Skip to main content

Neural Networks for Mobile Robot Navigation: A Survey

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3972))

Abstract

Nowadays, mobile robots have attracted more and more attention from researchers due to their extensive applications. Mobile robots need to have the capabilities of autonomy and intelligence, and they pose a challenge to researchers, which is to design algorithms that allow the robots to function autonomously in unstructured, dynamic, partially observable, and uncertain environments [1]. Navigation is the key to the relative technologies of mobile robots and neural networks are widely used in the field of mobile robot navigation due to their properties such as nonlinear mapping, ability to learn from examples, good generalization performance, massively parallel processing, and capability to approximate an arbitrary function given sufficient number of neurons. This paper surveys the developments in the last few years of the neural networks with applications to mobile robot navigation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sukhatme, G.S., Mataric, M.J.: Robots: Intelligence, Versatility, Adaptivity. Communications of the ACM 45(3), 30–32 (2002)

    Article  Google Scholar 

  2. Kortenkamp, D., Bonasso, R.P., Murphy, R. (eds.): Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems. AAAI press, Menlo Park (1998)

    Google Scholar 

  3. Kim, H.H., Ha, Y.S., Jin, G.G.: A Study on the Environmental Map Building for a Mobile Robot Using Infrared Ranger-finder Sensors. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, vol. 1, pp. 711–716 (2003)

    Google Scholar 

  4. Thrun, S.B.: Exploration and Model Building in Mobile Robot Domains. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 1, pp. 175–180 (1993)

    Google Scholar 

  5. Meng, M., Kak, A.C.: Fast Vision-Guided Mobile Robot Navigation Using Neural Networks. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 111–116 (1992)

    Google Scholar 

  6. Zou, A., Hou, Z.G., Zhang, L., Tan, M.: A Neural Network-based Camera Calibration Method for Mobile Robot Localization Problems. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3498, pp. 277–284. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Barbera, H.M., Skarmeta, A.G., Izquierdo, M.Z., Blaya, J.B.: Neural Networks for Sonar and Infrared Sensors Fusion. In: Proceedings of the Third International Conference on Information Fusion, vol. 2, pp. 4–18 (2000)

    Google Scholar 

  8. Lippman, R.: An Introduction to Computing with Neural Nets. IEEE ASSP Magazine 4, 4–22 (1987)

    Article  Google Scholar 

  9. Hu, H.S., Gu, D.B.: Landmark-Based Navigation of Mobile Robot in Manufacturing. In: Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation, vol. 1, pp. 114–121 (1999)

    Google Scholar 

  10. Janet, J.A., Gutierrez-Osuna, R., Chase, T.A., White, M., Luo, R.C.: Global Self-localization for Autonomous Mobile Robots Using Self-organizing Kohonen Neural Networks. In: Proceedings of the IEEE International Conference on Intelligent Robotics and Systems, vol. 3, pp. 504–509 (1995)

    Google Scholar 

  11. Crowley, J.L., Wallner, F., Schiele, B.: Position Estimation Using Principal Components of Range Data. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 3121–3128 (1998)

    Google Scholar 

  12. Vlassis, N., Motomura, Y., Krose, B.: Supervised Dimension Reduction of Intrinsically Low-dimensional Data. Neural Computation 14(1), 191–215 (2002)

    Article  MATH  Google Scholar 

  13. Nayar, S.K., Murase, H., Nene, S.A.: Learning, Positioning, and Tracking Visual Appearance. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 3237–3244 (1994)

    Google Scholar 

  14. Artac, M., Jogan, M., Leonardis, A.: Mobile Robot Localization Using an Incremental Eigenspace Model. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 1025–1030 (2002)

    Google Scholar 

  15. Tamimi, H., Zell, A.: Global Visual Localization of Mobile Robots Using Kernel Principal Component Analysis. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, vol. 2, pp. 1896–1901 (2004)

    Google Scholar 

  16. Vapnik, V.: Statistical Learning Theory. John Willey & Sons, West Sussex (1998)

    MATH  Google Scholar 

  17. Zou, A., Hou, Z.G., Tan, M.: Support Vector Machines (SVM) for Color Image Segmentation with Applications to Mobile Robot Localization Problems. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3645, pp. 443–452. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Hou, Z.G.: A Hierarchical Optimization Neural Network for Large-scale Dynamic Systems. Automatica 37(12), 1931–1940 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hou, Z.G., Wu, C.P., Bao: A Neural Network for Hierarchical Optimization of Nonlinear Large-scale Systems. International Journal of Systems Science 29(2), 159–166 (1998)

    Article  Google Scholar 

  20. Djekoune, O., Achour, K.: Vision-guided Mobile Robot Navigation Using Neural Network. In: Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, pp. 355–361 (2001)

    Google Scholar 

  21. Fujii, T., Arai, Y., Asama, H., Endo, I.: Multilayered Reinforcement Learning for Complicated Collision Avoidance Problems. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 2186–2191 (1998)

    Google Scholar 

  22. Silva, C., Crisostomo, M., Ribeiro, B.: MONODA: A Neural Modular Architecture for Obstacle Avoidance without Knowledge of the Environment. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, vol. 6, pp. 334–339 (2000)

    Google Scholar 

  23. Ishii, K., Nishida, S., Watanabe, K., Ura, T.: A Collision Avoidance System based on Self-organizing Map and its Application to an Underwater Vehicle. In: 7th International Conference on Control, Automation, Robotics and Vision, vol. 2, pp. 602–607 (2002)

    Google Scholar 

  24. Gaudiano, P., Chang, C.: Adaptive Obstacle Avoidance with a Neural Network for Operant Conditioning: Experiments with Real Robots. In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 13–18 (1997)

    Google Scholar 

  25. Grossberg, S., Levine, D.S.: Neural Dynamics of Attentionally Modulated Pavlovian Conditioning: Blocking, Inter-stimulus Interval, and Secondary Reinforcement. Applied Optics 26, 5015–5030 (1987)

    Article  Google Scholar 

  26. Nilsson, N.J.: Principles of Artificial Intelligence. Tioga Publishing Co., Palo Alto (1980)

    MATH  Google Scholar 

  27. Khatib, O.: Real-time Obstacle Avoidance for Manipulators and Mobile Robots. The International Journal of Robotics Research 5(1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  28. Prusky, A.: Robotique Mobile. La Planification de Trajectoire, Hermes (1996)

    Google Scholar 

  29. Kozakiewicz, C., Ejiri, M.: Neural Network Approach to Path Planning for Two Dimensional Robot Motion. In: International Workshop on Intelligent Robots and Systems, vol. 2, pp. 818–823 (1991)

    Google Scholar 

  30. Sfeir, J., Kanaan, H.Y., Saad, M.: A Neural Network Based Path Generation Technique for Mobile Robots. In: Proceedings of the IEEE International Conference on Mechatronics, pp. 176–181 (2004)

    Google Scholar 

  31. Sastry, P.S., Santharam, G., Unnikrishnan, K.P.: Memory Neuron Networks for Identification and Control of Dynamic Systems. IEEE Transactions on Neural Networks 5(2), 306–319 (1994)

    Article  Google Scholar 

  32. Glasius, R., Komoda, A., Gielen, S.C.A.M.: Neural Network Dynamics for Path Planning and Obstacle Avoidance. Neural Networks 8(1), 125–133 (1995)

    Article  Google Scholar 

  33. Fierro, R., Lewis, F.L.: Control of a Nonholonomic Mobile Robot Using Neural Networks. In: Proceedings of the IEEE International Symposium on Intelligent Control, pp. 415–421 (1995)

    Google Scholar 

  34. Fierro, R., Lewis, F.L.: Practical Point Stabilization of a Nonholonomic Mobile Robot Using Neural Networks. In: Proceedings of the 35th IEEE on Decision and Control, vol. 2, pp. 1722–1727 (1996)

    Google Scholar 

  35. Fierro, R., Lewis, F.L.: Control of a Nonholonomic Mobile Robot Using Neural Networks. IEEE Transactions on Neural Networks 9(4), 589–600 (1998)

    Article  Google Scholar 

  36. Yang, S.X., Meng, M.: An Efficient Neural Network Approach to Dynamic Robot Motion Planning. Neural Networks 13(2), 143–148 (2000)

    Article  Google Scholar 

  37. Yang, S.X., Meng, M.: An Efficient Neural Network Method for Real-time Motion Planning with Safety Consideration. Robotics and Autonomous Systems 32(2-3), 115–128 (2000)

    Article  Google Scholar 

  38. Yang, S.X., Meng, M.Q.-H.: Real-time Collision-free Motion Planning of a Mobile Robot Using a Neural Dynamic-based Approach. IEEE Transactions on Neural Networks 14(6), 1541–1552 (2003)

    Article  Google Scholar 

  39. Hodgkin, A.L., Huxley, A.F.: A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve. Journey of Physiology (London) 117, 500–544 (1952)

    Google Scholar 

  40. Grossberg, S.: Nonlinear Neural Networks: Principal, Mechanisms, and Architecture. Neural Networks 1, 17–61 (1988)

    Article  Google Scholar 

  41. Huang, S. H.: Artificial Neural Networks and its Manufacturing Application: Part 1. Online slides are available at, www.min.uc.edu/icams/resourses/ANN/ANNMaul.ppt

  42. Jang, J.-S.R.: ANFIS: Adaptive-network-based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics 23(3), 665–685 (1993)

    Article  MathSciNet  Google Scholar 

  43. Godjevac, J., Steele, N.: Neuro-fuzzy Control of a Mobile Robot. Neurocomputing 28, 127–143 (1999)

    Article  Google Scholar 

  44. Marichal, G.N., Acosta, L., Moreno, L., Mendez, J.A., Rodrigo, J.J., Sigut, M.: Obstacle Avoidance for a Mobile Robot: A Neuro-fuzzy Approach. Fuzzy Sets and Systems 124(2), 171–179 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  45. Er, M.J., Deng, C.: Obstacle Avoidance of a Mobile Robot Using Hybrid Learning Approach. IEEE Transactions on Industrial Electronics 52(3), 898–905 (2005)

    Article  Google Scholar 

  46. Wu, S., Er, M.J., Gao, Y.: A Fast Approach for Automatic Generation of Fuzzy Rules by Generalized Dynamic Fuzzy Neural Networks. IEEE Transactions on Fuzzy Systems 9(4), 578–594 (2001)

    Article  Google Scholar 

  47. Carpenter, G.A., Grossberg, S., Rosen, D.B.: Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System. Neural Networks 4, 759–771 (1991)

    Article  Google Scholar 

  48. Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., Rosen, D.B.: Fuzzy ARTMAP: A Neural Network Architecture for Incremental Supervised Learning of Analog Multidimensional Maps. IEEE Transactions on Neural Networks 3, 698–713 (1992)

    Article  Google Scholar 

  49. Araujo, R., de Almeida, A.T.: Learning Sensor-based Navigation of a Real Mobile Robot in Unknown Worlds. IEEE Transactions on Systems, Man and Cybernetics, Part B 29(2), 164–178 (1999)

    Article  Google Scholar 

  50. Araujo, R., Lourenco, D., Ferreira, G.: Integrating Laser and Infrared Sensors for Learning Dynamic Self-organizing World Maps. In: International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 293–298 (2001)

    Google Scholar 

  51. Streilein, W.W., Gaudiano, P., Carpenter, G.A.: A Neural Network for Object Recognition through Sonar on a Mobile Robot. In: Proceedings of the IEEE ISIC/CIRA/ISAS Joint Conference, pp. 271–276 (1998)

    Google Scholar 

  52. Azouaoui, O., Ouaaz, M., Chohra, A., Farah, A., Achour, K.: Fuzzy ARTMap Neural Network Based Collision Avoidance Approach for Autonomous Robots Systems. In: Proceedings of the Second International Workshop on Robot Motion and Control, pp. 285–290 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zou, AM., Hou, ZG., Fu, SY., Tan, M. (2006). Neural Networks for Mobile Robot Navigation: A Survey. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760023_177

Download citation

  • DOI: https://doi.org/10.1007/11760023_177

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34437-7

  • Online ISBN: 978-3-540-34438-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics