Skip to main content

Infrared and Raman Measurements of Halogen Bonding in Cryogenic Solutions

  • Chapter
  • First Online:
Halogen Bonding I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 358))

Abstract

Because they create a weakly interacting environment which, combined with the low temperatures used, leads to small bandwidths and thus facilitates the detection of complex bands only slightly shifted from the monomer modes, solutions in liquefied inert gases have proven to be an ideal medium to study molecular complexes held together by weak and medium-strong C−X…Y (with X=I, Br, Cl and Y=O, N, S, F, Cl, π,…) halogen bonds. In this chapter, experimental setups for infrared and Raman study of cryosolutions are described, and general methodologies used to examine weakly bound molecular complexes are discussed. The methods are illustrated using data obtained for a variety of halogen-bonded complexes involving, amongst others, the trifluorohalomethanes CF3Cl, CF3Br, and CF3I, and a variety of Lewis bases. The results are compared with theoretical data obtained from ab initio calculations, and with experimental and theoretical data obtained for complexes involving weak C–H proton donors such as CHF3. Preliminary data for mixed proton donor/halogen donors such as CHClF2, CHBrF2 are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DME:

Dimethyl ether

DMS:

Dimethyl sulfide

IR:

Infrared

LAr:

Liquid argon

LKr:

Liquid krypton

LNe:

Liquid neon

LN2 :

Liquid nitrogen

LXe:

Liquid xenon

TMA:

Trimethylamine

References

  1. Khriachtchev L (ed) (2011) Physics and chemistry at low temperatures. Pan Stanford Publishing, Singapore

    Google Scholar 

  2. Clark RJH, Hester RE, Bulanin MO (eds) (1995) Molecular cryospectroscopy. Wiley, Chichester

    Google Scholar 

  3. Bulanin MO (1995) Spectroscopy of molecules in liquid noble gases. J Mol Struct 347:73–82

    CAS  Google Scholar 

  4. Bulanin MO (2002) Liquefied gases as solvents for vibrational spectroscopy. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 2. Wiley, Chichester, pp 1329–1341

    Google Scholar 

  5. Bulanin MO, Velasco S, Hernandez AC (1996) Spectroscopic studies of diatomics in dense non-polar fluids: an overview. J Mol Liquids 70(2–3):107–123

    CAS  Google Scholar 

  6. Manzanares C, Minacamilde N, Brock A, Peng JP, Blunt VM (1995) Piezoelectric detection of vibrational overtones at cryogenic temperatures. Rev Sci Instr 66(3):2644–2651. doi:10.1063/1.1145603

    Google Scholar 

  7. McKelvy ML, Britt TR, Davis BL, Gillie JK, Lentz LA, Leugers A, Nyquist RA, Putzig CL (1996) Infrared spectroscopy. Anal Chem 68(12):R93–R160

    Google Scholar 

  8. Sennikov PG (1994) Weak H-bonding by 2nd-row (PH3, H2S) and 3rd-row (AsH3, H2Se) hydrides. J Phys Chem 98(19):4973–4981

    CAS  Google Scholar 

  9. Tokhadze KG, Tkhorzhevskaya NA (1992) Infrared-spectra of weak hydrogen-bonded complexes in cryogenic solutions. J Mol Struct 270:351–368

    CAS  Google Scholar 

  10. Turner JJ, Poliakoff M, Howdle SM, Jackson SA, McLaughlin JG (1988) Infrared spectroscopy and chemistry in liquid rare-gas solvents. Faraday Discuss Chem Soc 86:271–284

    CAS  Google Scholar 

  11. Cheetham NF, McNaught IJ, Pullin ADE (1974) Donor-acceptor complexes formed by perfluoro-organo bromides and iodides with nitrogenous and other bases. 3. Qualitative examination of condensed phase spectra of CF3I and CF3BR and of their complexes with trimethylamine and other bases. Austr J Chem 27(5):973–985

    CAS  Google Scholar 

  12. Cheetham NF, McNaught IJ, Pullin ADE (1974) Donor-acceptor complexes formed by perfluoro-organo bromides and iodides with nitrogenous and other bases. 4. Analysis of infrared-spectra of CF3I.N(CH3)3 and CF3Br.N(CH3)3 and related complexes. Austr J Chem 27(5):987–1007

    CAS  Google Scholar 

  13. Cheetham NF, Pullin ADE (1967) A gas-phase donor-acceptor complex. Chem Commun 5:233–234

    Google Scholar 

  14. Cheetham NF, Pullin ADE (1971) Donor-acceptor complexes formed by perfluoro-organo bromides and iodides with nitrogenous and other bases. I. Vapor pressure measurements. Austr J Chem 24(3):479–487

    CAS  Google Scholar 

  15. McNaught IJ, Pullin ADE (1974) Donor-acceptor complexes formed by perfluoro-organo bromides and iodides with nitrogenous and other bases. 5. Comparison of liquid-phase complexes of CF3I, C2F5I or C3F7I with NMe3, NEt3 or NPr3 - infrared, far-infrared and NMR-spectra. Austr J Chem 27(5):1009–1015

    CAS  Google Scholar 

  16. McNaught IJ, Robbins RJ (1985) Thermodynamic parameters of some aliphatic amine-pseudohalogen molecular-complexes. South African J Chem 38(3):124–128

    CAS  Google Scholar 

  17. Mishra B, Pullin ADE (1971) Donor-acceptor complexes formed by perfluoro-organo bromides and iodides with nitrogenous and other bases. 2. Band shapes and widths in the absorption spectrum of gaseous CF3I.N(CH3)3. Austr J Chem 24:2493–2507

    CAS  Google Scholar 

  18. Wang W, Hobza P (2008) Origin of the X-Hal (Hal=Cl, Br) bond-length change in the halogen-bonded complexes. J Phys Chem A 112(17):4114–4119

    CAS  Google Scholar 

  19. Wang W, Wang D, Zhang Y, Ji B, Tian A (2011) Hydrogen bond and halogen bond inside the carbon nanotube. J Chem Phys 134(5):054317/054311–054317/054317

    Google Scholar 

  20. Wang W, Zhang Y, Ji B (2010) On the difference of the properties between the blue-shifting halogen bond and the blue-shifting hydrogen bond. J Phys Chem A 114(26):7257–7260

    CAS  Google Scholar 

  21. Grabowski SJ (2013) Hydrogen and halogen bonds are ruled by the same mechanisms. Phys Chem Chem Phys 15(19):7249–7259

    CAS  Google Scholar 

  22. Legon AC (2009) Halogen bonds and hydrogen bonds in the gas phase: how similar are they? American Chemical Society, Washington (USA), pp ORGN-002

    Google Scholar 

  23. Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12(28):7736–7747

    CAS  Google Scholar 

  24. Lu Y, Li H, Zhu X, Liu H, Zhu W (2012) Effects of solvent on weak halogen bonds: density functional theory calculations. Int J Quantum Chem 112(5):1421–1430

    CAS  Google Scholar 

  25. Metrangolo P, Cavallo G, Resnati G, Terraneo (2013) From crystal engineering to function engineering with halogen bonding. American Chemical Society, Washington (USA), pp SERM-485

    Google Scholar 

  26. Priimagi A, Cavallo G, Metrangolo P, Resnati G (2013) The halogen bond in the design of functional supramolecular materials: recent advances. Acc Chem Res 46(11):2686–2695

    CAS  Google Scholar 

  27. Wolters LP, Bickelhaupt FM (2013) Halogen bonding vs. hydrogen bonding: a molecular orbital perspective. American Chemical Society, Washington (USA), pp COMP-124

    Google Scholar 

  28. Zeng Y, Zhang X, Li X, Zheng S, Meng L (2011) Ab initio and AIM studies on typical π-type and pseudo-π-type halogen bonds: comparison with hydrogen bonds. Int J Quantum Chem 111(14):3725–3740

    CAS  Google Scholar 

  29. Barnes AJ (2004) Blue-shifting hydrogen bonds - are they improper or proper? J Mol Struct 704(1–3):3–9

    CAS  Google Scholar 

  30. Hermansson K (2002) Blue-shifting hydrogen bonds. J Phys Chem A 106(18):4695–4702

    CAS  Google Scholar 

  31. Herrebout WA, Melikova SM, Delanoye SN, Rutkowski KS, Shchepkin DN, van der Veken BJ (2005) A cryosolution infrared study of the complexes of fluoroform with ammonia and pyridine: evidence for a C-H·N pseudo blue-shifting hydrogen bond. J Phys Chem A 109(13):3038–3044

    CAS  Google Scholar 

  32. Hobza P (2002) Improper, blue-shifting hydrogen bond: theory and experiment. In: Strength from weakness: structural consequences of weak interactions in molecules, supermolecules, and crystals. NATO Science Series, II vol 68. Kluwer Academic Pulbishers, Dordrecht, The Netherlands, pp 281–291

    Google Scholar 

  33. Hobza P (2008) Noncovalent interactions with participation of hydrogen: hydrogen bond, blue-shifting hydrogen bond and dihydrogen bond. Chem Listy 102(10):884–888

    CAS  Google Scholar 

  34. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100(11):4253–4264

    CAS  Google Scholar 

  35. Hobza P, Havlas Z (2002) Improper, blue-shifting hydrogen bond. Theor Chem Acc 108(6):325–334

    CAS  Google Scholar 

  36. Oliveira BG, de Araujo RCMU, Ramos MN (2009) A theoretical study of blue-shifting hydrogen bonds in π weakly bound complexes. J Mol Struct Theomchem 908(1–3):79–83

    CAS  Google Scholar 

  37. Rutkowski KS, Melikova SM, Asfin RE, Czarnik-Matusewicz B, Rospenk M (2014) The gas phase FTIR studies of chloroform + B and halothane + B (B=TMA, FCD3) mixtures. J Mol Struct 1072:32–37

    CAS  Google Scholar 

  38. Scheiner S, Kar T (2002) Red- versus blue-shifting hydrogen bonds: are there fundamental distinctions? J Phys Chem A 106(9):1784–1789

    CAS  Google Scholar 

  39. Bulanin MO, Zhigula LA, Kolomiitsova TD, Shchepkin DN (1984) Study of infrared-spectrum of CF3I solutions in liquid argon. Optika i Spektroskopiya 56(4):663–669

    CAS  Google Scholar 

  40. Bürger H, Burczyk K, Grassow R, Ruoff A (1982) Vibrational spectra and force constants of symmetric tops: rotational analysis of the parallel bands v1, v2, 2 v1, 2 v3, v1 − v3, v1 + v2, v1 + v3, and v2 + v3 of CF3 35Cl. J Mol Spectrosc 93(1):55–73

    Google Scholar 

  41. Bürger H, Burczyk K, Schulz P, Ruoff A (1982) Vibrational spectra and force constants of symmetric tops. XXIV. Vibrational and rotational analysis of parallel overtones and combination bands of CF3Br. Spectrochimica Acta Pt A Mol Spectrosc 38(6):627–635

    Google Scholar 

  42. Anderson A, Ko YM, Smith W (1996) Infrared spectra of solid trifluoroiodomethane. Phys Status Solidi (b) 194(2):775–782

    CAS  Google Scholar 

  43. Clark RJH, Ellestad OH (1975) Vapor-phase Raman-spectra, Raman band contour analyses, Coriolis coupling-constants, and e-species force constants for molecules HCF3, ClCF3, BrCF3, and ICF3. Mol Phys 30(6):1899–1911

    CAS  Google Scholar 

  44. Davidson G, Davies CL (1989) Raman-spectroscopy in liquid xenon solutions - trifluorohalomethanes. Spectrochim Acta A Mol Biomol Spectrosc 45(3):371–373

    Google Scholar 

  45. Passerini A, Baldacci A, Gambi A, Ghersetti S (1982) Vapor-phase infrared studies of bromotrifluoromethane in the range 4,000–1,800 cm−1. Gazz Chim Ital 112(5/6):213–219

    CAS  Google Scholar 

  46. Scanlon K, Suzuki I, Overend J (1981) The anharmonic-force field of CClF3 and the determination of the Coriolis coefficients and anharmonic coefficients from the infrared spectrum. J Chem Phys 74(7):3735–3744

    CAS  Google Scholar 

  47. Zhigula LA, Kolomiitsova TD, Shchepkin DN (1981) Ternary resonances in vibrational spectra of simple polyatomic molecules. Optika I Spektroskopiya 51(5):809–815

    CAS  Google Scholar 

  48. Hauchecorne D, Szostak R, Herrebout WA, van der Veken BJ (2009) C-X…O halogen bonding: interactions of trifluoromethyl halides with dimethyl ether. Chemphyschem 10(12):2105–2115

    CAS  Google Scholar 

  49. Evangelisti L, Feng G, Gou Q, Grabow JU, Caminati W (2014) Halogen bond and free internal rotation: the microwave spectrum of CF3Cl-dimethyl ether. J Phys Chem A 118(3):579–582

    CAS  Google Scholar 

  50. Feng G, Evangelisti L, Gasparini N, Caminati W (2012) On the Cl…N halogen bond: a rotational study of CF3Cl…NH3. Chem Eur J 18(5):1364–1368

    CAS  Google Scholar 

  51. Gou Q, Feng G, Evangelisti L, Caminati W (2013) Lone-pair center dot center dot center dot pi Interaction: a rotational study of the chlorotrifluoroethylene-water adduct. Angew Chem Int Ed 52(45):11888–11891

    CAS  Google Scholar 

  52. Stephens SL, Mizukami W, Tew DP, Walker NR, Legon AC (2012) The halogen bond between ethene and a simple perfluoroiodoalkane: C2H4…ICF3 identified by broadband rotational spectroscopy. J Mol Spectrosc 280:47–53

    CAS  Google Scholar 

  53. Stephens SL, Walker NR, Legon AC (2011) Internal rotation and halogen bonds in CF3I…NH3 and CF3I…N(CH3)3 probed by broadband rotational spectroscopy. Phys Chem Chem Phys 13(46):20736–20744

    CAS  Google Scholar 

  54. Stephens SL, Walker NR, Legon AC (2011) Molecular geometries of H2S…ICF3 and H2O…ICF3 characterized by broadband rotational spectroscopy. Phys Chem Chem Phys 13(47):21093–21101

    CAS  Google Scholar 

  55. Stephens SL, Walker NR, Legon AC (2011) Rotational spectra and properties of complexes B center dot center dot center dot ICF3 (B=Kr or CO) and a comparison of the efficacy of ICl and ICF3 as iodine donors in halogen bond formation. J Chem Phys 135(22):224309

    Google Scholar 

  56. Hawthorne B, Fan-Hagenstein H, Wood E, Smith J, Hanks T (2013) Study of the halogen bonding between pyridine and perfluoroalkyl iodide in solution phase using the combination of FTIR and 19 F NMR. Int J Spectrosc 2013:216510, Article ID 216518

    Google Scholar 

  57. Bertsev VV (1995) Experimental technique. In: Clark RJH, Hester RE, Bulanin MO (eds) Molecular cryospectroscopy, vol 23, Advances in spectroscopy. Wiley, Chichester, pp 1–19

    Google Scholar 

  58. Harris DC (1999) Materials for infrared windows and domes: properties and performance. SPIE - The International Society for Optical Engineering, Washington

    Google Scholar 

  59. Herrebout W, Van der Veken B, Kouzov AP, Bulanin MO (2004) Collision-induced absorption of hydrogen deuteride dissolved in liquid neon. Phys Rev Lett 92(2):023002

    CAS  Google Scholar 

  60. Herrebout WA, van der Veken BJ, Kouzov AP (2008) New line narrowing effects in the infrared collision-induced spectra of molecular hydrogens in liquid neon. Phys Rev Lett 101(9):093001

    CAS  Google Scholar 

  61. Herrebout WA, van der Veken BJ, Kouzov AP (2012) Concentration studies of collision-induced fundamental absorption of hydrogen dissolved in liquid neon. J Chem Phys 137(8):084509

    CAS  Google Scholar 

  62. Van den Kerkhof T, Bouwen A, Goovaerts E, Herrebout WA, van der Veken BJ (2004) Raman spectroscopy of cryosolutions: the van der Waals complex of dimethyl ether with fluoroform. Phys Chem Chem Phys 6(2):358–362

    Google Scholar 

  63. Dom JJJ, Michielsen B, Maes BUW, Herrebout WA, Van der Veken BJ (2009) The C-H… π interaction in the halothane/ethene complex: a cryosolution infrared and Raman study. Chem Phys Lett 469(1–3):85–89

    CAS  Google Scholar 

  64. Dom JJJ, van der Veken BJ, Michielsen B, Jacobs S, Xue ZF, Hesse S, Loritz HM, Suhm MA, Herrebout WA (2011) On the weakly C-H… π hydrogen bonded complexes of sevoflurane and benzene. Phys Chem Chem Phys 13(31):14142–14152

    CAS  Google Scholar 

  65. Herrebout WA, Nagels N, van der Veken BJ (2009) On the v 1CO2/2 v 2CO2 resonance dioxide with dimethyl ether. Chemphyschem 10(17):3054–3060

    CAS  Google Scholar 

  66. Michielsen B, Dom JJJ, van der Veken BJ, Hesse S, Suhm MA, Herrebout WA (2012) Solute-solvent interactions in cryosolutions: a study of halothane-ammonia complexes. Phys Chem Chem Phys 14(18):6469–6478

    Google Scholar 

  67. Michielsen B, Dom JJJ, van der Veken BJ, Hesse S, Xue ZF, Suhm MA, Herrebout WA (2010) The complexes of halothane with benzene: the temperature dependent direction of the complexation shift of the aliphatic C-H stretching. Phys Chem Chem Phys 12(42):14034–14044

    CAS  Google Scholar 

  68. Michielsen B, Verlackt C, van der Veken BJ, Herrebout WA (2012) C-H…X (X=S, P) hydrogen bonding: The complexes of halothane with dimethyl sulfide and trimethylphosphine. J Mol Struct 1023:90–95

    CAS  Google Scholar 

  69. Arp Z, Herrebout WA, Laane J, van der Veken BJ (2000) Infrared and ab initio study of the relative stability and geometry of the 3-fluoropropene-hydrogen chloride van der Waals complexes. J Phys Chem A 104(22):5222–5229

    CAS  Google Scholar 

  70. Bulanin KM, Bulychev VP, Herrebout W, Schepkin DN (2014) IR spectroscopic study of the HCl…O3 molecular complex in liquid argon. Spectrochimica Acta Pt A Mol Biomol Spectrosc 117:713–717

    CAS  Google Scholar 

  71. Everaert GP, Herrebout WA, van der Veken BJ (1999) Formation of van der Waals complexes between allene and HCl in cryosolutions. An IR and ab initio study. Phys Chem Chem Phys 1(2):231–238

    CAS  Google Scholar 

  72. Everaert GP, Herrebout WA, van der Veken BJ (2000) A cryospectroscopic and ab initio study of the cyclopropane. (HCl)x van der Waals complexes. J Mol Struct 550:399–411

    Google Scholar 

  73. Everaert GP, Herrebout WA, van der Veken BJ (2001) Ab initio and cryospectroscopic investigation of the Van der Waals complexes of methylcyclopropane with hydrogen chloride and boron trifluoride. J Phys Chem A 105(39):9058–9067

    CAS  Google Scholar 

  74. Everaert GP, Herrebout WA, van der Veken BJ (2005) An ab initio and cryospectroscopic study of the hydrogen chloride and boron trifluoride complexes of cyclopropene. Spectrochimica Acta Pt A Mol Biomol Spectrosc 61(7):1375–1387

    Google Scholar 

  75. Herrebout WA, Everaert GP, vanderVeken BJ, Bulanin MO (1997) On the ethene/HCl Van der Waals complexes observed in liquefied argon and liquefied nitrogen. J Chem Phys 107(21):8886–8898

    CAS  Google Scholar 

  76. Herrebout WA, Gatin A, Everaert GP, Fishman AI, van der Veken BJ (2005) A cryosolution infrared and ab initio study of the van der Waals complexes of cyclopentene with hydrogen chloride and boron trifluoride. Spectrochimica Acta Pt A Mol Biomol Spectrosc 61(7):1431–1444

    CAS  Google Scholar 

  77. Herrebout WA, van den Kerkhof T, van der Veken BJ (1999) Vibrational spectra and relative stability of the van der Waals complexes formed between 1,2-butadiene and HCl: a FTIR and density functional study. J Mol Struct 481:495–498

    Google Scholar 

  78. Herrebout WA, Van den Kerkhof T, van der Veken BJ (2000) Isomerism in van der Waals molecules: a cryospectroscopic study of the complexes of buta-1,2-diene with hydrogen chloride. Phys Chem Chem Phys 2(21):4925–4932

