Skip to main content

General Adaptive Transfer Functions Design for Volume Rendering by Using Neural Networks

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4233))

Included in the following conference series:

Abstract

In volume data visualization, the classification is used to determine voxel visibility and is usually carried out by transfer functions that define a mapping between voxel value and color/opacity. The design of transfer functions is a key process in volume visualization applications. However, one transfer function that is suitable for a data set usually dose not suit others, so it is difficult and time-consuming for users to design new proper transfer function when the types of the studied data sets are changed. By introducing neural networks into the transfer function design, a general adaptive transfer function (GATF) is proposed in this paper. Experimental results showed that by using neural networks to guide the transfer function design, the robustness of volume rendering is promoted and the corresponding classification process is optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fan, Y.T., Eric, B.L., Kwan, L.M.: An Intelligent System Approach to Higher-Dimensional Classification of Volume Data. IEEE Trans. on Visualization and Computer Graphics 11(3), 273–284 (2005)

    Article  Google Scholar 

  2. Hanspeter, P., Bill, L., Chandrajit, B., et al.: The Transfer Function Bake-Off. IEEE Computer Graphics and Applications, pp. 16–22 (May/June 2001)

    Google Scholar 

  3. Nicoletti, G.M.: Volume visualization advances in transfer and opacity function generation for interactive direct volume rendering. IEEE Trans. on Visualization and Computer Graphics 6(3), 124–130 (2004)

    Google Scholar 

  4. Hladiivka, K.A.H., Groller, E.M.: Curvature-Based Transfer Functions for Direct Volume Rendering. In: Spring Conference on Computer Graphics 2000, pp. 58–65 (2000)

    Google Scholar 

  5. He, T., Hong, L., Kaufman, A., Pfister, H.: Generation of transfer functions with stochastic search techniques. In: Proceedings Visualization 1996, pp. 227–234 (1996)

    Google Scholar 

  6. Kindlmann, G., Durkin, J.W.: Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering. IEEE Trans. on Visualization and Computer Graphics 11(3), 79–86 (1998)

    Google Scholar 

  7. Shiaofen-Fang, Biddlecome, T., Tuceryan, M.: Image-Based Transfer Function Design for Data Exploration in Volume Visualization. In: Proceedings IEEE Visualization 1998, pp. 319–326 (1998)

    Google Scholar 

  8. http://www.terarecon.com (2006)

  9. Pfister, H.: Image-Centering, Using Organized Sampling. Mitsubishi Electric Research Laboratories (2000), www.mer.com/Droiects/dg/

  10. Fujishiro, I., Azuma, T., Takeshim, Y.: Automating Transfer Function Design for Comprehensible Volume Rendering Based on 3D Field Topology Analysis. In: Proceedings IEEE Visualization 1999, pp. 467–470 (1999)

    Google Scholar 

  11. Kindlmann, G.: Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering. Master’s thesis, Cornell University (1999)

    Google Scholar 

  12. Kindimann, G., Durkin, J.W.: Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering. In: Proc. IEEE Symposium On Volume Visualization, pp. 79–86 (1998)

    Google Scholar 

  13. Sato, Y., Westin, C.-F., Bhalerao, A., Nakajima, S., Shiraga, N., Tamura, S., Kikinis, R.: Tissue Classification Based on 3D Local Intensity Structures for Volume Rendering. In: IEEE Transactions on Visualization and Computer Graphics, pp. 160–180 (2000)

    Google Scholar 

  14. Pekar, V., Wiemker, R., Hempel, D.: Fast Detection of Meaningful Isosurfaces for Volume Data Visualization. In: Proceedings IEEE Visualization 2001, pp. 223–230 (2001)

    Google Scholar 

  15. Zhang, J., Sun, Z., Sun, J., Wei, Z.: Moment Based Transfer Function Design for Volume rendering. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2667, Springer, Heidelberg (2003)

    Google Scholar 

  16. Lu, H.J., Setiono, R.: Effective Data Mining Using Neural Networks. IEEE Transactions on Knowledge and Data Engineering 8(6), 957–961 (1996)

    Article  Google Scholar 

  17. Fan, Y.T., Kwan, L.M.: Intelligent Feature Extraction and Tracking for Visualizng Large-Scale 4D Flow Simulations. In: Super Computing 2005, Seattle, Washington, USA (2005)

    Google Scholar 

  18. Bajaj, V.P., Schicore, D.: The Contour Spectrum. In: Pro. 1997 IEEE Visualization Conf., October 1997, pp. 167–173. IEEE CS Press, Los Alamitos (1997)

    Google Scholar 

  19. Konig, A.H., Groller, E.M.: Mastering Transfer Function Specification by Using VolumePro Technology. In: Proceedings of the 17th Spring Conference on Computer Graphics (SCCG), pp. 279–286 (2001)

    Google Scholar 

  20. Schroeder, W., Sobierajski, L., Martin, K. (2006), http://www.vublic.kitware.com

  21. Hauser, H., et al.: Two-Level Volume Rendering. IEEE Trans. On Visualization and Computer Graphics 7(3), 242–251 (2001)

    Article  MathSciNet  Google Scholar 

  22. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Berlin (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, L., Chen, X., Li, S., Cai, X. (2006). General Adaptive Transfer Functions Design for Volume Rendering by Using Neural Networks. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893257_74

Download citation

  • DOI: https://doi.org/10.1007/11893257_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46481-5

  • Online ISBN: 978-3-540-46482-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics