Skip to main content

Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization

  • Chapter
  • First Online:
Atmospheric and Aerosol Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 339))

Abstract

Bio-organic chemicals are ubiquitous in the Earth’s atmosphere and at air-snow interfaces, as well as in aerosols and in clouds. It has been known for centuries that airborne biological matter plays various roles in the transmission of disease in humans and in ecosystems. The implication of chemical compounds of biological origins in cloud condensation and in ice nucleation processes has also been studied during the last few decades, and implications have been suggested in the reduction of visibility, in the influence on oxidative potential of the atmosphere and transformation of compounds in the atmosphere, in the formation of haze, change of snow-ice albedo, in agricultural processes, and bio-hazards and bio-terrorism. In this review we critically examine existing observation data on bio-organic compounds in the atmosphere and in snow. We also review both conventional and cutting-edge analytical techniques and methods for measurement and characterisation of bio-organic compounds and specifically for microbial communities, in the atmosphere and snow. We also explore the link between biological compounds and nucleation processes. Due to increased interest in decreasing emissions of carbon-containing compounds, we also briefly review (in an Appendix) methods and techniques that are currently deployed for bio-organic remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitehead JD, Gallagher MW, Dorsey JR, Robinson N, Gabey AM, Coe H, McFiggans G, Flynn MJ, Ryder J, Nemitz E, Davies F (2010) Aerosol fluxes and dynamics within and above a tropical rainforest in South–East Asia. Atmos Chem Phys 10:9369

    CAS  Google Scholar 

  2. Artaxo P, Martins JV, Yamasoe MA, Procopio AS, Pauliquevis TM, Andreae MO, Guyon P, Gatti LV, Leal AMC (2002) Physical and chemical properties of aerosols in the wet and dry seasons in Rondonia, Amazonia. J Geophys Res Atmos 107:49–14

    Google Scholar 

  3. Karol MH (1991) Allergic reactions to indoor air pollutants. Environ Health Perspect 95:45

    CAS  Google Scholar 

  4. Welch LS (1991) Severity of health effects associated with building-related illness. Environ Health Perspect 95:67

    CAS  Google Scholar 

  5. Dibb JE, Jaffrezo JL (1997) Air-snow exchange investigations at summit, Greenland: an overview. J Geophys Res Oceans 102:26795

    CAS  Google Scholar 

  6. Amoroso A, Domine F, Esposito G, Morin S, Savarino J, Nardino M, Montagnoli M, Bonneville JM, Clement JC, Ianiello A, Beine HJ (2010) Microorganisms in dry polar snow are involved in the exchanges of reactive nitrogen species with the atmosphere. Environ Sci Technol 44:714

    CAS  Google Scholar 

  7. Ariya PA, Hopper JF, Harris GW (1999) C2–C7 hydrocarbon concentrations in arctic snowpack interstitial air: potential presence of active Br within the snowpack. J Atmos Chem 34:55

    CAS  Google Scholar 

  8. Beine H, Colussi AJ, Amoroso A, Esposito G, Montagnoli M, Hoffmann MR (2008) HONO emissions from snow surfaces. Environ Res Lett 3:045005

    Google Scholar 

  9. Klan P, Del FD, Ansorgova A, Klanova J, Holoubek I (2001) Photodegradation of halobenzenes in water ice. Environ Sci Pollut R 8:195

    CAS  Google Scholar 

  10. Cote V, Kos G, Mortazavi R, Ariya PA (2008) Microbial and “de novo” transformation of dicarboxylic acids by three airborne fungi. Sci Total Environ 390:530

    CAS  Google Scholar 

  11. Daly GL, Wania F (2005) Organic contaminants in mountains. Environ Sci Technol 39:385

    CAS  Google Scholar 

  12. Domine F, Shepson PB (2002) Air-snow interactions and atmospheric chemistry. Science 297:1506

    CAS  Google Scholar 

  13. Ariya PA, Domine F, Kos G, Amyot M, Cote V, Vali H, Lauzier T, Kuhs WF, Techmer K, Heinrichs T, Mortazavi R (2011) Snow – a photobiochemical exchange platform for volatile and semi-volatile organic compounds with the atmosphere. Environ Chem 8:62

    CAS  Google Scholar 

  14. Seok B, Helmig D, Williams MW, Liptzin D, Chowanski K, Hueber J (2009) An automated system for continuous measurements of trace gas fluxes through snow: an evaluation of the gas diffusion method at a subalpine forest site, Niwot Ridge, Colorado. Biogeochemistry 95:95

    CAS  Google Scholar 

  15. Xu L (2013) Satellite-based applications on climate change. Springer, Dordrecht

    Google Scholar 

  16. Brutel-Vuilmet C, Ménégoz M, Krinner G (2013) An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models. Cryosphere 7(1):67–80

    Google Scholar 

  17. Domine F, Albert M, Huthwelker T, Jacobi HW, Kokhanovsky AA, Lehning M, Picard G, Simpson WR (2008) Snow physics as relevant to snow photochemistry. Atmos Chem Phys 8:171

    CAS  Google Scholar 

  18. McNeill VF, Grannas AM, Abbatt JPD, Ammann M, Ariya P, Bartels-Rausch T, Domine F, Donaldson DJ, Guzman MI, Heger D, Kahan TF, Klan P, Masclin S, Toubin C, Voisin D (2012) Organics in environmental ices: sources, chemistry, and impacts. Atmos Chem Phys 12:9653

    CAS  Google Scholar 

  19. Sumner AL, Shepson PB, Grannas AM, Bottenheim JW, Anlauf KG, Worthy D, Schroeder WH, Steffen A, Domine F, Perrier S, Houdier S (2002) Atmospheric chemistry of formaldehyde in the Arctic troposphere at Polar Sunrise, and the influence of the snowpack. Atmos Environ 36:2553

    CAS  Google Scholar 

  20. Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063

    CAS  Google Scholar 

  21. Kos G, Ariya PA (2010) Volatile organic compounds in snow in the Quebec–Windsor Corridor. J Geophys Res Atmos 115:D01302

    Google Scholar 

  22. USEPA (2011) Volatile organic compounds (VOCs): technical overview. USEPA, Washington, DC

    Google Scholar 

  23. Chan LY, Chu KW, Zou SC, Chan CY, Wang XM, Barletta B, Blake DR, Guo H, Tsai WY (2006) Characteristics of nonmethane hydrocarbons (NMHCs) in industrial, industrial-urban, and industrial-suburban atmospheres of the Pearl River Delta (PRD) region of south China. J Geophys Res Atmos 111:D11304

    Google Scholar 

  24. Pons B, Fernandez-Torroba MA, Ortiz G, Tena MT (2003) Monitoring and evolution of the pollution by volatile organic compounds (VOCs) in the groundwaters of the Najerilla River Basin (Spain). Int J Environ Anal Chem 83:495

    CAS  Google Scholar 

  25. Puxbaum H, Tenze-Kunit M (2003) Size distribution and seasonal variation of atmospheric cellulose. Atmos Environ 37:3693

    CAS  Google Scholar 

  26. Sachweh B, Umhauer H, Ebert F, Büttner H, Friehmelt R (1998) In situ optical particle counter with improved coincidence error correction for number concentrations up to 10E7 particles cm-3. J Aerosol Sci 29:1075

    CAS  Google Scholar 

  27. Morris CE, Georgakopoulos DG, Sands DC (2004) Ice nucleation active bacteria and their potential role in precipitation. J Phys IV 121:87

    Google Scholar 

  28. Beine H, Anastasio C, Domine F, Douglas T, Barret M, France J, King M, Hall S, Ullmann K (2012) Soluble chromophores in marine snow, seawater, sea ice and frost flowers near Barrow, Alaska. J Geophys Res 117:D00R15

    Google Scholar 

  29. Herbert BMJ, Halsall CJ, Fitzpatrick L, Villa S, Jones KC, Thomas GO (2004) Use and validation of novel snow samplers for hydrophobic, semi-volatile organic compounds (SVOCs). Chemosphere 56:227

    CAS  Google Scholar 

  30. Swanson AL, Blake NJ, Blake DR, Sherwood RF, Dibb JE, Lefer BL, Atlas E (2007) Are methyl halides produced on all ice surfaces? Observations from snow-laden field sites. Atmos Environ 41:5162

    CAS  Google Scholar 

  31. Dassau TM, Sumner AL, Koeniger SL, Shepson PB, Yang J, Honrath RE, Cullen NJ, Steffen K, Jacobi HW, Frey M, Bales RC (2002) Investigation of the role of the snowpack on atmospheric formaldehyde chemistry at summit, Greenland. J Geophys Res Atmos 107:9–14

    Google Scholar 

  32. Albert MR, Grannas AM, Bottenheim J, Shepson PB, Perron FE (2002) Processes and properties of snow-air transfer in the high Arctic with application to interstitial ozone at Alert, Canada. Atmos Environ 36:2779

    CAS  Google Scholar 

  33. Boudries H, Bottenheim JW, Guimbaud C, Grannas AM, Shepson PB, Houdier S, Perrier S, Domine F (2002) Distribution and trends of oxygenated hydrocarbons in the high Arctic derived from measurements in the atmospheric boundary layer and interstitial snow air during the alert 2000 field campaign. Atmos Environ 36:2573

    CAS  Google Scholar 

  34. Jacobi HW, Bales RC, Honrath RE, Peterson MC, Dibb JE, Swanson AL, Albert MR (2004) Reactive trace gases measured in the interstitial air of surface snow at summit, Greenland. Atmos Environ 38:1687

    CAS  Google Scholar 

  35. Sumner AL, Shepson PB (1999) Snowpack production of formaldehyde and its effect on the Arctic troposphere. Nature 398:230

    CAS  Google Scholar 

  36. Battle MO, Severinghaus JP, Sofen ED, Plotkin D, Orsi AJ, Aydin M, Montzka SA, Sowers T, Tans PP (2011) Controls on the movement and composition of firn air at the West Antarctic Ice Sheet Divide. Atmos Chem Phys 11:11007

    CAS  Google Scholar 

  37. Butler JH, Battle M, Bender ML, Montzka SA, Clarke AD, Saltzman ES, Sucher CM, Severinghaus JP, Elkins JW (1999) A record of atmospheric halocarbons during the twentieth century from polar firn air. Nature 399:749

    CAS  Google Scholar 

  38. Bocquet F, Helmig D, Oltmans SJ (2007) Ozone in interstitial air of the mid-latitude, seasonal snowpack at Niwot Ridge, Colorado. Arct Antarct Alp Res 39:375

    Google Scholar 

  39. Helmig D, Seok B, Williams MW, Hueber J, Sanford R (2009) Fluxes and chemistry of nitrogen oxides in the Niwot Ridge, Colorado, snowpack. Biogeochemistry 95:115

    CAS  Google Scholar 

  40. Gao SS, Sjostedt SJ, Sharma S, Hall SR, Ullmann K, Abbatt JPD (2012) PTR-MS observations of photo-enhanced VOC release from Arctic and midlatitude snow. J Geophys Res 117:1–10

    Google Scholar 

  41. Avino P, Cinelli G, Notardonato I, Russo MV (2011) Evaluation of different adsorbents for large-volume pre-concentration for analyzing atmospheric persistent organic pollutants at trace levels. Anal Bioanal Chem 400:3561

    CAS  Google Scholar 

  42. Hudson ED, Okuda K, Ariya PA (2007) Determination of acetone in seawater using derivatization solid-phase microextraction. Anal Bioanal Chem 388:1275

    CAS  Google Scholar 

  43. Jaffrezo JL, Clain MP, Masclet P (1994) Polycyclec aromatic hydrocarbons in the Polar ice of Greenland: geochemical use of these atmospheric tracers. Atmos Environ 28:1139

    CAS  Google Scholar 

  44. Swanson AL, Lefer BL, Stroud V, Atlas E (2005) Trace gas emissions through a winter snowpack in the subalpine ecosystem at Niwot Ridge, Colorado. Geophys Res Lett 32, L03805

    Google Scholar 

  45. Bower JP, Hood E, Hoferkamp LA (2008) Major solutes, metals, and alkylated aromatic compounds in high-latitude maritime snowpacks near the Trans-Alaska pipeline terminal, Valdez, Alaska. Environ Res Lett 3:045010

    Google Scholar 

  46. Gabrieli J, Decet F, Luchetta A, Valt M, Pastore P, Barbante C (2010) Occurrence of PAH in the seasonal snowpack of the Eastern Italian Alps. Environ Pollut 158:3130

    CAS  Google Scholar 

  47. Domine F, Houdier S, Taillandier A-S, Simpson WR (2010) Acetaldehyde in the Alaskan subarctic snowpack. Atmos Chem Phys 10:919

    CAS  Google Scholar 

  48. Houdier S, Perrier S, Defrancq E, Legrand M (2000) A new fluorescent probe for sensitive detection of carbonyl compounds: sensitivity improvement and application to environmental water samples. Anal Chim Acta 412:221

    CAS  Google Scholar 

  49. Houdier S, Perrier S, Dominé F, Cabanes A, Legagneux L, Grannas AM, Guimbaud C, Shepson PB, Boudries H, Bottenheim JW (2002) Acetaldehyde and acetone in the Arctic snowpack during the alert 2000 campaign. Snowpack composition, incorporation processes and atmospheric impact. Atmos Environ 36:2609

    CAS  Google Scholar 

  50. Sheridan GEC, Masters CI, Shallcross JA, Mackey BM (1998) Detection of mRNA by reverse transcription PCR as an indicator of viability in Escherichia coli cells. Appl Environ Microbiol 64:1313

    CAS  Google Scholar 

  51. Hutterli MA, McConnell JR, Chen G, Bales RC, Davis DD, Lenschow DH (2004) Formaldehyde and hydrogen peroxide in air, snow and interstitial air at South Pole. Atmos Environ 38:5439

    CAS  Google Scholar 

  52. Herbert BMJ, Halsall CJ, Jones KC, Kallenborn R (2006) Field investigation into the diffusion of semi-volatile organic compounds into fresh and aged snow. Atmos Environ 40:1385

    CAS  Google Scholar 

  53. Van Baar BLM (2002) Realtime sizing and detection of biological aerosol particles by a matrix-assisted laser desorbtion/ionisation time-of-flight mass spectrometry. In: Materials of the second international symposium on detection technologies, Arlington, VA

    Google Scholar 

  54. Hutterli MA, Rothlisberger R, Bales RC (1999) Atmosphere-to-snow-to-firn transfer studies of HCHO at Summit, Greenland. Geophys Res Lett 26:1691

    CAS  Google Scholar 

  55. Jacobi HW, Frey MM, Hutterli MA, Bales RC, Schrems O, Cullen NJ, Steffen K, Koehler C (2002) Measurements of hydrogen peroxide and formaldehyde exchange between the atmosphere and surface snow at Summit, Greenland. Atmos Environ 36:2619

    CAS  Google Scholar 

  56. Frey MM, Stewart RW, McConnell JR, Bales RC (2005) Atmospheric hydroperoxides in West Antarctica: links to stratospheric ozone and atmospheric oxidation capacity. J Geophys Res Atmos 110:D23301

    Google Scholar 

  57. Perrier S, Houdier S, Domine F, Cabanes A, Legagneux L, Sumner AL, Shepson PB (2002) Formaldehyde in Arctic snow. Incorporation into ice particles and evolution in the snowpack. Atmos Environ 36:2695

    CAS  Google Scholar 

  58. Riedel K, Weller R, Schrems O (1999) Variability of formaldehyde in the Antarctic troposphere. Phys Chem Chem Phys 1:5523

    CAS  Google Scholar 

  59. Salmon RA, Bauguitte SJ, Bloss W, Hutterli MA, Jones AE, Read K, Wolff EW (2008) Measurement and interpretation of gas phase formaldehyde concentrations obtained during the CHABLIS campaign in coastal Antarctica. Atmos Chem Phys 8:4085

    CAS  Google Scholar 

  60. Peccia J, Milton DK, Reponen T, Hill J (2008) A role for environmental engineering and science in preventing bioaerosol-related disease. Environ Sci Technol 42:4631

    CAS  Google Scholar 

  61. Guimbaud C, Grannas AM, Shepson PB, Fuentes JD, Boudries H, Bottenheim JW, Dominé F, Houdier S, Perrier S, Biesenthal TB, Splawn BG (2002) Snowpack processing of acetaldehyde and acetone in the Arctic atmospheric boundary layer. Atmos Environ 36:2743

    CAS  Google Scholar 

  62. Hutterli MA, Bales RC, McConnell JR, Stewart RW (2002) HCHO in Antarctic snow: preservation in ice cores and air-snow exchange. Geophys Res Lett 29

    Google Scholar 

  63. Bhatia MP, Das SB, Longnecker K, Charette MA, Kujawinski EB (2010) Molecular characterization of dissolved organic matter associated with the Greenland ice sheet. Geochim Cosmochim Acta 74:3768–3784

    CAS  Google Scholar 

  64. Pautler BG, Simpson AJ, Simpson MJ, Tseng L-H, Spraul M, Dubnick A, Sharp MJ, Fitzsimons SJ (2011) Detection and structural identification of dissolved organic matter in Antarctic glacial ice at natural abundance by SPR-W5-WATERGATE 1H NMR spectroscopy. Environ Sci Technol 45:4710

    CAS  Google Scholar 

  65. Lee B, Hwangbo Y, Lee DS (2009) Determination of low molecular weight monocarboxylic acid gases in the atmosphere by parallel plate diffusion scrubber-ion chromatography. J Chromatogr Sci 47:516

    Google Scholar 

  66. Vasconcellos PC, Souza DZ, Sanchez-Ccoyllo O, Bustillos JOV, Lee H, Santos FC, Nascimento KH, Araújo MP, Saarnio K, Teinilä K, Hillamo R (2010) Determination of anthropogenic and biogenic compounds on atmospheric aerosol collected in urban, biomass burning and forest areas in São Paulo, Brazil. Sci Total Environ 408:5836

    CAS  Google Scholar 

  67. Kippenberger M, Winterhalter R, Moortgat GK (2008) Determination of higher carboxylic acids in snow samples using solid-phase extraction and LC/MS-TOF. Anal Bioanal Chem 392:1459

    CAS  Google Scholar 

  68. Kawamura K, Watanabe T (2004) Determination of stable carbon isotopic compositions of low molecular weight dicarboxylic acids and ketocarboxylic acids in atmospheric aerosol and snow samples. Anal Chem 76:5762

    CAS  Google Scholar 

  69. Narukawa M, Kawamura K, Li SM, Bottenheim JW (2002) Dicarboxylic acids in the Arctic aerosols and snowpacks collected during alert 2000. Atmos Environ 36:2491

    CAS  Google Scholar 

  70. Sempere R, Kawamura K (1994) Comparative distributions of dicarboxylic-acids and related polar compounds in snow rain and aerosols from urban atmosphere. Atmos Environ 28:449

    CAS  Google Scholar 

  71. Akyüz M (2008) Simultaneous determination of aliphatic and aromatic amines in ambient air and airborne particulate matters by gas chromatography-mass spectrometry. Atmos Environ 42:3809

    Google Scholar 

  72. Chang I-H, Lee C-G, Lee DS (2003) Development of an automated method for simultaneous determination of low molecular weight aliphatic amines and ammonia in ambient air by diffusion scrubber coupled to ion chromatography. Anal Chem 75:6141

    CAS  Google Scholar 

  73. Finessi E, Decesari S, Paglione M, Giulianelli L, Carbone C, Gilardoni S, Fuzzi S, Saarikoski S, Raatikainen T, Hillamo R (2012) Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy. Atmos Chem Phys 12:941

    CAS  Google Scholar 

  74. Pratt KA, Prather KA (2012) Mass spectrometry of atmospheric aerosols – recent developments and applications. Part I: off-line mass spectrometry techniques. Mass Spectrom Rev 31:1

    CAS  Google Scholar 

  75. Pratt KA, Prather KA (2012) Mass spectrometry of atmospheric aerosols – recent developments and applications. Part II: on-line mass spectrometry techniques. Mass Spectrom Rev 31:17

    CAS  Google Scholar 

  76. Drewnick F, Schneider J, Hings SS, Hock N, Noone K, Targino A, Weimer S, Borrmann S (2007) Measurement of ambient, interstitial, and residual aerosol particles on a mountaintop site in central Sweden using an aerosol mass spectrometer and a CVI. J Atmos Chem 56:1

    CAS  Google Scholar 

  77. Canagaratna MR, Jayne JT, Jimenez JL, Allan JD, Alfarra MR, Zhang Q, Onasch TB, Drewnick F, Coe H, Middlebrook A, Delia A, Williams LR, Trimborn AM, Northway MJ, DeCarlo PF, Kolb CE, Davidovits P, Worsnop DR (2007) Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom Rev 26:185

    CAS  Google Scholar 

  78. Jimenez JL, Jayne JT, Shi Q, Kolb CE, Worsnop DR, Yourshaw I, Seinfeld JH, Flagan RC, Zhang XF, Smith KA, Morris JW, Davidovits P (2003) Ambient aerosol sampling using the aerodyne aerosol mass spectrometer. J Geophys Res Atmos 108:1–13

    Google Scholar 

  79. DeCarlo PF, Kimmel JR, Trimborn A, Northway MJ, Jayne JT, Aiken AC, Gonin M, Fuhrer K, Horvath T, Docherty KS, Worsnop DR, Jimenez JL (2006) Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal Chem 78:8281

    CAS  Google Scholar 

  80. Jayne JT, Leard DC, Zhang XF, Davidovits P, Smith KA, Kolb CE, Worsnop DR (2000) Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci Technol 33:49

    CAS  Google Scholar 

  81. Hearn JD, Smith GD (2004) A chemical ionization mass spectrometry method for the online analysis of organic aerosols. Anal Chem 76:2820

    CAS  Google Scholar 

  82. Grosse S, Letzel T (2007) Liquid chromatography/atmospheric pressure ionization mass spectrometry with post-column liquid mixing for the efficient determination of partially oxidized polycyclic aromatic hydrocarbons. J Chromatogr A 1139:75

    CAS  Google Scholar 

  83. Lintelmann J, Fischer K, Matuschek G (2006) Determination of oxygenated polycyclic aromatic hydrocarbons in particulate matter using high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1133:241

    CAS  Google Scholar 

  84. Cornell SE, Jickells TD, Cape JN, Rowland AP, Duce RA (2003) Organic nitrogen deposition on land and coastal environments: a review of methods and data. Atmos Environ 37:2173

    CAS  Google Scholar 

  85. Andersen KB, Hansen MJ, Feilberg A (2012) Minimisation of artefact formation of dimethyl disulphide during sampling and analysis of methanethiol in air using solid sorbent materials. J Chromatogr A 1245:24

    CAS  Google Scholar 

  86. Feilberg A, Liu DZ, Adamsen APS, Hansen MJ, Jonassen KEN (2010) Odorant emissions from intensive pig production measured by online proton-transfer-reaction mass spectrometry. Environ Sci Technol 44:5894

    CAS  Google Scholar 

  87. Pandey SK, Kim KH (2009) A review of methods for the determination of reduced sulfur compounds (RSCs) in air. Environ Sci Technol 43:3020

    CAS  Google Scholar 

  88. Arellano L, Fernandez P, Tatosova J, Stuchlik E, Grimalt JO (2011) Long-range transported atmospheric pollutants in snowpacks accumulated at different altitudes in the Tatra Mountains (Slovakia). Environ Sci Technol 45:9268

    CAS  Google Scholar 

  89. Kos G, Ariya PA (2006) Determination of a wide range of volatile and semivolatile organic compounds in snow by use of solid-phase micro-extraction (SPME). Anal Bioanal Chem 385:57

    CAS  Google Scholar 

  90. Starokozhev E, Fries E, Cycura A, Puttmann W (2009) Distribution of VOCs between air and snow at the Jungfraujoch high alpine research station, Switzerland, during CLACE 5 (winter 2006). Atmos Chem Phys 9:3197

    CAS  Google Scholar 

  91. Hudson ED, Ariya PA (2007) Measurements of non-methane hydrocarbons, DOC in surface ocean waters and aerosols over the Nordic seas during polarstern cruise ARK-XX/1 (2004). Chemosphere 69:1474

    CAS  Google Scholar 

  92. Blas M, Cichala-Kamrowska K, Sobik M, Polkowska Z, Namiesnik J (2010) Conditions controlling atmospheric pollutant deposition via snowpack. Environ Rev 18:87

    CAS  Google Scholar 

  93. Macher JM, Willeke K (1992) Performance criteria for bioaerosol samplers. J Aerosol Sci 23(Suppl 1):647

    Google Scholar 

  94. Ward DM, Weller R, Bateson MM (1990) 16S ribosomal-RNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63

    CAS  Google Scholar 

  95. Blackburn CD, McCarthy JD (2000) Modifications to methods for the enumeration and detection of injured Escherichia coli O157: H7 in foods. Int J Food Microbiol 55:285

    CAS  Google Scholar 

  96. Kogure K, Simidu U, Taga N (1979) A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol 25:415

    CAS  Google Scholar 

  97. del Mar Lleo M, Pierobon S, Tafi MC, Signoretto C, Canepari P (2000) mRNA detection by reverse transcription-PCR for monitoring viability over time in an Enterococcus faecalis viable but nonculturable population maintained in a laboratory microcosm. Appl Environ Microbiol 66:4564

    Google Scholar 

  98. McCarty SC, Atlas RM (1993) Effect of amplicon size on PCR detection of bacteria exposed to chlorine. PCR Methods Appl 3:181

    CAS  Google Scholar 

  99. Nebe-von Caron G, Stephens P, Badley RA (1998) Assessment of bacterial viability status by flow cytometry and single cell sorting. J Appl Microbiol 84:988

    Google Scholar 

  100. Diaper JP, Edwards C (1994) Survival of Staphylococcus aureus in lakewater monitored by flow cytometry. Microbiology 140:35

    CAS  Google Scholar 

  101. Turner K, Porter J, Pickup R, Edwards C (2000) Changes in viability and macromolecular content of long-term batch cultures of Salmonella typhimurium measured by flow cytometry. J Appl Microbiol 89:90

    CAS  Google Scholar 

  102. Vincent JH, Ramachandran G, Kerr SM (2001) Particle size and chemical species fingerprinting of aerosols in primary nickel production industry workplaces. J Environ Monit 3:565

    CAS  Google Scholar 

  103. Raisi L, Aleksandropoulou V, Lazaridis M, Katsivela E (2013) Size distribution of viable, cultivable, airborne microbes and their relationship to particulate matter concentrations and meteorological conditions in a Mediterranean site. Aerobiologia 29(2):233–248

    Google Scholar 

  104. Grinshpun SA, Adhikari A, Cho S-H, Kim K-Y, Lee T, Reponen T (2007) A small change in the design of a slit bioaerosol impactor significantly improves its collection characteristics. J Environ Monit 9:855

    CAS  Google Scholar 

  105. Bergman W, Lochner JS, Sawyer S, Milanovich F, Mariella R Jr (2005) High air flow, low pressure drop, bio-aerosol collector using a multi-slit virtual impactor. J Aerosol Sci 36:619

    Google Scholar 

  106. Wang C-F, Chang C-Y, Tsai S-F, Chiang H-L (2005) Characteristics of road dust from different sampling sites in northern Taiwan. J Air Waste Manag Assoc 55:1236

    Google Scholar 

  107. Wei Z, Rosario RC, Montoya LD (2010) Collection efficiency of a midget impinger for nanoparticles in the range of 3–100 nm. Atmos Environ 44:872

    CAS  Google Scholar 

  108. Donaldson AI, Wardley RC, Martin S, Ferris NP (1983) Experimental Aujeszky’s disease in pigs: excretion, survival and transmission of the virus. Vet Rec 113:490

    CAS  Google Scholar 

  109. Donaldson AI, Gibson CF, Oliver R, Hamblin C, Kitching RP (1987) Infection of cattle by airborne foot-and-mouth disease virus: minimal doses with O1 and SAT 2 strains. Res Vet Sci 43:339

    CAS  Google Scholar 

  110. Willeke K, Lin X, Grinshpun SA (1998) Improved aerosol collection by combined impaction and centrifugal motion. Aerosol Sci Technol 28:439

    CAS  Google Scholar 

  111. Juozaitis A, Willeke K, Grinshpun SA, Donnelly J (1994) Impaction onto a glass slide or agar versus impingement into a liquid for the collection and recovery of airborne microorganisms. Appl Environ Microbiol 60:861

    CAS  Google Scholar 

  112. Willeke K, Grinshpun SA, Ulevicius V, Terzieva S, Donnelly J, Stewart S, Juozaitis A (1995) Microbial stress, bounce and re-aerosolization in bioaerosol samplers. J Aerosol Sci 26 (Suppl 1):S883

    Google Scholar 

  113. Kim DS, Lim KS, Xiang RB, Lee KW (2002) Design and performance evaluation of an aerosol separator. J Aerosol Sci 33:1405

    CAS  Google Scholar 

  114. Moosmüller H, Chakrabarty RK, Arnott WP (2009) Aerosol light absorption and its measurement: a review. J Quant Spectrosc Radiat Transf 110:844

    Google Scholar 

  115. Mitchell JP, Nagel MW, Nichols S, Nerbrink O (2006) Laser diffractometry as a technique for the rapid assessment of aerosol particle size from inhalers. J Aerosol Med Deposition Clearance Effects Lung 19:409

    Google Scholar 

  116. Swithenbank J, Beer JM, Taylor DS, Abbot D, McCreath GC (1977) A laser diagnostic technique for the measurement of droplet and particle size distribution. Progress Astronautics Aeronautics 53:421

    Google Scholar 

  117. Organization IS, (1999) Particle size analysis – laser diffraction methods: part 1: general principles. International Standards Organization (ISO)

    Google Scholar 

  118. Merkus HG, Marijnissen JCM, Jansma HL, Scarlett B (1994) Droplet size distribution measurements for medical nebulizers by the forward light scattering technique (“laser diffraction”). J Aerosol Sci 25(Suppl 1):319

    Google Scholar 

  119. Schaub SA, Alexander DR, Barton JP (1994) Theoretical analysis of the effects of particle trajectory and structural resonances on the performance of a phase-Doppler particle analyzer. Appl Opt 33:473

    CAS  Google Scholar 

  120. Holve DJ, Annen KD (1984) Optical particle counting, sizing, and velocimetry using intensity deconvolution. Opt Eng 23:235591

    Google Scholar 

  121. Liu BY, Pui DY (1975) On the performance of the electrical aerosol analyzer. J Aerosol Sci 6:249

    Google Scholar 

  122. Whitby KT, Husar RB, Liu BYH (1972) The aerosol size distribution of Los Angeles smog. J Colloid Interface Sci 39:177

    CAS  Google Scholar 

  123. Yeh HC, Cheng YS, Kanapilly GM (1981) Electrical aerosol analyzer: data reduction for high altitude or reduced pressure. Atmos Environ 15(1967):713

    Google Scholar 

  124. Song DK, Moon Lee H, Chang H, Soo Kim S, Shimada M, Okuyama K (2006) Performance evaluation of long differential mobility analyzer (LDMA) in measurements of nanoparticles. J Aerosol Sci 37:598

    CAS  Google Scholar 

  125. Werkhaven JA, Reinisch L, Sorrell M, Tribble J, Ossoff RH (1994) Noninvasive optical diagnosis of bacteria causing otitis media. Laryngoscope 104:264

    CAS  Google Scholar 

  126. Buteau S, Simard JR, Lahaie P, Roy G, Mathieu P, Dery B, Ho J, McFee J (2008) In: Kim YJ, Platt U (eds) Advanced environmental monitoring Springer, New York, pp 203–216

    Google Scholar 

  127. Simard JR, Roy G, Mathieu P, Larochelle V, McFee J, Ho J (2004) Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence. IEEE Trans Geosci Remote Sens 42:865

    Google Scholar 

  128. Weikamp C (2005) Lidar: range-resolved optical remote sensing of the atmosphere. Springer, New York

    Google Scholar 

  129. Schuster KC, Mertens F, Gapes JR (1999) FTIR spectroscopy applied to bacterial cells as a novel method for monitoring complex biotechnological processes. Vibrat Spectrosc 19:467

    CAS  Google Scholar 

  130. Petrich W (2001) Mid-infrared and Raman spectroscopy for medical diagnostics. Appl Spectrosc Rev 36:181

    CAS  Google Scholar 

  131. Scully MO, Kattawar GW, Lucht RP, Opatrny T, Pilloff H, Rebane A, Sokolov AV, Zubairy MS (2002) FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores. Proc Natl Acad Sci USA 99:10994

    Google Scholar 

  132. Gopel W (1991) Chemical sensing, molecular electronics and nanotechnology – interface technologies down to the molecular scale. Sens Actuators B Chem 4:7

    Google Scholar 

  133. Gopel W, Heiduschka P (1995) Interface analysis in biosensor design. Biosens Bioelectron 10:853

    CAS  Google Scholar 

  134. Sethi RS (1994) Transducer aspects of biosensors (Reprinted from Gec J Res 9:81, 1991). Biosens Bioelectron 9:243

    CAS  Google Scholar 

  135. Hofstadler SA, Sampath R, Blyn LB, Eshoo MW, Hall TA, Jiang Y, Drader JJ, Hannis JC, Sannes-Lowery KA, Cummins LL, Libby B, Walcott DJ, Schink A, Massire C, Ranken R, Gutierrez J, Manalili S, Ivy C, Melton R, Levene H, Barrett-Wilt G, Li F, Zapp V, White N, Samant V, McNeil JA, Knize D, Robbins D, Rudnick K, Desai A, Moradi E, Ecker DJ (2005) TIGER: the universal biosensor. Int J Mass Spectrom 242:23

    CAS  Google Scholar 

  136. Lewandowski R, Kozlowska K, Szpakowska M, Stepinska M, Trafny EA (2010) Use of a foam spatula for sampling surfaces after bioaerosol deposition. Appl Environ Microbiol 76:688

    CAS  Google Scholar 

  137. Albrecht M, Gauthier R, Leaper D (2009) Forced-air warming: a source of airborne contamination in the operating room? Orthop Rev (Pavia) 1:e28

    Google Scholar 

  138. Moularat S, Robine E, Ramalho O, Oturan MA (2008) Detection of fungal development in closed spaces through the determination of specific chemical targets. Chemosphere 72:224

    CAS  Google Scholar 

  139. Lisle JT, Hamilton MA, Willse AR, McFeters GA (2004) Comparison of fluorescence microscopy and solid-phase cytometry methods for counting bacteria in water. Appl Environ Microbiol 70:5343

    CAS  Google Scholar 

  140. Sharma A, Schulman S (1999) Introduction to fluorescence spectroscopy. Wiley, New York

    Google Scholar 

  141. Anderson JE, Webb SR, Fischer RL, Kester KM, Brown BL (2001) Baseline and in vivo total photoluminescence of endospore material using the parasitoid wasp C-congregata. Appl Spectrosc 55:684

    CAS  Google Scholar 

  142. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic, New York

    Google Scholar 

  143. Bronk BV, Reinisch L (1993) Variability of steady state bacterial fluorescence with respect to growth conditions. Appl Spectrosc 47:436

    Google Scholar 

  144. McCartney HA, West JS (2007) In: Dijksterhuis J, Samson RA (eds) Food mycology – a multifaceted approach to fungi and food. CRC, Boca Raton, pp 65–81

    Google Scholar 

  145. Williams RH, Ward E, McCartney HA (2001) Methods for integrated air sampling and DNA analysis for detection of airborne fungal spores. Appl Environ Microbiol 67:2453

    CAS  Google Scholar 

  146. Calderon C, Ward E, Freeman J, McCartney A (2002) Detection of airborne fungal spores sampled by rotating-arm and Hirst-type spore traps using polymerase chain reaction assays. J Aerosol Sci 33:283

    CAS  Google Scholar 

  147. Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457

    CAS  Google Scholar 

  148. Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexander S, Alexander EC, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:1–13

    Google Scholar 

  149. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, Chan AM, Haynes M, Kelley S, Liu H, Mahaffy JM, Mueller JE, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle CA, Rohwer F (2006) The marine viromes of four oceanic regions. PLoS Biol 4:2121

    CAS  Google Scholar 

  150. Brown MV, Philip GK, Bunge JA, Smith MC, Bissett A, Lauro FM, Fuhrman JA, Donachie SP (2009) Microbial community structure in the North Pacific ocean. ISME J 3:1374

    CAS  Google Scholar 

  151. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635

    Google Scholar 

  152. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology – human gut microbes associated with obesity. Nature 444:1022

    CAS  Google Scholar 

  153. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027

    Google Scholar 

  154. Zhou X, Bent SJ, Schneider MG, Davis CC, Islam MR, Forney LJ (2004) Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods. Microbiol SGM 150:2565

    CAS  Google Scholar 

  155. Shendure J, Ji HL (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135

    CAS  Google Scholar 

  156. Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J (2006) Microarray applications in microbial ecology research. Microb Ecol 52:159

    CAS  Google Scholar 

  157. Hugenholtz P, Tyson GW (2008) Microbiology – metagenomics. Nature 455:481

    CAS  Google Scholar 

  158. Xue HX, Khalizov AF, Wang L, Zheng J, Zhang RY (2009) Effects of coating of dicarboxylic acids on the mass–mobility relationship of soot particles. Environ Sci Technol 43:2787

    CAS  Google Scholar 

  159. Isaacman G, Chan AWH, Nah T, Worton DR, Ruehl CR, Wilson KR, Goldstein A (2012) Heterogeneous OH oxidation of motor oil particles causes selective depletion of branched and less cyclic hydrocarbons. Environ Sci Technol 46(19):10632–10640

    Google Scholar 

  160. Kroll JH, Smith JD, Che DL, Kessler SH, Worsnop DR, Wilson KR (2009) Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol. Phys Chem Chem Phys 11:8005

    CAS  Google Scholar 

  161. Lambe AT, Onasch TB, Croasdale DR, Wright JP, Martin AT, Franklin JP, Massoli P, Kroll JH, Canagaratna MR, Brune WH, Worsnop DR, Davidovits P (2012) Transitions from functionalization to fragmentation reactions of laboratory secondary organic aerosol (SOA) generated from the OH oxidation of alkane precursors. Environ Sci Technol 46:5430

    CAS  Google Scholar 

  162. Miljevic B, Surawski NC, Bostrom T, Ristovski ZD (2012) Restructuring of carbonaceous particles upon exposure to organic and water vapours. J Aerosol Sci 47:48

    CAS  Google Scholar 

  163. Pankhurst LJ, Akeel U, Hewson C, Maduka I, Pham P, Saragossi J, Taylor J, Lai KM (2011) Understanding and mitigating the challenge of bioaerosol emissions from urban community composting. Atmos Environ 45:85

    CAS  Google Scholar 

  164. Kummer V, Thiel WR (2008) Bioaerosols – sources and control measures. Int J Hyg Environ Health 211:299

    Google Scholar 

  165. Lee BU, Hong IG, Lee DH, Chong E-S, Jung JH, Lee JH, Kim HJ, Lee I-S (2012) Bacterial bioaerosol concentrations in public restroom environments. Aerosol Air Quality Res 12:251

    CAS  Google Scholar 

  166. Li C-S, Wen Y-M (2003) Control effectiveness of electrostatic precipitation on airborne microorganisms. Aerosol Sci Technol 37:933

    CAS  Google Scholar 

  167. Lin C-Y, Li C-S (2002) Control effectiveness of ultraviolet germicidal irradiation on bioaerosols. Aerosol Sci Technol 36:474

    CAS  Google Scholar 

  168. Millner PD (2009) Bioaerosols associated with animal production operations. Bioresour Technol 100:5379

    CAS  Google Scholar 

  169. Jung JH, Lee JE, Kim SS (2009) Thermal effects on bacterial bioaerosols in continuous air flow. Sci Total Environ 407:4723

    CAS  Google Scholar 

  170. Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, Hoboken

    Google Scholar 

  171. Kacew S, Lemaire I (2000) Recent developments in benzene risk assessment. J Toxicol Environ Health A 61:485

    CAS  Google Scholar 

  172. Parmar GR, Rao NN (2009) Emerging control technologies for volatile organic compounds. Crit Rev Environ Sci Technol 39:41

    CAS  Google Scholar 

  173. Khan FI, Aloke A (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13:527

    Google Scholar 

  174. Kohno H, Tamura M, Shibuya A, Honda S, Berezin AA, Chang JS, Yamamoto T (1998) Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor. IEEE Trans Ind Appl 34:953

    CAS  Google Scholar 

  175. Environment Australia (1999) Incineration and dioxins: review of formation processes. Consultancy report prepared by Environmental and Safety Services for Environment Australia. Commonwealth Department of the Environment and Heritage, Canberra

    Google Scholar 

  176. Heck RM, Farrauto RJ, Gulati ST (2002) Catalytic air pollution control: commercial technology. Wiley-Interscience, New York

    Google Scholar 

  177. Mycock JC, McKenna JD, Theodore L (1995) Handbook of air pollution control engineering and technology. CRC, Boca Raton

    Google Scholar 

  178. Sheintuch M, Matatov-Meytal YI (1999) Comparison of catalytic processes with other regeneration methods of activated carbon. Catalysis Today 53:73

    CAS  Google Scholar 

  179. Bandosz TJ (2006) Activated carbon surfaces in environmental remediation. Elsevier, Amsterdam

    Google Scholar 

  180. Jaroniec M (2006) In: Loureiro J, Kartel M (eds) Combined and hybrid adsorbents. Springer, Netherlands, pp 23–36

    Google Scholar 

  181. Plata DL, Hart AJ, Reddy CM, Gschwend PM (2009) Early evaluation of potential environmental impacts of carbon nanotube synthesis by chemical vapor deposition. Environ Sci Technol 43:8367

    CAS  Google Scholar 

  182. Yang RT (2003) Adsorbents: fundamentals and applications. Wiley-Interscience, Hoboken

    Google Scholar 

  183. Bourgois D, Vanderschuren J, Thomas D (2008) Determination of liquid diffusivities of VOC (paraffins and aromatic hydrocarbons) in phthalates. Chem Eng Process Process Intensif 47:1363

    CAS  Google Scholar 

  184. Hobbs PV (2000) Introduction to atmospheric chemistry. Cambridge University Press, Cambridge

    Google Scholar 

  185. Warneck P (2000) Chemistry of the natural atmosphere. Academic, San Diego

    Google Scholar 

  186. Broadgate WJ, Liss PS, Penkett SA (1997) Seasonal emissions of isoprene and other reactive hydrocarbon gases from the ocean. Geophys Res Lett 24:2675

    CAS  Google Scholar 

  187. Yassaa N, Peeken I, Zollner E, Bluhm K, Arnold S, Spracklen D, Williams J (2008) Evidence for marine production of monoterpenes. Environ Chem 5:391

    CAS  Google Scholar 

  188. Grosjean E, Grosjean D, Fraser MP, Cass GR (1996) Air quality model evaluation data for organics. 2. C-1-C-14 carbonyls in Los Angeles air. Environ Sci Technol 30:2687

    Google Scholar 

  189. Marandino CA, De Bruyn WJ, Miller SD, Prather MJ, Saltzman ES (2005) Oceanic uptake and the global atmospheric acetone budget. Geophys Res Lett 32:1–4

    Google Scholar 

  190. Shepson PB, Sirju AP, Hopper JF, Barrie LA, Young V, Niki H, Dryfhout H (1996) Sources and sinks of carbonyl compounds in the Arctic Ocean boundary layer: polar ice floe experiment. J Geophys Res Atmos 101:21081

    CAS  Google Scholar 

  191. Singh H, Chen Y, Staudt A, Jacob D, Blake D, Heikes B, Snow J (2001) Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds. Nature 410:1078

    CAS  Google Scholar 

  192. Singh H, Chen Y, Tabazadeh A, Fukui Y, Bey I, Yantosca R, Jacob D, Arnold F, Wohlfrom K, Atlas E, Flocke F, Blake D, Blake N, Heikes B, Snow J, Talbot R, Gregory G, Sachse G, Vay S, Kondo Y (2000) Distribution and fate of selected oxygenated organic species in the troposphere and lower stratosphere over the Atlantic. J Geophys Res Atmos 105:3795

    CAS  Google Scholar 

  193. Williams J, Holzinger R, Gros V, Xu X, Atlas E, Wallace DWR (2004) Measurements of organic species in air and seawater from the tropical Atlantic. Geophys Res Lett 31:3795–3805

    Google Scholar 

  194. Kirstine W, Galbally I, Ye YR, Hooper M (1998) Emissions of volatile organic compounds (primarily oxygenated species) from pasture. J Geophys Res Atmos 103:10605

    CAS  Google Scholar 

  195. Nemecek-Marshall M, Wojciechowski C, Kuzma J, Silver GM, Fall R (1995) Marine Vibrio species produce the volatile organic compound acetone. Appl Environ Microbiol 61:44

    CAS  Google Scholar 

  196. Nemecek-Marshall M, Wojciechowski C, Wagner WP, Fall R (1999) Acetone formation in the vibrio family: a new pathway for bacterial leucine catabolism. J Bacteriol 181:7493

    CAS  Google Scholar 

  197. Nuccio J, Seaton PJ, Kieber RJ (1995) Biological production of formaldehyde in the marine environment. Limnol Oceanogr 40:521

    CAS  Google Scholar 

  198. Wichard T, Poulet SA, Pohnert G (2005) Determination and quantification of α, β, γ, δ-unsaturated aldehydes as pentafluorobenzyl-oxime derivates in diatom cultures and natural phytoplankton populations: application in marine field studies. J Chromatogr B 814:155

    CAS  Google Scholar 

  199. Nguyen HTH, Takenaka N, Bandow H, Maeda Y, de Oliva ST, Botelho MMF, Tavares TM (2001) Atmospheric alcohols and aldehydes concentrations measured in Osaka, Japan and in Sao Paulo, Brazil. Atmos Environ 35:3075

    CAS  Google Scholar 

  200. Millet DB, Jacob DJ, Custer TG, de Gouw JA, Goldstein AH, Karl T, Singh HB, Sive BC, Talbot RW, Warneke C, Williams J (2008) New constraints on terrestrial and oceanic sources of atmospheric methanol. Atmos Chem Phys 8:6887

    CAS  Google Scholar 

  201. Kesselmeier J, Kuhn U, Rottenberger S, Biesenthal T, Wolf A, Schebeske G, Andreae MO, Ciccioli P, Brancaleoni E, Frattoni M, Oliva ST, Botelho ML, Silva CMA, Tavares TM (2002) Concentrations and species composition of atmospheric volatile organic compounds (VOCs) as observed during the wet and dry season in Rondonia (Amazonia). J Geophys Res Atmos 107:20–13

    Google Scholar 

  202. Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23

    CAS  Google Scholar 

  203. Jacob DJ, Field BD, Li QB, Blake DR, de Gouw J, Warneke C, Hansel A, Wisthaler A, Singh HB, Guenther A (2005) Global budget of methanol: constraints from atmospheric observations. J Geophys Res Atmos 110:1–17

    Google Scholar 

  204. Singh HB, Salas LJ, Chatfield RB, Czech E, Fried A, Walega J, Evans MJ, Field BD, Jacob DJ, Blake D, Heikes B, Talbot R, Sachse G, Crawford JH, Avery MA, Sandholm S, Fuelberg H (2004) Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-P. J Geophys Res Atmos 109:1–20

    Google Scholar 

  205. Löflund M, Kasper-Giebl A, Schuster B, Giebl H, Hitzenberger R, Puxbaum H (2002) Formic, acetic, oxalic, malonic and succinic acid concentrations and their contribution to organic carbon in cloud water. Atmos Environ 36:1553

    Google Scholar 

  206. Kesselmeier J (2001) Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: a compilation of field and laboratory studies. J Atmos Chem 39:219

    CAS  Google Scholar 

  207. Formenti P, Schütz L, Balkanski Y, Desboeufs K, Ebert M, Kandler K, Petzold A, Scheuvens D, Weinbruch S, Zhang D (2011) Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmos Chem Phys 11:8231

    CAS  Google Scholar 

  208. Sanhueza E, Andreae MO (1991) Emission of formic and acetic-acids from tropical savanna soils. Geophys Res Lett 18:1707

    CAS  Google Scholar 

  209. Chebbi A, Carlier P (1996) Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review. Atmos Environ 30:4233

    CAS  Google Scholar 

  210. Jaenicke R (2005) Abundance of cellular material and proteins in the atmosphere. Science 308:73

    CAS  Google Scholar 

  211. Ge X, Wexler AS, Clegg SL (2011) Atmospheric amines – part I. A review. Atmos Environ 45:524

    CAS  Google Scholar 

  212. Khalil MAK, Moore RM, Harper DB, Lobert JM, Erickson DJ, Koropalov V, Sturges WT, Keene WC (1999) Natural emissions of chlorine-containing gases: reactive chlorine emissions inventory. J Geophys Res Atmos 104:8333

    CAS  Google Scholar 

  213. Khalil MAK (1999) In: Fabian P, Singh ON (eds) The handbook of environmental chemistry. Springer, Berlin, pp 45–78

    Google Scholar 

  214. Quack B, Wallace DWR (2003) Air-sea flux of bromoform: controls, rates, and implications. Global Biogeochem Cycles 17:1–27

    Google Scholar 

  215. Moore RM (2003) In: Gribble GW (ed) The handbook of environmental chemistry. Springer, Berlin, pp 85–101

    Google Scholar 

  216. Murphy CD, Moore RM, White RL (2000) An isotopic labeling method for determining production of volatile organohalogens by marine microalgae. Limnol Oceanogr 45:1868

    Google Scholar 

  217. Scarratt MG, Moore RM (1996) Production of methyl chloride and methyl bromide in laboratory cultures of marine phytoplankton. Marine Chem 54:263

    CAS  Google Scholar 

  218. Scarratt MG, Moore RM (1998) Production of methyl bromide and methyl chloride in laboratory cultures of marine phytoplankton II. Marine Chem 59:311

    CAS  Google Scholar 

  219. Scarratt MG, Moore RM (1999) Production of chlorinated hydrocarbons and methyl iodide by the red microalga Porphyridium purpureum. Limnol Oceanogr 44:703

    CAS  Google Scholar 

  220. Leri AC, Satish CC (2010) Organochlorine turnover in forest ecosystems: the missing link in the terrestrial chlorine cycle. Global Biogeochem Cycles 24:1–8

    Google Scholar 

  221. Rai V, Victor DG, Thurber MC (2010) Carbon capture and storage at scale: lessons from the growth of analogous energy technologies. Energy Policy 38:4089

    Google Scholar 

  222. Rhew RC, Abel T (2007) Measuring simultaneous production and consumption fluxes of methyl chloride and methyl bromide in annual temperate grasslands. Environ Sci Technol 41:7837

    CAS  Google Scholar 

  223. Moore RM, Gut A, Andreae MO (2005) A pilot study of methyl chloride emissions from tropical woodrot fungi. Chemosphere 58:221

    CAS  Google Scholar 

  224. Hewitt CN, Davison B (1997) Field measurements of dimethyl sulphide and its oxidation products in the atmosphere. Philos Trans R Soc Lond B Biol Sci 352:183

    Google Scholar 

  225. Barnes I (2003) In: James RH (ed) Encyclopedia of atmospheric sciences. Academic, Oxford, pp 2429–2438

    Google Scholar 

  226. Davison B, Hewitt CN (1994) Elucidation of the tropospheric reactions of biogenic sulfur species from a field measurement campaign in NW Scotland. Chemosphere 28:543

    CAS  Google Scholar 

  227. Pham M, Muller JF, Brasseur GP, Granier C, Megie G (1995) A three-dimensional study of the tropospheric sulfur cycle. J Geophys Res Atmos 100:26061

    Google Scholar 

  228. Kawamura K, Ishimura Y, Yamazaki K (2003) Four years’ observations of terrestrial lipid class compounds in marine aerosols from the western North Pacific. Global Biogeochem Cycles 17:3–19

    Google Scholar 

  229. Simoneit BRT, Cardoso JN, Robinson N (1991) An assessment of terrestrial higher molecular-weight lipid compounds in aerosol particulate matter over the south-Atlantic from about 30–70°S. Chemosphere 23:447

    CAS  Google Scholar 

  230. Medeiros PM, Conte MH, Weber JC, Simoneit BRT (2006) Sugars as source indicators of biogenic organic carbon in aerosols collected above the Howland Experimental Forest, Maine. Atmos Environ 40:1694

    CAS  Google Scholar 

  231. Russell LM, Hawkins LN, Frossard AA, Quinn PK, Bates TS (2010) Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting. Proc Natl Acad Sci USA 107:6652

    Google Scholar 

  232. Jia Y, Bhat S, Fraser MP (2010) Characterization of saccharides and other organic compounds in fine particles and the use of saccharides to track primary biologically derived carbon sources. Atmos Environ 44:724

    CAS  Google Scholar 

  233. Burrows SM, Elbert W, Lawrence MG, Pöschl U (2009) Bacteria in the global atmosphere – part 1: review and synthesis of literature data for different ecosystems. Atmos Chem Phys 9:9263

    CAS  Google Scholar 

  234. Despres VR, Huffman JA, Burrows SM, Hoose C, Safatov AS, Buryak G, Frohlich-Nowoisky J, Elbert W, Andreae MO, Poschl U, Jaenicke R (2012) Primary biological aerosol particles in the atmosphere: a review. Tellus Ser B Chem Phys Meteorol 64:1–58

    Google Scholar 

  235. McDevitt JJ, Milton DK, Rudnick SN, First MW (2008) Inactivation of poxviruses by upper-room UVC light in a simulated hospital room environment. PLoS One 3:e3186

    Google Scholar 

  236. Elbert W, Taylor PE, Andreae MO, Pöschl U (2007) Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos Chem Phys 7:4569

    CAS  Google Scholar 

  237. Cheng JYW, Chan CK, Lee CT, Lau APS (2009) Carbon content of common airborne fungal species and fungal contribution to aerosol organic carbon in a subtropical city. Atmos Environ 43:2781

    CAS  Google Scholar 

  238. Lang-Yona N, Dannemiller K, Yamamoto N, Burshtein N, Peccia J, Yarden O, Rudich Y (2012) Annual distribution of allergenic fungal spores in atmospheric particulate matter in the Eastern Mediterranean; a comparative study between ergosterol and quantitative PCR analysis. Atmos Chem Phys 12:2681

    CAS  Google Scholar 

  239. Sousa SIV, Martins FG, Pereira MC, Alvim-Ferraz MCM, Ribeiro H, Oliveira M, Abreu I (2008) Influence of atmospheric ozone, PM10 and meteorological factors on the concentration of airborne pollen and fungal spores. Atmos Environ 42:7452

    CAS  Google Scholar 

  240. Oliveira M, Ribeiro H, Delgado J, Abreu I (2009) The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level. Int J Biometeorol 53:61

    CAS  Google Scholar 

  241. Wilkinson DM, Koumoutsaris S, Mitchell EAD, Bey I (2012) Modelling the effect of size on the aerial dispersal of microorganisms. J Biogeogr 39:89

    Google Scholar 

  242. Bottenheim JW, Boudries H, Brickell PC, Atlas E (2002) Alkenes in the Arctic boundary layer at Alert, Nunavut, Canada. Atmos Environ 36:2585

    CAS  Google Scholar 

  243. Swanson AL, Blake NJ, Dibb JE, Albert MR, Blake DR, Rowland FS (2002) Photochemically induced production of CH3Br, CH3I, C2H5I, ethene, and propene within surface snow at Summit, Greenland. Atmos Environ 36:2671

    CAS  Google Scholar 

  244. Grannas AM, Shepson PB, Filley TR (2004) Photochemistry and nature of organic matter in Arctic and Antarctic snow. Global Biogeochem Cycles 18:GB1006

    Google Scholar 

  245. Czuczwa J, Leuenberger C, Giger W (1988) Seasonal and temporal changes of organic compounds in rain and snow. Atmos Environ 22:907

    CAS  Google Scholar 

  246. Krieger UK, Marcolli C, Reid JP (2012) Exploring the complexity of aerosol particle properties and processes using single particle techniques. Chem Soc Rev 41:6631–6662

    Google Scholar 

  247. Zhang R, Khalizov AF, Pagels J, Zhang D, Xue H, McMurry PH (2008) Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proc Natl Acad Sci USA 105:10291

    Google Scholar 

  248. Sobanska S, Hwang H, Choël M, Jung H-J, Eom H-J, Kim H, Barbillat J, Ro C-U (2012) Investigation of the chemical mixing state of individual Asian dust particles by the combined use of electron probe X-ray microanalysis and Raman microspectrometry. Anal Chem 84:3145

    CAS  Google Scholar 

  249. Freedman MA, Baustian KJ, Wise ME, Tolbert MA (2010) Characterizing the morphology of organic aerosols at ambient temperature and pressure†. Anal Chem 82:7965

    CAS  Google Scholar 

  250. Bladt H, Schmid J, Kireeva ED, Popovicheva OB, Perseantseva NM, Timofeev MA, Heister K, Uihlein J, Ivleva NP, Niessner R (2012) Impact of Fe content in laboratory-produced soot aerosol on its composition, structure, and thermo-chemical properties. Aerosol Sci Technol 46:1337

    CAS  Google Scholar 

  251. Bahadur R, Russell LM, Prather K (2010) Composition and morphology of individual combustion, biomass burning, and secondary organic particle types obtained using urban and coastal ATOFMS and STXM-NEXAFS measurements. Aerosol Sci Technol 44:551

    CAS  Google Scholar 

  252. Bzdek BR, Pennington MR, Johnston MV (2012) Single particle chemical analysis of ambient ultrafine aerosol: a review. J Aerosol Sci 52:109

    CAS  Google Scholar 

  253. Masciangioli T, Alper J (2012) Challenges in characterizing small particles: exploring particles from the nano- to microscales. National Academies, Washington

    Google Scholar 

  254. Han C, Liu Y, Ma J, He H (2012) Effect of soot microstructure on its ozonization reactivity. J Chem Phys 137:1–9

    Google Scholar 

  255. Koop T, Bookhold J, Shiraiwab M, Poschl U (2011) Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Phys Chem Chem Phys 13:19238

    CAS  Google Scholar 

  256. Han C, Liu Y, Liu C, Ma J, He H (2012) Influence of combustion conditions on hydrophilic properties and microstructure of flame soot. J Phys Chem A 116:4129

    CAS  Google Scholar 

  257. Perraud V, Bruns EA, Ezell MJ, Johnson SN, Yu Y, Alexander ML, Zelenyuk A, Imre D, Chang WL, Dabdub D, Pankow JF, Finlayson-Pitts BJ (2012) Nonequilibrium atmospheric secondary organic aerosol formation and growth. Proceedings of the National Academy of Sciences 109:2836

    Google Scholar 

  258. Cooper CDAFC (1994) Air pollution control: a design approach. Waveland, Prospect Heights

    Google Scholar 

  259. Endres E, Dueck J, Neesse T (2012) Hydrocyclone classification of particles in the micron range. Miner Eng 31:42

    CAS  Google Scholar 

  260. Nguyen H, Morrison AL, Nelson PF (2008) Analysis of pollution control costs in coal based electricity generation

    Google Scholar 

  261. Shanthakumar S, Singh DN, Phadke RC (2008) Flue gas conditioning for reducing suspended particulate matter from thermal power stations. Progress Energy Combust Sci 34:685

    CAS  Google Scholar 

  262. Mussatti DC (2002) EPA air pollution control cost manual. Air Quality Strategies and Standards Division of the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

    Google Scholar 

Download references

Acknowledgments

We would like to thank Canadian funding agencies NSERC, CFI and FQRNT for financial support. We are also grateful to Ms. Ornella Cavaliere for proofreading our manuscript. J. Sun acknowledges financial support from the Institute of Atmospheric Physics, Chinese Academy of Sciences for the “100 Talents” program of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Ariya .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 A Brief Review of Mitigation of Atmospheric Bio-organic Compounds

Bioaerosols are not released as a result of human activity to the same extent as other pollutants. However, significant anthropogenic sources include waste treatment, agriculture, food production, paper and wood production and horticulture, as well as municipal composting [163, 164]. Development and deployment of bioaerosol mitigation technologies is very limited due to the lack of regulations governing acceptable bioaerosol emission rates and ambient concentrations [60]. The Republic of Korea has set a maximum allowable total bacterial bioaerosol concentration of 800 CFU m−3 for indoor environments [165]. Licensed “green waste” composting sites in England and Wales are subject to guidelines limiting total fungi and bacteria concentrations to below 1,000 CFU m−3, and Gram-negative bacteria below 300 CFU m−3 at 250 m from the site boundary [163]. However, neither the US Environmental Protection Agency (EPA) nor the World Health Organization (WHO) has established bioaerosol concentration standards [165] (incineration or biofiltration), but also include UV radiation and ion emission [164, 166, 167]. In industrial settings, the measures in place to control dust and odour emissions will generally remove bioaerosols as well, but some reports indicate that these do not always control the emission of certain pathogens [168]. The above-mentioned pollution control technologies and other techniques can also be applied to treat indoor air. Increased ventilation rates and the use of high-efficiency particulate air (HEPA) filters are popular approaches, but both greatly increase the power requirements of heating, ventilation and air conditioning (HVAC) systems. Methods such as thermal degradation or ESP could be more energy efficient, but work needs to be done to determine the best way to implement these technologies into HVAC systems [60, 169].

VOCs are one class of compounds that can be emitted from biogenic or anthropogenic sources. Among anthropogenic activities, the transport and industrial sectors and biomass burning are responsible for most of the global anthropogenic VOCs emissions. Their detrimental impact on the atmosphere is multifaceted, as they are readily oxidised by OH radical and through a series of reactions allowing the formation of tropospheric ozone, a main component of photochemical smog plaguing the air quality of many urban cities and causing increased premature deaths [170]. Exposure to benzene, an aromatic compound, has been directly linked to leukaemia [171]. Consequently, a variety of control technologies to prevent the release of VOC by degradation or recovery have been developed. Detailed accounts of existing and emerging techniques have been reviewed [172, 173].

Destruction techniques aim at oxidizing the parent VOC into CO2 and H2O. High removal efficiencies are obtained by common techniques like thermal and catalytic oxidation, which can achieve more than 95% removal of VOCs [173]. Destruction can also be achieved by radical formation, using photo-catalysts like TiO2, for example. However, thermal processes have a high energy demand due to the high temperature required for oxidation. In addition, both thermal- and photocatalytic-based oxidation involve the formation of toxic by-products and can reduce a catalyst’s lifetime due to poisoning [174176]. Recovery techniques involve two steps. First a transfer of the pollutants from the air stream to another medium and second the recovery of the pollutants. In adsorption-based techniques the pollutant is separated from the polluted stream by binding chemically or physically to the adsorbent upon exposure. The pollutant is then collected during the regeneration of the saturated adsorbent; details on various regeneration methods are reported in the literature [177179]. So far the two leading materials in adsorption have been activated carbon for its high surface area and zeolites for their thermal stability and size selective properties. New materials, however, are being developed to overcome some of the challenges that face activated carbon and zeolites such as humidity sensitivity, flammability during regeneration and cost [172]. In the context of VOC remediation, mesoporous transition metal oxides, ordered mesoporous silica (OMS) and carbon nanotubes (CNT) can overcome some of the challenges faced by the traditional adsorbents [172, 180]. However, the complexity and inherent formation of wastes during the large-scale synthesis of these new materials, particularly OMS and CNT, is a subject of environmental concern for large scale production [180182]. Recovery by absorption is based on transferring the gaseous pollutants to a liquid. The system is limited to highly soluble gases [173]. Investigations on phthalates as absorbents for VOCS have recently been reported [183]. Recovery by membranes is based on separation due to a concentration gradient, pressure differential and electrochemical potential [173]. Separation by membranes is selective, which can limit its efficiency since VOCs are made up of a mixture of gases. Improving membranes involves developing materials that can separate a range of organic compounds [173]. VOCs can also be separated by condensation techniques where the VOCs are cooled to low temperatures. The various remediation techniques for VOCs are summarised in Table 6.

Table 6 Industrial pollution control for large stationary point-source emissions of carbonaceous aerosols, including those applicable to bioaerosols

1.2 Simultaneous Mitigation of Multiple Air Pollutants

While mitigation options for VOCs and bioaerosols were considered separately here, the implementation of some pollution mitigation options to target one pollutant may have an effect on the amount of another pollutant released. In many cases, the implementation of some mitigation options will reduce the emission rates of several pollutants. However, some process modifications and material substitutions lead to trade-offs, limiting the production of one pollutant while increasing that of another. For example, operating a combustion process at a higher temperature with excess oxygen will generally improve combustion efficiency, reducing the amount of carbonaceous aerosols and VOCs produced, but will increase the quantity of NO x produced.

1.3 Future Anthropogenic Emission Projections

A wide variety of different pollution control approaches exist and in many cases emissions of pollutants such as VOCs and bioaerosols from anthropogenic sources can be effectively reduced to zero. Pollution control technologies are constantly being refined and adapted to more and more emission sources that release some of the above-mentioned pollutants.

Fig. 2
figure 04612

The simulation with Phillips’ Scheme in the condensation and immersion freezing modes. (a) Spatial and temporal evolution of the primary ice nucleation rate (L−1 s−1) (shaded area) and the ice splinter production rate (L−1 s−1) (solid lines). (b) Spatial and temporal evolution of ice particles (L−1) (shaded area) and bacteria-containing ice particles (L−1) (solid lines). Courtesy of Sun et al. (Personal Communication, 2013)

Fig. 3
figure 04613

Spatial and temporal evolution of the primary ice nucleation rate (L−1 s−1) (shaded area) and the ice splinter production rate (L−1 s−1) (solid lines) for the simulation with Chen’s scheme in the immersion freezing mode. (a) Spatial and temporal evolution of the primary ice nucleation rate (L−1 s−1) (shaded area) and the ice splinter production rate (L−1 s−1) (solid lines). (b) Spatial and temporal evolution of ice particles (L−1) (shaded area) and bacteria-containing ice particles (L−1) (solid lines). Courtesy of Sun et al. (Personal Communication, 2013)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ariya, P.A. et al. (2013). Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization. In: McNeill, V., Ariya, P. (eds) Atmospheric and Aerosol Chemistry. Topics in Current Chemistry, vol 339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_461

Download citation

Publish with us

Policies and ethics