    CAS  Google Scholar 

  79. Herrebout WA, van der Veken BJ (1998) Vibrational spectra and relative stability of the van der Waals complexes formed between cis-2-butene, trans-2-butene, 2-methyl propene and HCl: a FTIR and density functional study. J Mol Struct 449(2–3):231–240

    CAS  Google Scholar 

  80. Herrebout WA, van der Veken BJ (2002) A cryosolution infrared and DFT study of the complexes formed between vinylacetylene and hydrogen chloride. J Mol Struct 642(1–3):1–13

    CAS  Google Scholar 

  81. Herrebout WA, Van der Veken BJ, Durig JR (1995) On the angular geometry of the CH3Cl.HCl van der Waals complex in the gas phase and in liquefied noble gas solutions. Theochem 332(3):231–240

    CAS  Google Scholar 

  82. Herrebout WA, Van der Veken BJ (1994) Equilibrium geometry and vibrational frequencies of the 1:2 van der Waals complexes between methyl chloride and hydrogen chloride. J Chem Soc Faraday Trans 90(24):3601–3607

    CAS  Google Scholar 

  83. Herrebout WA, Van der Veken BJ (1994) Infrared-spectra and relative stability of hydrogen-chloride van der Waals complexes with various alkyl chlorides in liquefied noble gases. J Phys Chem 98(11):2836–2843

    CAS  Google Scholar 

  84. Herrebout WA, Van der Veken BJ (1995) Vibrational frequencies, relative stability and angular geometry of some vinyl halide/HCl van der Waals complexes observed in liquefied argon. J Mol Struct 348:481–484

    CAS  Google Scholar 

  85. Herrebout WA, Van der Veken BJ (1996) Vibrational analysis of the van der Waals complexes between vinyl fluoride and hydrogen chloride in liquefied argon. J Phys Chem 100(39):15695–15703

    CAS  Google Scholar 

  86. Herrebout WA, Van der Veken BJ (1997) IR spectra, relative stability and angular geometry of vinyl chloride-HCl, vinyl bromide-HCl and allyl chloride-HCl van der Waals complexes observed in liquefied argon. J Chem Soc Faraday Trans 93(19):3453–3461

    CAS  Google Scholar 

  87. Herrebout WA, Van der Veken BJ, Durig JR (1995) On the angular geometry of the CH3Cl.HCl van der Waals complex in the gas-phase and in liquefied noble gas solutions. Theochem J Mol Struct 332(3):231–240

    CAS  Google Scholar 

  88. Sluyts EJ, Herrebout WA, Van der Veken BJ (1994) On the behavior of CO, CO2 and their complexes with HCl in liquefied argon. J Mol Struct 317(1–2):49–57

    CAS  Google Scholar 

  89. Szostak R, Herrebout WA, Van der Veken BJ (2000) On the HCl and DCl complexes of methylenecyclopropane in liquid argon. Phys Chem Chem Phys 2(18):3983–3991

    CAS  Google Scholar 

  90. Van der Veken BJ, Everaert GP, Herrebout WA (2005) An ab initio and cryospectroscopic study of the hydrogen chloride and boron trifluoride complexes of cyclopropene. Spectrochimica Acta Pt A Mol Biomol Spectrosc 61(7):1375–1387

    Google Scholar 

  91. van der Veken BJ, Sluyts EJ, Herrebout WA (1998) The van der Waals molecules of carbonyl sulfide with hydrogen chloride and boron trifluoride: an infrared study in cryosolution. J Mol Struct 449(2–3):219–229

    Google Scholar 

  92. Melikova SM, Rutkowski KS, Lipkowski P, Shchepkin DN, Koll A (2007) FTIR studies of HCl dissolved in liquid CO: an harmonic effects in the weak OC…HCl complex. J Mol Struct 844:64–69

    Google Scholar 

  93. Rutkowski KS, Melikova S, Shchepkin DN, Lipkowski P, Koll A (2000) Higher-order transitions in the IR spectrum of the weak OC…HCl complex dissolved in liquid CO. Chem Phys Lett 325(4):425–432

    CAS  Google Scholar 

  94. Rutkowski KS, Melikova SM (1998) Infrared studies of weak B…HCl (B=HCl, CO, Xe N2) complex formation in solid Kr solutions. J Mol Struct 448(2–3):231–237

    CAS  Google Scholar 

  95. Rutkowski KS, Melikova SM (1999) Vibrational spectra of OC…HCl complex in Kr solutions at liquid to solid phase transition. J Mol Struct 511/512:233–240

    Google Scholar 

  96. Bulychev VP, Mielke Z, Tokhadze KG, Utkina SS (1999) Evolution of the nHF vibrational-rotational absorption bands in the OC…HF and CO…HF complexes with increasing density. Optics Spectrosc 86(3):352–360

    Google Scholar 

  97. Rutkowski KS, Melikova SM, Koll A (1996) Features of IR bands of the CD3F…HCl complex in liquid and solid noble gas solutions. Electron J Theor Chem 1:103–115

