Skip to main content

Coprimality in Finite Models

  • Conference paper
Book cover Computer Science Logic (CSL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3634))

Included in the following conference series:

  • 561 Accesses

Abstract

We investigate properties of the coprimality relation within the family of finite models being initial segments of the standard model for coprimality, denoted by \(\mathrm{FM}((\omega,\bot))\).

Within \(\mathrm{FM}((\omega,\bot))\) we construct an interpretation of addition and multiplication on indices of prime numbers. Consequently, the first order theory of \(\mathrm{FM}((\omega,\bot))\) is Π\(^{\rm 0}_{\rm 1}\)–complete (in contrast to the decidability of the theory of multiplication in the standard model). This result strengthens an analogous theorem of Marcin Mostowski and Anna Wasilewska, 2004, for the divisibility relation.

As a byproduct we obtain definitions of addition and multiplication on indices of primes in the model \((\omega,\bot,\leq_{P_2})\), where P 2 is the set of primes and products of two different primes and ≤ X is the ordering relation restricted to the set X. This can be compared to the decidability of the first order theory of \((\omega,\bot,\leq_P)\), for P being the set of primes (Maurin, 1997) and to the interpretation of addition and multiplication in \((\omega,\bot,\leq_{P^2})\), for P 2 being the set of primes and squares of primes, given by Bès and Richard, 1998.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bès, A., And Richard, D.: Undecidable extensions of Skolem arithmetic. Journal of Symbolic Logic 63, 379–401 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Gurevich, Y.: Logic and the Challenge of Computer Science. In: Börger, E. (ed.) Current Trends in Theoretical Computer Science, pp. 1–7. Computer Science Press, Rockville (1988)

    Google Scholar 

  3. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM 12, 576–583 (1969)

    Article  MATH  Google Scholar 

  4. Jameson, G.J.O.: The prime number theorem. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  5. Kołodziejczyk, L.A.: Truth definitions in finite models. Journal of Symbolic Logic 69, 183–200 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kołodziejczyk, L.A.: A finite model-theoretical proof of a property of bounded query classes within PH. Journal of Symbolic Logic 69, 1105–1116 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Krynicki, M., And Zdanowski, K.: Theories of arithmetics in finite models. Journal of Symbolic Logic 70, 1–28 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lee, T.: Arithmetical definability over finite structures. Mathematical Logic Quarterly 49, 385–393 (2003)

    Article  MATH  Google Scholar 

  9. Maurin, F.: The theory of integer multiplication with order restricted to primes is decidable. Journal of Symbolic Logic 62, 123–130 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mostowski, M.: On representing concepts in finite models. Mathematical Logic Quarterly 47, 513–523 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mostowski, M.: On representing semantics in finite models. In: Rojszczak, A., Cachro, J., Kurczewski, G. (eds.) Philosophical Dimensions of Logic and Science, pp. 15–28. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  12. Mostowski, M., Andwasilewska, A.: Arithmetic of divisibility in finite models. Mathematical Logic Quarterly 50, 169–174 (2004)

    Article  MATH  Google Scholar 

  13. Mostowski, M., And Zdanowski, K.: FM–representability and beyond. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 358–367. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Schweikardt, N.: Arithmetic, First-Order Logic, and Counting Quantifiers. ACMTransactions on Computational Logic 5, 1–35 (2004)

    Article  MathSciNet  Google Scholar 

  15. Sierpiński, W.: Elementary Theory of Numbers. PWN (Polish Scientific Publishers), North Holland (1964)

    MATH  Google Scholar 

  16. Szczerba, L.W.: Interpretability of elementary theories. In: Butts, Hintikka (eds.) Proceedings 15th ICALP 88 Logic, foundations of mathematics and computability theory, pp. 129–145. Reidel Publishing, Dordrecht (1977)

    Google Scholar 

  17. Trachtenbrot, B.: The impossibility of an algorithm for the decision problem for finite domains. In: Doklady Akademii Nauk SSSR, vol. 70, pp. 569–572 (1950) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mostowski, M., Zdanowski, K. (2005). Coprimality in Finite Models. In: Ong, L. (eds) Computer Science Logic. CSL 2005. Lecture Notes in Computer Science, vol 3634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538363_19

Download citation

  • DOI: https://doi.org/10.1007/11538363_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28231-0

  • Online ISBN: 978-3-540-31897-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics