAS  Google Scholar 

  91. Oefner PJ, Hunicke-Smith SP, Chiang L, Dietrich F, Mulligan J, Davis RW (1996) Efficient random subcloning of DNA sheared in a recirculating point-sink flow system. Nucleic Acids Res 24:3879–3886

    Article  CAS  Google Scholar 

  92. Thorstenson YR, Hunicke-Smith SP, Oefner PJ, Davis RW (1998) An automated hydrodynamic process for controlled, unbiased DNA shearing. Genome Res 8:848–855

    CAS  Google Scholar 

  93. Lengsfeld CS, Anchordoquy TJ (2002) Shear-induced degradation of plasmid DNA. J Pharm Sci 91:1581–1589

    Article  CAS  Google Scholar 

  94. Jia Z, Monteiro MJ (2012) Cyclic polymers: methods and strategies. J Polym Sci Polym Chem 50:2085–2097

    Article  CAS  Google Scholar 

  95. Aloorkar NH, Kulkarni AS, Patil RA, Ingale DJ (2012) Star polymers: an overview. Int J Pharm Sci Nanotech 5:1675–1684

    Google Scholar 

  96. Qiu L, Bae Y (2006) Polymer architecture and drug delivery. Pharmaceut Res 23:1–30

    Article  CAS  Google Scholar 

  97. Odell JA, Keller A, Rabin Y (1988) Flow-induced scission of isolated macromolecules. J Chem Phys 88:4022–4028

    Article  CAS  Google Scholar 

  98. Müller AJ, Odell JA, Keller A (1988) Elongational flow and rheology of monodisperse polymers in solution. J Nonnewton Fluid 30:99–118

    Article  Google Scholar 

  99. Muller AJ, Odell JA, Carrington S (1991) Degradation of polymer solutions in extensional flow. In: Proceedings of the polymer physics: a conference to mark the retirement of A Keller, Bristol UK, pp 3–5

    Google Scholar 

  100. Narh KA, Odell JA, Keller A (1992) Temperature-dependence of the conformational relaxation-time of polymer-molecules in elongational flow-invariance of the molecular-weight exponent. J Polym Sci Polym Phys 30:335–340

    Article  CAS  Google Scholar 

  101. Odell JA, Keller A, Muller AJ (1992) Thermomechanical degradation of macromolecules. Colloid Polym Sci 270:307–324

    Article  CAS  Google Scholar 

  102. Carrington SP, Odell JA (1996) How do polymers stretch in stagnation point extensional flow-fields? J Nonnewton Fluid 67:269–283

    Article  CAS  Google Scholar 

  103. Hsieh CC, Park SJ, Larson RG (2005) Brownian dynamics modeling of flow-induced birefringence and chain scission in dilute polymer solutions in a planar cross-slot flow. Macromolecules 38:1456–1468

    Article  CAS  Google Scholar 

  104. Pope DP, Keller A (1977) Alignment of macromolecules in solution by elongational flow; a study of the effect of pure shear in a four roll mill. Colloid Polym Sci 255:633–643

    Article  CAS  Google Scholar 

  105. Nguyen TQ, Kausch HH (1986) Degradation of a polymer-solution in transient elongational flow-effect of temperature. Colloid Polym Sci 264:764–772

    Article  CAS  Google Scholar 

  106. Nguyen TQ, Kausch HH (1988) Chain scission in transient extensional flow kinetics and molecular-weight dependence. J Nonnewton Fluid 30:125–140

    Article  CAS  Google Scholar 

  107. Nguyen TQ, Kausch HH (1989) Kinetics of polymer degradation in transient elongational flow. Makromol Chem 190:1389–1406

    Article  CAS  Google Scholar 

  108. Nguyen TQ, Kausch HH (1990) Effects of solvent viscosity on polystyrene degradation in transient elongational flow. Macromolecules 23:5137–5145

    Article  CAS  Google Scholar 

  109. Nguyen TQ, Kausch HH (1991) Influence of nozzle geometry on polystyrene degradation in convergent flow. Colloid Polym Sci 269:1099–1110

    Article  CAS  Google Scholar 

  110. Nguyen TQ, Kausch HH (1992) Mechanochemical degradation in transient elongational flow. Adv Polym Sci 100:73–182

    Article  Google Scholar 

  111. Nguyen TQ, Kausch HH (1992) Chain extension and degradation in convergent flow. Polymer 33:2611–2621

    Article  CAS  Google Scholar 

  112. Nguyen TQ (2001) Dynamics of flexible polymer chains in elongational flow. Chimia 55:147–154

    CAS  Google Scholar 

  113. Nguyen TQ, Liang OZ, Kausch HH (1997) Kinetics of ultrasonic and transient elongational flow degradation: a comparative study. Polymer 38:3783–3793

    Article  CAS  Google Scholar 

  114. Horn AF (1984) Midpoint scission of macromolecules in dilute-solution in turbulent-flow. Nature 312:140–141

    Article  CAS  Google Scholar 

  115. Kulicke WM, Kotter M, Grager H (1989) Drag reduction phenomenon with special emphasis on homogeneous polymer-solutions. Adv Polym Sci 89:1–69

    Article  CAS  Google Scholar 

  116. Morgan SE, McCormick CL (1990) Water-soluble copolymers XXXII: macromolecular drag reduction. A review of predictive theories and the effects of polymer structure. Prog Polym Sci 15:507–549

    Article  CAS  Google Scholar 

  117. de Gennes PG (1986) Towards a scaling theory of drag reduction. Physica A 140:9–25

    Article  Google Scholar 

  118. Tabor M, deGennes PG (1986) A cascade theory of drag reduction. Europhys Lett 2:519–522

    Article  CAS  Google Scholar 

  119. May PA, Moore JS (2013) Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem Soc Rev 42:7497–7506

    Article  CAS  Google Scholar 

  120. Wiggins KM, Brantley JN, Bielawski CW (2013) Methods for activating and characterizing mechanically responsive polymers. Chem Soc Rev 42:7130–7147

    Article  CAS  Google Scholar 

  121. Malhotra SL (1983) Ultrasonic modification of polymers. 2. Degradation of polystyrene, substituted polystyrene, and poly(n-vinyl carbazole) in the presence of flexible chain polymers. J Macromol Sci A A18:1055–1085

    Google Scholar 

  122. Malhotra SL (1986) Ultrasonic solution degradations of poly(alkyl methacrylates). J Macromol Sci A A23:729–748

    Article  CAS  Google Scholar 

  123. Morris MJ, Striegel AM (2012) The effect of styrene-methyl methacrylate monomeric arrangement on the ultrasonic degradation of copolymers. Polym Degrad Stab 97:2185–2194

    Article  CAS  Google Scholar 

  124. Ostlund SG, Striegel AM (2008) Ultrasonic degradation of poly(gamma-benzyl-L-glutamate), an archetypal highly extended polymer. Polym Degrad Stab 93:1510–1514

    Article  CAS  Google Scholar 

  125. Teraoka I (2002) Polymer solutions: an introduction to physical properties. Wiley, New York

    Book  Google Scholar 

  126. Reiner M (1964) The Deborah number. Phys Today 17:62

    Article  Google Scholar 

  127. Sim HG, Khomami B, Sureshkumar R (2007) Flow-induced chain scission in dilute polymer solutions: algorithm development and results for scission dynamics in elongational flow. J Rheol 51:1223–1251

    Article  CAS  Google Scholar 

  128. Ribas-Arino J, Marx D (2012) Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem Rev 112:5412–5487

    Article  CAS  Google Scholar 

  129. Odell JA, Muller AJ, Narh KA, Keller A (1990) Degradation of polymer-solutions in extensional flows. Macromolecules 23:3092–3103

    Article  CAS  Google Scholar 

  130. Choi HJ, Lim ST, Lai PY, Chan CK (2002) Turbulent drag reduction and degradation of DNA. Phys Rev Lett 89:088302

    Article  CAS  Google Scholar 

  131. Rabin Y (1987) Polymer fracture in steady and transient elongational flows. J Chem Phys 86:5215–5216

    Article  CAS  Google Scholar 

  132. Knudsen KD, Hernandez Cifre JG, Lopez Cascales JJ, Garcia de la Torre J (1995) Simulation of fracture of flexible polymer chains in transient elongational flow. Macromolecules 28:4660–4664

    Article  CAS  Google Scholar 

  133. Knudsen KD, Cifre JGH, dela Torre JG (1996) Conformation and fracture of polystyrene chains in extensional flow studied by numerical simulation. Macromolecules 29:3603–3610

    Article  CAS  Google Scholar 

  134. Knudsen KD, Cifre JGH, de la Torre JG (1997) Fracture of flexible polymer chains in dilute solution under transient extensional flow. Colloid Polym Sci 275:1001–1009

    Article  CAS  Google Scholar 

  135. Groote R, Szyja BM, Pidko EA, Hensen EJM, Sijbesma RP (2011) Unfolding and mechanochemical scission of supramolecular polymers containing a metal–ligand coordination bond. Macromolecules 44:9187–9195

    Article  CAS  Google Scholar 

  136. Islam MT, Vanapalli SA, Solomon MJ (2004) Inertial effects on polymer chain scission in planar elongational cross-slot flow. Macromolecules 37:1023–1030

    Article  CAS  Google Scholar 

  137. Vijayalakshmi SP, Madras G (2004) Effect of temperature on the ultrasonic degradation of polyacrylamide and poly(ethylene oxide). Polym Degrad Stab 84:341–344

    Article  CAS  Google Scholar 

  138. Price GJ, Smith PF (1993) Ultrasonic degradation of polymer-solutions. 2. The effect of temperature, ultrasound intensity and dissolved-gases on polystyrene in toluene. Polymer 34:4111–4117

    Article  CAS  Google Scholar 

  139. Malhotra SL (1982) Ultrasonic degradation of hydroxypropyl cellulose solutions in water, ethanol, and tetrahydrofuran. J Macromol Sci A A17:601–636

    Article  CAS  Google Scholar 

  140. Price GJ, Smith PF (1993) Ultrasonic degradation of polymer-solutions. 3. The effect of changing solvent and solution concentration. Eur Polym J 29:419–424

    Article  CAS  Google Scholar 

  141. Desai V, Shenoy MA, Gogate PR (2008) Degradation of polypropylene using ultrasound-induced acoustic cavitation. Chem Eng J 140:483–487

    Article  CAS  Google Scholar 

  142. Desai V, Shenoy MA, Gogate PR (2008) Ultrasonic degradation of low-density polyethylene. Chem Eng Proc 47:1451–1455

    Article  CAS  Google Scholar 

  143. Kanwal F, Liggat JJ, Pethrick RA (2000) Ultrasonic degradation of polystyrene solutions. Polym Degrad Stab 68:445–449

    Article  CAS  Google Scholar 

  144. Smith DE, Chu S (1998) Response of flexible polymers to a sudden elongational flow. Science 281:1335–1340

    Article  CAS  Google Scholar 

  145. Perkins TT, Smith DE, Chu S (1997) Single polymer dynamics in an elongational flow. Science 276:2016–2021

    Article  CAS  Google Scholar 

  146. Ballauff M, Wolf BA (1988) Thermodynamically induced shear degradation. Adv Polym Sci 85:1–31

    Article  CAS  Google Scholar 

  147. Bestul AB (1956) Kinetics of capillary shear degradation in concentrated polymer solutions. J Chem Phys 24:1196–1201

    Article  CAS  Google Scholar 

  148. Schroeder CM, Babcock HP, Shaqfeh ESG, Chu S (2003) Observation of polymer conformation hysteresis in extensional flow. Science 301:1515–1519

    Article  CAS  Google Scholar 

  149. deGennes PG (1997) Polymer physics - molecular individualism. Science 276:1999

    Article  CAS  Google Scholar 

  150. Eyring H (1935) The activated complex and the absolute rate of chemical reactions. Chem Rev 17:65–77

    Article  CAS  Google Scholar 

  151. Kauzmann W, Eyring H (1940) The viscous flow of large molecules. J Am Chem Soc 62:3113–3125

    Article  CAS  Google Scholar 

  152. Zhurkov SN (1965) Int J Fracture Mech 1:311

    CAS  Google Scholar 

  153. Zhurkov SN, Korsukov VE (1974) Atomic mechanism of fracture of solid polymers. J Polym Sci Polym Phys Ed 12:385–398

    Article  CAS  Google Scholar 

  154. Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627

    Article  CAS  Google Scholar 

  155. Ribas-Arino J, Shiga M, Marx D (2010) Mechanochemical transduction of externally applied forces to mechanophores. J Am Chem Soc 132:10609–10614

    Article  CAS  Google Scholar 

  156. Ribas-Arino J, Shiga M, Marx D (2009) Understanding covalent mechanochemistry. Angew Chem Int Ed 48:4190–4193

    Article  CAS  Google Scholar 

  157. Dopieralski P, Anjukandi P, Ruckert M, Shiga M, Ribas-Arino J, Marx D (2011) On the role of polymer chains in transducing external mechanical forces to benzocyclobutene mechanophores. J Mater Chem 21:8309–8316

    Article  CAS  Google Scholar 

  158. Kucharski TJ, Boulatov R (2011) The physical chemistry of mechanoresponsive polymers. J Mater Chem 21:8237–8255

    Article  CAS  Google Scholar 

  159. Tian Y, Boulatov R (2013) Comparison of the predictive performance of the Bell-Evans, Taylor-expansion and statistical-mechanics models of mechanochemistry. Chem Commun 49:4187–4189

    Article  CAS  Google Scholar 

  160. Kucharski TJ, Huang Z, Yang Q-Z, Tian Y, Rubin NC, Concepcion CD, Boulatov R (2009) Kinetics of thiol/disulfide exchange correlate weakly with the restoring force in the disulfide moiety. Angew Chem 121:7174–7177

    Article  Google Scholar 

  161. Yang QZ, Huang Z, Kucharski TJ, Khvostichenko D, Chen J, Boulatov R (2009) A molecular force probe. Nat Nanotechnol 4:302–306

    Article  CAS  Google Scholar 

  162. Akbulatov S, Tian Y, Boulatov R (2012) Force–reactivity property of a single monomer is sufficient to predict the micromechanical behavior of its polymer. J Am Chem Soc 134:7620–7623

    Article  CAS  Google Scholar 

  163. Akbulatov S, Tian Y, Kapustin E, Boulatov R (2013) Model studies of the kinetics of ester hydrolysis under stretching force. Angew Chem Int Ed 52:6992–6995

    Article  CAS  Google Scholar 

  164. Obukhov SP, Rubinstein M, Duke T (1994) Dynamics of a ring polymer in a gel. Phys Rev Lett 73:1263–1266

    Article  CAS  Google Scholar 

  165. Bras AR, Goossen S, Krutyeva M, Radulescu A, Farago B, Allgaier J, Pyckhout-Hintzen W, Wischnewski A, Richter D (2014) Compact structure and non-Gaussian dynamics of ring polymer melts. Soft Matter 10:3649–3655

    Article  CAS  Google Scholar 

  166. Casassa EF (1965) Some statistical properties of flexible ring polymers. J Polym Sci A 3:605–614

    CAS  Google Scholar 

  167. Clarson SJ, Semlyen JA (1986) Cyclic polysiloxanes. 1. Preparation and characterization of poly(phenylmethyl siloxane). Polymer 27:1633–1636

    Article  CAS  Google Scholar 

  168. Shin EJ, Jeong W, Brown HA, Koo BJ, Hedrick JL, Waymouth RM (2011) Crystallization of cyclic polymers: synthesis and crystallization behavior of high molecular weight cyclic poly(epsilon-caprolactone)s. Macromolecules 44:2773–2779

    Article  CAS  Google Scholar 

  169. Bannister DJ, Semlyen JA (1981) Studies of cyclic and linear poly(dimethylsiloxanes). 6. Effect of heat. Polymer 22:377–381

    Article  CAS  Google Scholar 

  170. Orrah DJ, Semlyen JA, Rossmurphy SB (1988) Studies of cyclic and linear poly(dimethylsiloxanes). 28. Viscosities and densities of ring and chain poly(dimethylsiloxane) blends. Polymer 29:1455–1458

    Article  CAS  Google Scholar 

  171. Orrah DJ, Semlyen JA, Rossmurphy SB (1988) Studies of cyclic and linear poly(dimethylsiloxanes). 27. Bulk viscosities above the critical molar mass for entanglement. Polymer 29:1452–1454

    Article  CAS  Google Scholar 

  172. Pasquino R, Vasilakopoulos TC, Jeong YC, Lee H, Rogers S, Sakellariou G, Allgaier J, Takano A, Brás AR, Chang T, Gooßen S, Pyckhout-Hintzen W, Wischnewski A, Hadjichristidis N, Richter D, Rubinstein M, Vlassopoulos D (2013) Viscosity of ring polymer melts. ACS Macro Lett 2:874–878

    Article  CAS  Google Scholar 

  173. Kapnistos M, Lang M, Vlassopoulos D, Pyckhout-Hintzen W, Richter D, Cho D, Chang T, Rubinstein M (2008) Unexpected power-law stress relaxation of entangled ring polymers. Nat Mater 7:997–1002

    Article  CAS  Google Scholar 

  174. Halverson JD, Grest GS, Grosberg AY, Kremer K (2012) Rheology of ring polymer melts: from linear contaminants to ring-linear blends. Phys Rev Lett 108:038301

    Article  CAS  Google Scholar 

  175. Chen WD, Chen JZ, Liu LJ, Xu XL, An LJ (2013) Effects of chain stiffness on conformational and dynamical properties of individual ring polymers in shear flow. Macromolecules 46:7542–7549

    Article  CAS  Google Scholar 

  176. Chen WD, Chen JZ, An LJ (2013) Tumbling and tank-treading dynamics of individual ring polymers in shear flow. Soft Matter 9:4312–4318

    Article  CAS  Google Scholar 

  177. Lang PS, Obermayer B, Frey E (2014) Dynamics of a semiflexible polymer or polymer ring in shear flow. Phys Rev E 89:022606

    Article  CAS  Google Scholar 

  178. Cifre JGH, Pamies R, Martinez MCL, de la Torre JG (2005) Steady-state behavior of ring polymers in dilute flowing solutions via Brownian dynamics. Polymer 46:267–274

    Article  CAS  Google Scholar 

  179. Diesendruck CE, Peterson GI, Kulik HJ, Kaitz JA, Mar BD, May PA, White SR, Martínez TJ, Boydston AJ, Moore JS (2014) Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nat Chem 6:623–628

    Article  CAS  Google Scholar 

  180. Sellin RHJ, Hoyt JW, Pollert J, Scrivener O (1982) The effect of drag reducing additives on fluid-flows and their industrial applications. 2. Present applications and future proposals. J Hydraul Res 20:235–292

    Article  Google Scholar 

  181. Kenis PR (1971) Turbulent flow friction reduction effectiveness and hydrodynamic degradation of polysaccharides and synthetic polymers. J Appl Polym Sci 15:607–618

    Article  CAS  Google Scholar 

  182. Fabula AG, Hoyt JW, Crawford HR (1963) Bull Am Phys Soc 8

    Google Scholar 

  183. Shenoy AV (1984) A review on drag reduction with special reference to micellar systems. Colloid Polym Sci 262:319–337

    Article  CAS  Google Scholar 

  184. Dschagarowa E, Bochossian T (1978) Drag reduction in polymer mixtures. Rheol Acta 17:426–432

    Article  Google Scholar 

  185. Reddy GV, Singh RP (1985) Drag reduction effectiveness and shear stability of polymer-polymer and polymer-fiber mixtures in recirculatory turbulent-flow of water. Rheol Acta 24:296–311

    Article  CAS  Google Scholar 

  186. Malhotra JP, Chaturvedi PN, Singh RP (1988) Drag reduction by polymer polymer mixtures. J Appl Polym Sci 36:837–858

    Article  CAS  Google Scholar 

  187. Malhotra JP, Deshmukh SR, Singh RP (1987) Turbulent drag reduction by polymer-fiber mixtures. J Appl Polym Sci 33:2467–2478

    Article  CAS  Google Scholar 

  188. Gampert B (ed) (1985) The influence of polymer additives on velocity and temperature fields. Springer, Berlin

    Google Scholar 

  189. Brostow W (2008) Drag reduction in flow: review of applications, mechanism and prediction. J Ind Eng Chem 14:409–416

    Article  CAS  Google Scholar 

  190. Kim O, Little R, Patterson R, Ting R (1974) Polymer structures and turbulent shear stability of drag reducing solutions. Nature 250:408–410

    Article  CAS  Google Scholar 

  191. Gryte CC, Koroneos C, Agarwal A, Hochberg A (1980) Drag reduction characteristics of graft copolymers prepared by the gamma irradiation of poly (oxyethylene) in the presence of acrylic acid. Polym Eng Sci 20:478–484

    Article  CAS  Google Scholar 

  192. Deshmukh SR, Singh RP (1987) Drag reduction effectiveness, shear stability and biodegradation resistance of guargum-based graft-copolymers. J Appl Polym Sci 33:1963–1975

    Article  CAS  Google Scholar 

  193. Ungeheuer S, Bewersdorff HW, Singh RP (1989) Turbulent drag effectiveness and shear stability of xanthan-gum-based graft-copolymers. J Appl Polym Sci 37:2933–2948

    Article  CAS  Google Scholar 

  194. Hoyt JW (1985) Drag reduction in polysaccharide solutions. Trends Biotechnol 3:17–21

    Article  CAS  Google Scholar 

  195. Deshmukh SR, Singh RP (1986) Drag reduction characteristics of graft-copolymers of xanthan gum and polyacrylamide. J Appl Polym Sci 32:6163–6176

    Article  CAS  Google Scholar 

  196. Deshmukh SR, Chaturvedi PN, Singh RP (1985) The turbulent drag reduction by graft copolymers of guargum and polyacrylamide. J Appl Polym Sci 30:4013–4018

    Article  CAS  Google Scholar 

  197. Malhotra SL (1986) Ultrasonic solution degradations of poly(alkyl methacrylates). J Macromol Sci A 23:729–748

    Article  Google Scholar 

  198. May PA (2013) Polymer architecture effects on mechanochemical reactions. University of Illinois at Urbana-Champaign, Urbana

    Google Scholar 

  199. Potisek SL, Davis DA, Sottos NR, White SR, Moore JS (2007) Mechanophore-linked addition polymers. J Am Chem Soc 129:13808–13809

    Article  CAS  Google Scholar 

  200. Sheiko SS, Sun FC, Randall A, Shirvanyants D, Rubinstein M, Lee H, Matyjaszewski K (2006) Adsorption-induced scission of carbon-carbon bonds. Nature 440:191–194

    Article  CAS  Google Scholar 

  201. Panyukov SV, Sheiko SS, Rubinstein M (2009) Amplification of tension in branched macromolecules. Phys Rev Lett 102:148301

    Article  CAS  Google Scholar 

  202. Lebedeva NV, Nese A, Sun FC, Matyjaszewski K, Sheiko SS (2012) Anti-Arrhenius cleavage of covalent bonds in bottlebrush macromolecules on substrate. Proc Natl Acad Sci 109:9276–9280

    Article  CAS  Google Scholar 

  203. Sheiko SS, Panyukov S, Rubinstein M (2011) Bond tension in tethered macromolecules. Macromolecules 44:4520–4529

    Article  CAS  Google Scholar 

  204. Lebedeva NV, Sun FC, Lee HI, Matyjaszewski K, Sheiko SS (2008) “Fatal adsorption” of brushlike macromolecules: high sensitivity of C-C bond cleavage rates to substrate surface energy. J Am Chem Soc 130:4228

    Article  CAS  Google Scholar 

  205. Park I, Nese A, Pietrasik J, Matyjaszewski K, Sheiko SS (2011) Focusing bond tension in bottle-brush macromolecules during spreading. J Mater Chem 21:8448–8453

    Article  CAS  Google Scholar 

  206. Li Y, Nese A, Lebedeva NV, Davis T, Matyjaszewski K, Sheiko SS (2011) Molecular tensile machines: intrinsic acceleration of disulfide reduction by dithiothreitol. J Am Chem Soc 133:17479–17484

    Article  CAS  Google Scholar 

  207. Park I, Sheiko SS, Nese A, Matyjaszewski K (2009) Molecular tensile testing machines: breaking a specific covalent bond by adsorption-induced tension in brushlike macromolecules. Macromolecules 42:1805–1807

    Article  CAS  Google Scholar 

  208. Panyukov S, Zhulina EB, Sheiko SS, Randall GC, Brock J, Rubinstein M (2009) Tension amplification in molecular brushes in solutions and on substrates. J Phys Chem B 113:3750–3768

    Article  CAS  Google Scholar 

  209. Agarwal US, Mashelkar RA (1994) On the stability of grafted polymer-molecules in elongational flows. J Nonnewton Fluid 54:1–10

    Article  CAS  Google Scholar 

  210. Parker CA, Hedley AH (1974) A structural basis for drag-reducing agents. J Appl Polym Sci 18:3403–3421

    Article  CAS  Google Scholar 

  211. Merrill EW, Smith KA, Shin H, Mickley HS (1966) Study of turbulent flows of dilute polymer solutions in a couette viscometer. Trans Soc Rheol 10:335–351

    Article  CAS  Google Scholar 

  212. Gramain P, Borreill J (1978) Influence of molecular weight and molecular structure of polystyrenes on turbulent drag reduction. Rheol Acta 17:303–311

    Article  CAS  Google Scholar 

  213. Lapienis G (2009) Star-shaped polymers having PEO arms. Prog Polym Sci 34:852–892

    Article  CAS  Google Scholar 

  214. Schaefgen JR, Flory PJ (1948) Synthesis of multichain polymers and investigation of their viscosities 1. J Am Chem Soc 70:2709–2718

    Article  CAS  Google Scholar 

  215. Morton M, Helminiak TE, Gadkary SD, Bueche F (1962) Preparation and properties of monodisperse branched polystyrene. J Polym Sci 57:471–482

    Article  CAS  Google Scholar 

  216. Bywater S (ed) (1979) Preparation and properties of star-branched polymers. Springer, Berlin/Heidelberg

    Google Scholar 

  217. Rempp P, Lutz P, Franta E (1994) Applications of anionic-polymerization to macromolecular engineering. J Macromol Sci Pure Appl Chem A31:891–909

    Article  CAS  Google Scholar 

  218. Quirk RP, Yoo T, Lee BJ (1994) Anionic synthesis of heteroarm, star-branched polymers – scope and limitations. J Macromol Sci Pure Appl Chem A31:911–926

    Article  CAS  Google Scholar 

  219. Pitsikalis M, Pispas S, Mays JW, Hadjichristidis N (1998) Nonlinear block copolymer architectures. Adv Polym Sci 135:1–137

    Article  CAS  Google Scholar 

  220. Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H (2001) Polymers with complex architecture by living anionic polymerization. Chem Rev 101:3747–3792

    Article  CAS  Google Scholar 

  221. Roovers J (ed) (1999) Solution properties of branched macromolecules. Springer, Berlin/Heidelberg

    Google Scholar 

  222. Douglas JF, Roovers J, Freed KF (1990) Characterization of branching architecture through universal ratios of polymer-solution properties. Macromolecules 23:4168–4180

    Article  CAS  Google Scholar 

  223. Fetters LJ, Kiss AD, Pearson DS, Quack GF, Vitus FJ (1993) Rheological behavior of star-shaped polymers. Macromolecules 26:647–654

    Article  CAS  Google Scholar 

  224. Nakayama Y, Masuda T, Nagaishi M, Hayashi M, Ohira M, Harada-Shiba M (2005) High performance gene delivery polymeric vector: nano-structured cationic star polymers (star vectors). Curr Drug Deliv 2:53–57

    Article  CAS  Google Scholar 

  225. Georgiou TK (2014) Star polymers for gene delivery. Polym Int 63:1130–1133

    Article  CAS  Google Scholar 

  226. Shida K, Ohno K, Kimura M, Kawazoe Y, Nakamura Y (1998) Dimensional and hydrodynamic factors for flexible star polymers in the good solvent limit. Macromolecules 31:2343–2348

    Article  CAS  Google Scholar 

  227. Zimm BH, Stockmayer WH (1949) The dimensions of chain molecules containing branches and rings. J Chem Phys 17:1301–1314

    Article  CAS  Google Scholar 

  228. Xue L, Agarwal US, Lemstra PJ (2005) Shear degradation resistance of star polymers during elongational flow. Macromolecules 38:8825–8832

    Article  CAS  Google Scholar 

  229. Duan M, Fang SW, Zhang LH, Wang FX, Zhang P, Zhang JA (2011) Shear degradation resistance of star poly(ethyleneimine) – polyacrylamides during elongational flow. E Polymers 11:86–99

    Article  Google Scholar 

  230. Striegel AM (2003) Influence of chain architecture on the mechanochemical degradation of macromolecules. J Biochem Biophys Methods 56:117–139

    Article  CAS  Google Scholar 

  231. Marsalkó TM, Majoros I, Kennedy JP (1997) Multi-arm star polyisobutylenes. V. Characterization of multi-arm polyisobutylene stars by viscometry, pour points, electron microscopy, and ultrasonic shear degradation. J Macromol Sci A 34:775–792

    Article  Google Scholar 

  232. Church DC, Peterson GI, Boydston AJ (2014) Comparison of mechanochemical chain scission rates for linear versus three-arm star polymers in strong acoustic fields. ACS Macro Lett 3:648–651

    Article  CAS  Google Scholar 

  233. Xue L, Agarwal US, Zhang M, Staal BBP, Muller AHE, Bailly CME, Lemstra PJ (2005) Synthesis and direct topology visualization of high-molecular-weight star PMMA. Macromolecules 38:2093–2100

    Article  CAS  Google Scholar 

  234. Cifre JGH, Pamies R, Martinez MCL, de la Torre JG (2005) Steady-state behavior of star polymers in dilute flowing solutions via Brownian dynamics. Polymer 46:6756–6766

    Article  CAS  Google Scholar 

  235. Cifre JGH, Martinez MCL, de la Torre JG (2002) Conformation and dynamics of star-branched flexible polymer chains in a flowing solution. J Noncryst Solid 307:818–823

    Article  Google Scholar 

  236. Ripoll M, Winkler RG, Gompper G (2006) Star polymers in shear flow. Phys Rev Lett 96:188302

    Article  CAS  Google Scholar 

  237. Cifre JGH, de la Torre JG (1999) Steady-state behavior of dilute polymers in elongational flow. Dependence of the critical elongational rate on chain length, hydrodynamic interaction, and excluded volume. J Rheol 43:339–358

    Article  Google Scholar 

  238. Hölter D, Burgath A, Frey H (1997) Degree of branching in hyperbranched polymers. Acta Polym 48:30–35

    Article  Google Scholar 

  239. Žagar E, Huskić M, Grdadolnik J, Žigon M, Zupančič-Valant A (2005) Effect of annealing on the rheological and thermal properties of aliphatic hyperbranched polyester based on 2,2-bis(methylol)propionic acid. Macromolecules 38:3933–3942

    Article  CAS  Google Scholar 

  240. Sheridan PF, Adolf DB, Lyulin AV, Neelov I, Davies GR (2002) Computer simulations of hyperbranched polymers: the influence of the Wiener index on the intrinsic viscosity and radius of gyration. J Chem Phys 117:7802–7812

    Article  CAS  Google Scholar 

  241. Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20

    Article  CAS  Google Scholar 

  242. Irzhak VI (2005) Topological structure and relaxation properties of polymers. Usp Khim 74:1025–1056

    Article  CAS  Google Scholar 

  243. Pavlov GM, Korneeva EV, Mikhailova NA, Roy R, Ortega PC, Perez MA (1999) Molecular characteristics of lactodendrimers based on poly(amidoamine). Vysokomol Soedin Ser A 41:1810–1815

    CAS  Google Scholar 

  244. Lyulin AV, Davies GR, Adolf DB (2000) Brownian dynamics simulations of dendrimers under shear flow. Macromolecules 33:3294–3304

    Article  CAS  Google Scholar 

  245. Frechet J (1994) Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 263:1710–1715

    Article  CAS  Google Scholar 

  246. Lepoittevin B, Matmour R, Francis R, Taton D, Gnanou Y (2005) Synthesis of dendrimer-like polystyrene by atom transfer radical polymerization and investigation of their viscosity behavior. Macromolecules 38:3120–3128

    Article  CAS  Google Scholar 

  247. Aharoni SM, Crosby CR, Walsh EK (1982) Size and solution properties of globular tert-butyloxycarbonyl-poly(α, iε-L-lysine). Macromolecules 15:1093–1098

    Article  CAS  Google Scholar 

  248. Ganazzoli F, La Ferla R, Terragni G (2000) Conformational properties and intrinsic viscosity of dendrimers under excluded-volume conditions. Macromolecules 33:6611–6620

    Article  CAS  Google Scholar 

  249. Caminade A-M, Majoral J-P (2010) Dendrimers and nanotubes: a fruitful association. Chem Soc Rev 39:2034–2047

    Article  CAS  Google Scholar 

  250. Caminade A-M, Ouali A, Keller M, Majoral J-P (2012) Organocatalysis with dendrimers. Chem Soc Rev 41:4113–4125

    Article  CAS  Google Scholar 

  251. Boas U, Heegaard PMH (2004) Dendrimers in drug research. Chem Soc Rev 33:43–63

    Article  CAS  Google Scholar 

  252. Morgan S, Ye Z, Subramanian R, Zhu S (2010) Higher-molecular-weight hyperbranched polyethylenes containing crosslinking structures as lubricant viscosity-index improvers. Polym Eng Sci 50:911–918

    Article  CAS  Google Scholar 

  253. Wang J, Ye Z, Zhu S (2007) Topology-engineered hyperbranched high-molecular-weight polyethylenes as lubricant viscosity-index improvers of high shear stability. Ind Eng Chem Res 46:1174–1178

    Article  CAS  Google Scholar 

  254. Dong Z, Ye Z (2012) Hyperbranched polyethylenes by chain walking polymerization: synthesis, properties, functionalization, and applications. Polym Chem 3:286–301

    Article  CAS  Google Scholar 

  255. Naylor AM, Goddard WA, Kiefer GE, Tomalia DA (1989) Starburst dendrimers. 5. Molecular shape control. J Am Chem Soc 111:2339–2341

    Article  CAS  Google Scholar 

  256. Lescanec RL, Muthukumar M (1990) Configurational characteristics and scaling behavior of starburst molecules – a computational study. Macromolecules 23:2280–2288

    Article  CAS  Google Scholar 

  257. Mansfield ML, Klushin LI (1993) Monte-Carlo studies of dendrime macromolecules. Macromolecules 26:4262–4268

    Article  CAS  Google Scholar 

  258. Lue L, Prausnitz JM (1997) Structure and thermodynamics of homogeneous-dendritic-polymer solutions: computer simulation, integral-equation, and lattice-cluster theory. Macromolecules 30:6650–6657

    Article  CAS  Google Scholar 

  259. Chen ZY, Cui SM (1996) Monte Carlo simulations of star-burst dendrimers. Macromolecules 29:7943–7952

    Article  CAS  Google Scholar 

  260. Boris D, Rubinstein M (1996) A self-consistent mean field model of a starburst dendrimer: dense core vs dense shell. Macromolecules 29:7251–7260

    Article  CAS  Google Scholar 

  261. Sheng YJ, Jiang SY, Tsao HK (2002) Radial size of a starburst dendrimer in solvents of varying quality. Macromolecules 35:7865–7868

    Article  CAS  Google Scholar 

  262. Murat M, Grest GS (1996) Molecular dynamics study of dendrimer molecules in solvents of varying quality. Macromolecules 29:1278–1285

    Article  CAS  Google Scholar 

  263. Lyulin AV, Adolf DB, Davies GR (2001) Computer simulations of hyperbranched polymers in shear flows. Macromolecules 34:3783–3789

    Article  CAS  Google Scholar 

  264. Neelov IM, Adolf DB (2003) Brownian dynamics simulations of dendrimers under elongational flow: bead-rod model with hydrodynamic interactions. Macromolecules 36:6914–6924

    Article  CAS  Google Scholar 

  265. Neelov IM, Adolf DB (2004) Brownian dynamics simulation of hyperbranched polymers under elongational flow. J Phys Chem B 108:7627–7636

    Article  CAS  Google Scholar 

  266. Ayme JF, Beves JE, Campbell CJ, Leigh DA (2013) Template synthesis of molecular knots. Chem Soc Rev 42:1700–1712

    Article  CAS  Google Scholar 

  267. Forgan RS, Sauvage JP, Stoddart JF (2011) Chemical topology: complex molecular knots, links, and entanglements. Chem Rev 111:5434–5464

    Article  CAS  Google Scholar 

  268. Micheletti C, Marenduzzo D, Orlandini E (2011) Polymers with spatial or topological constraints: theoretical and computational results. Phys Rep 504:1–73

    Article  CAS  Google Scholar 

  269. Wang JC (1998) Moving one DNA double helix through another by a type II DNA topoisomerase: the story of a simple molecular machine. Q Rev Biophys 31:107–144

    Article  CAS  Google Scholar 

  270. Arsuaga J, Vazquez M, Trigueros S, Sumners D, Roca J (2002) Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. Proc Natl Acad Sci 99:5373–5377

    Article  CAS  Google Scholar 

  271. Arsuaga J, Vazquez M, McGuirk P, Trigueros S, Sumners DW, Roca J (2005) DNA knots reveal a chiral organization of DNA in phage capsids. Proc Natl Acad Sci 102:9165–9169

    Article  CAS  Google Scholar 

  272. Taylor WR (2000) A deeply knotted protein structure and how it might fold. Nature 406:916–919

    Article  CAS  Google Scholar 

  273. Virnau P, Kardar M, Kantor Y (2005) Capturing knots in polymers. Chaos 15:041103

    Article  CAS  Google Scholar 

  274. Ting RY, Little RC (1973) Shear stability of drag-reducing polyacrylic acid solutions. Nat Phys Sci 241:42–44

    Article  CAS  Google Scholar 

  275. Glass JE, Schulz DN, Zukoski CF (1991) Polymers as rheology modifiers - an overview. Acs Symp Ser 462:2–17

    Article  CAS  Google Scholar 

  276. Kowalik RM, Duvdevani I, Peiffer DG, Lundberg RD, Kitano K, Schulz DN (1987) Enhanced drag reduction via interpolymer associations. J Nonnewton Fluid 24:1–10

    Article  CAS  Google Scholar 

  277. Malik S, Mashelkar RA (1995) Hydrogen-bonding mediated shear stable clusters as drag reducers. Chem Eng Sci 50:105–116

    Article  CAS  Google Scholar 

  278. Malik S, Shintre SN, Mashelkar RA (1993) Enhancing the shear stability in drag-reducing polymers through molecular associations. Macromolecules 26:55–59

    Article  CAS  Google Scholar 

  279. Agarwal US, Mashelkar RA (1994) Hydrodynamic shielding induced stability of zipping macromolecules in elongational flows. J Chem Phys 100:6055–6061

    Article  CAS  Google Scholar 

  280. Sumners DW, Whittington SG (1988) Knots in self-avoiding walks. J Phys A Math Gen 21:1689–1694

    Article  Google Scholar 

  281. Kivotides D, Wilkin SL, Theofanous TG (2009) Entangled chain dynamics of polymer knots in extensional flow. Phys Rev E 80:041808

    Article  CAS  Google Scholar 

  282. Saitta AM, Soper PD, Wasserman E, Klein ML (1999) Influence of a knot on the strength of a polymer strand. Nature 399:46–48

    Article  CAS  Google Scholar 

  283. Saitta AM, Klein ML (1999) Polyethylene under tensile load: strain energy storage and breaking of linear and knotted alkanes probed by first-principles molecular dynamics calculations. J Chem Phys 111:9434–9440

    Article  CAS  Google Scholar 

  284. Saitta AM, Klein ML (1999) Evolution of fragments formed at the rupture of a knotted alkane molecule. J Am Chem Soc 121:11827–11830

    Article  CAS  Google Scholar 

  285. Saitta AM, Klein ML (2001) First-principles molecular dynamics study of the rupture processes of a bulklike pE knot. J Phys Chem B 105:6495–6499

    Article  CAS  Google Scholar 

  286. Arai Y, Yasuda R, Akashi K, Harada Y, Miyata H, Kinosita K, Itoh H (1999) Tying a molecular knot with optical tweezers. Nature 399:446–448

    Article  CAS  Google Scholar 

  287. Tsuda Y, Yasutake H, Ishijima A, Yanagida T (1996) Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation. Proc Natl Acad Sci 93:12937–12942

    Article  CAS  Google Scholar 

  288. Bao X, Lee H, Quake S (2003) Behavior of complex knots in single DNA molecules. Phys Rev Lett 91:265506

    Article  CAS  Google Scholar 

  289. Renner CB, Doyle PS (2014) Untying knotted DNA with elongational flows. ACS Macro Lett 3:963–967

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support was provided by National Natural Science Foundation of China (No. 21304076) and China Postdoctoral Science Foundation (No.2013 M541857, No.2014 T70612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wengui Weng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, H., Lin, Y., Xu, Y., Weng, W. (2014). Mechanochemistry of Topological Complex Polymer Systems. In: Boulatov, R. (eds) Polymer Mechanochemistry. Topics in Current Chemistry, vol 369. Springer, Cham. https://doi.org/10.1007/128_2014_617

Download citation

Publish with us

Policies and ethics