    CAS  Google Scholar 

  98. Everaert GP, Herrebout WA, van der Veken BJ, Lundell J, Rasanen M (1998) Vibrational analysis of the van der Waals complex between cyclopropane and boron trifluoride in liquefied inert gases. Chem Eur J 4(2):321–327

    CAS  Google Scholar 

  99. Herrebout WA, Lundell J, Van der Veken BJ (1999) Carbon-carbon triple bonds as nucleophiles: adducts of ethyne and propyne with boron trifluoride. J Phys Chem A 103(38):7639–7645

    CAS  Google Scholar 

  100. Herrebout WA, Lundell J, Van der Veken BJ (1999) Van der Waals complexes between unsaturated hydrocarbons and boron trifluoride: an infrared and ab initio study of ethyne.BF3, propyne.BF3 and propyne.(BF3)2. J Mol Struct 481:489–493

    Google Scholar 

  101. Herrebout WA, Stolov AA, Van der Veken BJ (2001) Characterization of the CH3F.BF3 van der Waals complex in the vapor phase. J Mol Struct 563:221–226

    Google Scholar 

  102. Herrebout WA, Szostak R, Van der Veken BJ (2000) Methylenecyclopropane-boron trifluoride van der Waals complexes; an infrared and DFT study. J Phys Chem A 104(37):8480–8488

    CAS  Google Scholar 

  103. Herrebout WA, Van der Veken BJ (1998) Behavior of boron trifluoride in cryosolutions: a combined ab initio, Monte Carlo, and FTIR investigation. J Am Chem Soc 120(38):9921–9929

    CAS  Google Scholar 

  104. Herrebout WA, Van der Veken BJ (1999) Infrared and ab initio study of the van der Waals complex formed between allene and BF3. Phys Chem Chem Phys 1(15):3445–3452. doi:10.1039/a903462e

    CAS  Google Scholar 

  105. Herrebout WA, Van der Veken BJ (2000) Vibrational spectra and relative stabilities of the van der Waals complexes of boron trifluoride with cis-2-butene, trans-2-butene and 2-methyl propene. J Mol Struct 550:389–398

    Google Scholar 

  106. Van der Veken BJ, Sluyts EJ (1995) A FTIR study of the van der Waals complexes between boron trifluoride and carbon monoxide in liquefied argon. J Mol Struct 349:461–464

    Google Scholar 

  107. Van der Veken BJ, Sluyts EJ (1997) The van der Waals complex between boron trifluoride and methyl fluoride: an infrared and ab initio study. J Phys Chem A 101(48):9070–9076

    Google Scholar 

  108. Stolov AA, Herrebout WA, Van der Veken BJ (1998) Van der Waals complexes between carbonyl fluoride and boron trifluoride observed in liquefied argon, krypton, and nitrogen: a FTIR and ab initio study. J Am Chem Soc 120(29):7310–7319

    CAS  Google Scholar 

  109. Sluyts EJ, Van der Veken BJ (1996) Van der Waals complexes between boron trifluoride and carbon monoxide in liquefied argon: an infrared study. J Am Chem Soc 118(2):440–445

    CAS  Google Scholar 

  110. Van der Veken BJ, Sluyts EJ (1997) Reversed Lewis acidity of mixed boron halides: an infrared study of the van der Waals complexes of BFxCly with CH3F in cryosolution. J Am Chem Soc 119(47):11516–11522

    Google Scholar 

  111. Van Ginderen P, Herrebout WA, Van der Veken BJ (2003) Van der Waals complex of dimethyl ether with carbon dioxide. J Phys Chem A 107(28):5391–5396

    Google Scholar 

  112. Michielsen B, Herrebout WA, Van der Veken BJ (2007) Intermolecular interactions between halothane and dimethyl ether: a cryosolution infrared and ab initio study. Chemphyschem 8(8):1188–1198

    CAS  Google Scholar 

  113. Michielsen B, Herrebout WA, Van der Veken BJ (2008) C-H bonds with a positive dipole gradient can form blue-shifting hydrogen bonds: the complex of halothane with methyl fluoride. Chemphyschem 9(12):1693–1701

    CAS  Google Scholar 

  114. van der Veken BJ, Delanoye SN, Michielsen B, Herrebout WA (2010) A cryospectroscopic study of the blue-shifting C-H…O bonded complexes of pentafluoroethane with dimethyl ether-d6, acetone-d6 and oxirane-d4. J Mol Struct 976(1–3):97–104

    Google Scholar 

  115. Melikova SM, Rutkowski KS, Rodziewicz P, Koll A (2002) FT-IR studies of CH…B interactions in fluoroform containing cryosolutions. Polish J Chem 76(9):1271–1285

    CAS  Google Scholar 

  116. Melikova SM, Rutkowski KS, Rodziewicz P, Koll A (2002) Unusual spectroscopic properties of CF3H dissolved in liquified Ar, N2, CO, and CO2. Chem Phys Lett 352(3–4):301–310

    CAS  Google Scholar 

  117. Melikova SM, Rutkowski KS, Rodziewicz P, Koll A (2003) CH…B interactions in acetylene containing solutions: experimental and theoretical DFT studies. J Mol Struct 645(2–3):295–302

    CAS  Google Scholar 

  118. Melikova SM, Rutkowski KS, Rodziewicz P, Koll A (2004) Comparative studies of blue shifting and red shifting effects in fluoroform and acetylene cryogenic solutions. J Mol Struct 705(1–3):49–61

    CAS  Google Scholar 

  119. Rutkowski KS, Karpfen A, Melikova SM, Herrebout WA, Koll A, Wolschann P, Van der Veken BJ (2009) Cryospectroscopic and ab initio studies of haloform-trimethylamine H-bonded complexes. Phys Chem Chem Phys 11(10):1551–1563

    CAS  Google Scholar 

  120. Rutkowski KS, Melikova SM, Janski J, Koll A (2010) Cryospectroscopic and ab initio anharmonic studies of acetylene-trimethylamine H-bonded complex. Chem Phys 375(1):92–100

    CAS  Google Scholar 

  121. Rutkowski KS, Melikova SM, Rospenk M, Koll A (2011) Strong and weak effects caused by non covalent interactions between chloroform and selected electron donor molecules. Phys Chem Chem Phys 13(31):14223–14234

    CAS  Google Scholar 

  122. Rutkowski KS, Melikova SM, Smimov DA, Rodziewicz P, Koll A (2002) Infrared studies of acetylene dissolved in liquefied Ar, Kr, N2, CO, and CO2. J Mol Struct 614(1–3):305–313

    CAS  Google Scholar 

  123. Delanoye SN, Herrebout WA, Van der Veken BJ (2002) Blue shifting hydrogen bonding in the complexes of chlorofluoro haloforms with acetone-d6 and oxirane-d4. J Am Chem Soc 124(40):11854–11855

    CAS  Google Scholar 

  124. Delanoye SN, Herrebout WA, Van der Veken BJ (2002) Improper or classical hydrogen bonding? A comparative cryosolutions infrared study of the complexes of HCClF2, HCCl2F, and HCCl3 with dimethyl ether. J Am Chem Soc 124(25):7490–7498

    CAS  Google Scholar 

  125. Delanoye SN, Herrebout WA, Van der Veken BJ (2005) Stabilities of the C–H…O bonded complexes of the haloforms HCClnF3-n (n = 0–3) with dimethyl ether, oxirane, and acetone: an experimental and theoretical study. J Phys Chem A 109(43):9836–9843

    CAS  Google Scholar 

  126. Herrebout WA, Delanoye SN, Maes BUW, Van der Veken BJ (2006) Infrared spectra of the complexes of trifluoroethene with dimethyl ether, acetone, and oxirane: a cryosolution study. J Phys Chem A 110(51):13759–13768

    CAS  Google Scholar 

  127. Herrebout WA, Delanoye SN, Van der Veken BJ (2004) On the formation of a van der Waals complex between ethene and carbon dioxide in liquid argon. An FTIR and ab initio study. J Mol Struct 706(1–3):107–113

    CAS  Google Scholar 

  128. Herrebout WA, Delanoye SN, Van der Veken BJ (2004) Blue-shifting or red-shifting hydrogen bonding? Predictions for haloform complexes with dimethyl ether on the basis of perturbation theory. J Phys Chem A 108(28):6059–6064

    CAS  Google Scholar 

  129. Rutkowski KS, Herrebout WA, Melikova SM, Rodziewicz P, Van der Veken BJ, Koll A (2005) Infrared spectra and relative stability of the F3CH/NH3 H-bonded complex in liquefied Xe. Spectrochimica Acta Pt A Mol Biomol Spectrosc 61(7):1595–1602

    CAS  Google Scholar 

  130. Rutkowski KS, Herrebout WA, Melikova SM, Van der Veken BJ, Koll A (2008) A cryosolution FTIR and ab initio study of the blue shifting C–H…F hydrogen bonded complexes F2ClCH.FCD3 and Cl2FCH.FCD3. Chem Phys 354(1-3):71–79

    CAS  Google Scholar 

  131. Rutkowski KS, Melikova SM, Rodziewicz P, Herrebout WA, Van der Veken BJ, Koll A (2008) Solvent effect on the blue shifted weakly H-bound F3CH…FCD3 complex. J Mol Struct 880(1–3):64–68

    CAS  Google Scholar 

  132. Rutkowski KS, Rodziewicz P, Melikova SM, Herrebout WA, Van der Veken BJ, Koll A (2005) Blue shifted F3CH…FCD3 and Cl3CH…FCD3 weakly H-bound complexes. Cryospectroscopic and ab initio study. Chem Phys 313(1–3):225–243

    CAS  Google Scholar 

  133. Bertsev VV, Golubev NS, Shchepkin DN (1976) Cryospectroscopic study of fluoroform-trimethylamine-argon (krypton) liquid systems. Optika i Spektroskopiya 40(5):951–952

    CAS  Google Scholar 

  134. Van der Veken BJ (1996) Measurement of enthalpy differences in cryosolutions: influence of thermal expansion. J Phys Chem 100(44):17436–17438

    Google Scholar 

  135. Hauchecorne D, Van der Veken BJ, Moiana A, Herrebout WA (2010) The C–Cl…N halogen bond, the weaker relative of the C–I and C–Br…N halogen bonds, finally characterized in solution. Chem Phys 374(1–3):30–36

    CAS  Google Scholar 

  136. Vanspeybrouck W, Herrebout WA, Van der Veken BJ, Lundell J, Perutz RN (2003) Direct measurement of the stability of the supramolecular synthon C6H6·C6F6. J Phys Chem B 107(50):13855–13861

    CAS  Google Scholar 

  137. Hauchecorne D, Moiana A, Van der Veken BJ, Herrebout WA (2011) Halogen bonding to a divalent sulfur atom: an experimental study of the interactions of CF3X (X=Cl, Br, I) with dimethyl sulfide. Phys Chem Chem Phys 13(21):10204–10213

    CAS  Google Scholar 

  138. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci USA 101(48):16789–16794

    CAS  Google Scholar 

  139. Bayse CA, Rafferty ER (2010) Is halogen bonding the basis for iodothyronine deiodinase activity? Inorg Chem 49(12):5365–5367

    CAS  Google Scholar 

  140. Lu YX, Wang Y, Zhu WL (2010) Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design. Phys Chem Chem Phys 12(18):4543–4551

    CAS  Google Scholar 

  141. Van der Veken BJ, Herrebout WA, Szostak R, Shchepkin DN, Havlas Z, Hobza P (2001) The nature of improper, blue-shifting hydrogen bonding verified experimentally. J Am Chem Soc 123(49):12290–12293

    Google Scholar 

  142. Hauchecorne D, Herrebout WA (2013) Experimental characterization of C-X…Y-C (X=Br, I; Y=F, Cl) halogen-halogen bonds. J Phys Chem A 117(45):11548–11557

    CAS  Google Scholar 

  143. Herrebout WA, Lundell J, Van der Veken BJ (1998) A cryospectroscopic study of the van der Waals complexes between vinyl fluoride and boron trifluoride: evidence for the existence of sigma and pi complexes. J Phys Chem A 102(49):10173–10181

    CAS  Google Scholar 

  144. Hauchecorne D, Nagels N, Van der Veken BJ, Herrebout WA (2012) C–X… π halogen and C–H… π hydrogen bonding: interactions of CF3X (X=Cl, Br, I or H) with ethene and propene. Phys Chem Chem Phys 14(2):681–690

    CAS  Google Scholar 

  145. Nagels N, Hauchecorne D, Herrebout WA (2013) Exploring the C–X…π halogen bonding motif: an infrared and Raman study of the complexes of CF3X (X=Cl, Br and I) with the aromatic model compounds benzene and toluene. Molecules 18(6):6829–6851

    CAS  Google Scholar 

  146. Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM (2013) Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem 56(4):1363–1388

    CAS  Google Scholar 

  147. Bhattacharyya S, Bhattacherjee A, Shirhatti PR, Wategaonkar S (2013) O-H·S hydrogen bonds conform to the acid-base formalism. J Phys Chem A 117(34):8238–8250

    CAS  Google Scholar 

  148. Delgado MR, Bulanek R, Chlubna P, Arean CO (2014) Bronsted acidity of H-MCM-22 as probed by variable-temperature infrared spectroscopy of adsorbed CO and N2. Catal Today 227:45–49

    CAS  Google Scholar 

  149. Rivera-Rivera LA, McElmurry BA, Scott KW, Lucchese RR, Bevan JW (2013) The Badger-Bauer rule revisited: correlation of proper blue frequency shifts in the OC hydrogen acceptor with morphed hydrogen bond dissociation energies in OC-HX (X=F, Cl, Br, I, CN, CCH). J Phys Chem A 117(35):8477–8483

    CAS  Google Scholar 

  150. Zhang Y, Ma N, Wang W-Z (2012) Correlation between bond-length change and vibrational frequency shift in hydrogen-bonded complexes revisited. Wuli Huaxue Xuebao 28(3):499–503

    Google Scholar 

  151. Wang W, Zhang Y, Ji B, Tian A (2011) On the correlation between bond-length change and vibrational frequency shift in halogen-bonded complexes. J Chem Phys 134(22):224303/224301–224303/224305

    Google Scholar 

  152. Nagels N, Herrebout WA (2015) A cryospectroscopic infrared and Raman study of the C–X…π halogen bonding motif: complexes of the CF3Cl, CF3Br, and CF3I with ethyne, propyne and 2-butyne. Spectrochim Acta A Mol Biomol Spectrosc 136:16–26

    CAS  Google Scholar 

  153. Nagels N, Geboes Y, Pinter B, De Proft F, Herrebout WA (2014) Tuning the halogen/hydrogen bond competition: a spectroscopic and conceptual DFT study of some model complexes involving CHF2I. Chem Eur J 20(27):8433–8443

    CAS  Google Scholar 

Download references

Acknowledgments

It is a pleasure to acknowledge the contributions of my co-workers, whose names are evident from the references cited below. Without their excellent work, this review could not have been written. The research presented was carried out with financial support from the Fund for Scientific Research (FWO-Vlaanderen) and from the Flemish Community, through the Special Research Fund (BOF). The Hercules Foundation and the Flemish Supercomputing Centre (www.vscentrum.be) is acknowledged for generously providing the computing resources required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter Herrebout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herrebout, W. (2014). Infrared and Raman Measurements of Halogen Bonding in Cryogenic Solutions. In: Metrangolo, P., Resnati, G. (eds) Halogen Bonding I. Topics in Current Chemistry, vol 358. Springer, Cham. https://doi.org/10.1007/128_2014_559

Download citation

Publish with us

Policies and ethics