Skip to main content

A Hybrid Architecture for the Sensorimotor Exploration of Spatial Scenes

  • Conference paper
Fuzzy Logic and Applications (WILF 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3849))

Included in the following conference series:

Abstract

Humans are very efficient in the analysis, exploration and representation of their environment. Based on the neurobiological and cognitive principles of human information processing, we develop a system for the automatic identification and exploration of spatial configurations. The system sequentially selects "informative" regions (regions of interest), identifies the local structure, and uses this information for drawing efficient conclusions about the current scene. The selection process involves low-level, bottom-up processes for sensory feature extraction, and cognitive top-down processes for the generation of active motor commands that control the positioning of the sensors towards the most informative regions. Both processing levels have to deal with uncertain data, and have to take into account previous knowledge from statistical properties and learning. We suggest that this can be achieved in a hybrid architecture which integrates a nonlinear filtering stage modelled after the neural computations performed in the early stages of the visual system, and a cognitive reasoning strategy that operates in an adaptive fashion on a belief distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballard, D.H.: Animate Vision. Artificial Intelligence 48, 57–86 (1991)

    Article  Google Scholar 

  2. Fermüller, C., Aloimonos, Y.: Vision and Action. Image and Vision Computing 13, 725–744 (1995)

    Article  Google Scholar 

  3. Yarbus, A.L.: Eye Movements and Vision. Plenum Press, New York (1967)

    Google Scholar 

  4. Noton, D., Stark, L.: Scanpaths in Saccadic Eye Movements while Reviewing and Recognizing Patterns. Vision Res. 11, 929–942 (1971)

    Article  Google Scholar 

  5. Simoncelli, E., Olshausen, B.: Natural Image Statistics and Neural Representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001)

    Article  Google Scholar 

  6. Zetzsche, C., Krieger, G.: Nonlinear Mechanisms and Higher-Order Statistics in Biological Vision and Electronic Image Processing: Review and Perspective. J. Electron. Imaging 10(1), 56–99 (2001)

    Article  Google Scholar 

  7. Itti, L., Koch, C.: Feature Combination Strategies for Saliency-Based Visual Attention Systems. J. Electron. Imaging 10(1), 161–169 (2001)

    Article  Google Scholar 

  8. Nikias, C.L., Petropulu, A.P.: Higher-Order Spectral Analysis: A Nonlinear Signal Proc-essing Framework. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  9. Zetzsche, C., Schill, K., Deubel, H., Krieger, G., Umkehrer, E., Beinlich, S.: Investigation of a Sensorimotor System for Saccadic Scene Analysis: An Integrated Approach. In: Pfeifer, R., Blumenberg, B., Meyer, J.-A., Wilson, S.W. (eds.) From Animal to Animats - Proc. 5th Intl. Conf. Soc. Adaptive Behavior, vol. 5, pp. 120–126. MIT Press, Cambridge (1998)

    Google Scholar 

  10. Schetzen, M.: The Volterra and Wiener Theories of Nonlinear Systems. Krieger’s, Malabar, FL, updated edition (1989)

    Google Scholar 

  11. Shapley, R.: A New View of the Visual Cortex. Neural Networks 17, 615–623 (2004)

    Article  Google Scholar 

  12. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  13. Smets, P.: Belief Functions. In: Smets, P., Mamdani, E.H., Dubois, D., Prade, H. (eds.) Non-Standard Logics for Automated Reasoning, pp. 253–286. Academic Press, London (1988)

    Google Scholar 

  14. Gordon, J., Shortliffe, E.H.: A Method for Managing Evidential Reasoning in a Hi-erarchical Hypothesis Space. Artif. Intell. 26, 323–357 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schill, K., Umkehrer, E., Beinlich, S., Krieger, G., Zetzsche, C.: Scene Analysis with Sac-cadic Eye Movements: Top-Down and Bottom-Up Modelling. J. Electron. Imaging 10(1), 152–160 (2001)

    Article  Google Scholar 

  16. Schill, K.: Decision Support Systems with Adaptive Reasoning Strategies. In: Freksa, C., Jantzen, M., Valk, R. (eds.) Foundations of Computer Sciences: Theory, Cognition, Application, pp. 417–427. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schill, K., Zetzsche, C., Parakrama, T. (2006). A Hybrid Architecture for the Sensorimotor Exploration of Spatial Scenes. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds) Fuzzy Logic and Applications. WILF 2005. Lecture Notes in Computer Science(), vol 3849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11676935_40

Download citation

  • DOI: https://doi.org/10.1007/11676935_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32529-1

  • Online ISBN: 978-3-540-32530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics