Skip to main content

Unsupervised Learning of Visual Feature Hierarchies

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3587))

Abstract

We propose an unsupervised, probabilistic method for learning visual feature hierarchies. Starting from local, low-level features computed at interest point locations, the method combines these primitives into high-level abstractions. Our appearance-based learning method uses local statistical analysis between features and Expectation-Maximization to identify and code spatial correlations. Spatial correlation is asserted when two features tend to occur at the same relative position of each other. This learning scheme results in a graphical model that constitutes a probabilistic representation of a flexible visual feature hierarchy. For feature detection, evidence is propagated using Belief Propagation. Each message is represented by a Gaussian mixture where each component represents a possible location of the feature. In experiments, the proposed approach demonstrates efficient learning and robust detection of object models in the presence of clutter and occlusion and under view point changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, S., Roth, D.: Learning a sparse representation for object detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 113–130. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Cooper, E.E., Wojan, T.J.: Differences in the coding of spatial relations in face identification and basic-level object recognition. J. of Exp. Psychology 26, 470–488 (2000)

    Google Scholar 

  3. Fei-Fei, L., Fergus, R., Perona, P.: A Bayesian approach to unsupervised one-shot learning of object categories. In: ICCV, pp. 1134–1141 (2003)

    Google Scholar 

  4. Harris, C., Stephens, M.: A combined corner and edge detector. In: ALVEY Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  5. Helmer, S., Lowe, D.G.: Object recognition with many local features. In: Workshop on Generative Model Based Vision (GMBV), Washington, D.C. (July 2004)

    Google Scholar 

  6. Lerner, Y., Hendler, T., Ben-Bashat, D., Harel, M., Malach, R.: A hierarchical axis of object processing stages in the human visual cortex. In: Cerebral Cortex, vol. 4, pp. 287–297 (2001)

    Google Scholar 

  7. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: CVPR, June 2003, vol. 2, pp. 257–263 (2003)

    Google Scholar 

  8. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-100) (1996)

    Google Scholar 

  9. Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

    Google Scholar 

  10. Perona, P., Fergus, R., Zisserman, A.: Object class recognition by unsupervised scaleinvariant learning. In: CVPR, Madison, Wisconsin, June 2003, vol. 2, p. 264 (2003)

    Google Scholar 

  11. Piater, J.H., Grupen, R.A.: Distinctive features should be learned. In: Bülthoff, H.H., Poggio, T.A., Lee, S.-W. (eds.) BMCV 2000. LNCS, vol. 1811, pp. 52–61. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neuroscience 2, 1019–1025 (1999)

    Article  Google Scholar 

  13. Schwartz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  Google Scholar 

  14. Sudderth, E.B., Ihler, A.T., Freeman, W.T., Willsky, A.S.: Nonparametric belief propagation. In: CVPR, pp. 605–612 (2003)

    Google Scholar 

  15. Wersing, H., Koerner, E.: Unsupervised learning of combination features for hierarchical recognition models. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 1225–1230. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scalzo, F., Piater, J. (2005). Unsupervised Learning of Visual Feature Hierarchies. In: Perner, P., Imiya, A. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2005. Lecture Notes in Computer Science(), vol 3587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11510888_24

Download citation

  • DOI: https://doi.org/10.1007/11510888_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26923-6

  • Online ISBN: 978-3-540-31891-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics