Skip to main content

Functional Differences Between the Spatio-temporal Learning Rule (STLR) and Hebb Type (HEBB) in Single Pyramidal Cells in the Hippocampal CA1 Area

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4232))

Included in the following conference series:

Abstract

The spatio-temporal learning rule (STLR), proposed as a non-Hebb type by Tsukada et al. (1996 [1], 2005 [2]), consists of two distinctive factors; “cooperative plasticity without a postsynaptic spike,” and its temporal summa-ion. On the other hand, Hebb (1949 [3]) proposed the idea (HEBB) that synaptic modification is strengthened only if the pre- and post-synaptic elements are activated simultaneously. We have shown, experimentally, that both STLR and HEBB coexist in single pyramidal cells of the hippocampal CA1 area.

The functional differences between STLR and HEBB in dendrite (local)-soma (global) interactions in single pyramidal cells of CA1 and the possibility of reinforcement learning were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsukada, M., Aihara, T., Saito, H., Kato, H.: Hippocampal LTP depends on spatial and temporal correlation of inputs. Neural Networks 9, 1357–1365 (1996)

    Article  MATH  Google Scholar 

  2. Tsukada, M., Pan, X.: The spatiotemporal learning rule and its efficiency in separating spatiotemporal patterns. Biol. Cybern. 92, 139–146 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hebb, D.O.: The Organization of Behavior. John Wiley, New York (1949)

    Google Scholar 

  4. Markram, H., Lubke, J., Frotscher, M., Sakmann, B.: Reguration of synaptic efficacy by coincidence of postsynaptic Aps and EPSPs. Science 275, 213–215 (1997)

    Article  Google Scholar 

  5. Zhang, L.I., Tao, H.W., Holt, C.E., Harris, W.A., Poo, M.: A critical window for cooperation and competition among developing retino-tectal synapses. Nature 395, 37–44 (1998)

    Article  Google Scholar 

  6. Feldman, D.E.: Timing based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27, 45–56 (2000)

    Article  Google Scholar 

  7. Boettiger, C.A., Doupe, A.J.: Developmentally restricted synaptic plasticity in a songbird nucleus required for song learning. Neuron 31, 809–818 (2001)

    Article  Google Scholar 

  8. Sjostrome, P.J.: Rate timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164 (2001)

    Article  Google Scholar 

  9. Froemke, R.C., Dan, Y.: Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416, 433–438 (2002)

    Article  Google Scholar 

  10. Debanne, D., Thompson, S.M.: Associative long-term depression in the hippocampus in vitro. Hippocampus 6, 9–16 (1998)

    Article  Google Scholar 

  11. Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons; dependence on spike timing, synaptic strength, and postsynaptic type. J. Neurosci. 18, 10464–10472 (1998)

    Google Scholar 

  12. Aihara, T., Kobayashi, Y., Matsuda, H., Sasaki, H., Tsukada, M.: Optical imajing of LTPand LTD induced simultaneously by temporal stimulus in hippocampal CA1 area. Soc. Neurosci. Abs. 24, 1070 (1998)

    Google Scholar 

  13. Huang, Y.Y., Pittenger, C., Kandel, E.R.: A form of long-lasting, learning-related synaptic plasticity in the hippocampus induced by heterosynaptic low-frequency pairing. Proc. Natl. Acad. Sci. U. S. A. 101(3), 859–864 (2004)

    Article  Google Scholar 

  14. Golding, N.L., Staff, N.P., Spruston, N.: Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418(6895), 326–331 (2002)

    Article  Google Scholar 

  15. Thomas, M.J., Watabe, A.M., Moody, T.D., Makhinson, M., O’Dell, T.J.: Postsynaptic complex spike bursting enables the induction of LTP by theta frequency synaptic stimulation. J. Neurosci. 18(18), 7118–7126 (1998)

    Google Scholar 

  16. Aihara, T., Tsukada, M., Matsda, H.: Two dynamic processes for the induction of long-term in hippocampal CA1 neurons. Biol. Cybern. 82, 189–195 (2000)

    Article  MATH  Google Scholar 

  17. Tsukada, M., Aihara, T., Mizuro, M., Kato, H., Ito, K.: Temporal pattern sensitivity of long-term potentiation in hippocampal CA1 neurons. Biol. Cybern. 70, 495–503 (1994)

    Article  Google Scholar 

  18. Magee, J.C., Johnston, D.: A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275(5297), 209–213 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsukada, M., Yamazaki, Y. (2006). Functional Differences Between the Spatio-temporal Learning Rule (STLR) and Hebb Type (HEBB) in Single Pyramidal Cells in the Hippocampal CA1 Area. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_9

Download citation

  • DOI: https://doi.org/10.1007/11893028_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46479-2

  • Online ISBN: 978-3-540-46480-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics