Skip to main content

The Spectral Method for General Mixture Models

  • Conference paper
Learning Theory (COLT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3559))

Included in the following conference series:

Abstract

We present an algorithm for learning a mixture of distributions based on spectral projection. We prove a general property of spectral projection for arbitrary mixtures and show that the resulting algorithm is efficient when the components of the mixture are logconcave distributions in \(\Re^{n}\) whose means are separated. The separation required grows with k, the number of components, and log n. This is the first result demonstrating the benefit of spectral projection for general Gaussians and widens the scope of this method. It improves substantially on previous results, which focus either on the special case of spherical Gaussians or require a separation that has a considerably larger dependence on n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achlioptas, D., McSherry, F.: On Spectral Learning of Mixtures of Distributions, this proceedings

    Google Scholar 

  2. Arora, S., Kannan, R.: Learning mixtures of arbitrary Gaussians. In: Proc. 33st ACM STOC (2001)

    Google Scholar 

  3. DasGupta, S.: Learning mixtures of Gaussians. In: Proc. of FOCS (1999)

    Google Scholar 

  4. DasGupta, S., Schulman, L.: A two-round variant of EM for Gaussian mixtures. Uncertainty in Artificial Intelligence (2000)

    Google Scholar 

  5. Dinghas, A.: Uber eine Klasse superadditiver Mengenfunktionale von Brunn–Minkowski–Lusternik-schem Typus. Math. Zeitschr. 68, 111–125 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  6. Giannopoulos, A.A., Milman, V.D.: Concentration property on probability spaces. Adv. Math. 156(1), 77–106 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Golub, G., Van Loan, C.: Matrix Computations. Johns Hopkins University Press, Baltimore (1989)

    MATH  Google Scholar 

  8. Kannan, R., Salmasian, H., Vempala, S.: The Spectral Method for Mixture Models. ECCC Tech. Rep. 067 (2004)

    Google Scholar 

  9. Kearns, M., Vazirani, U.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)

    Google Scholar 

  10. Leindler, L.: On a certain converse of Hölder’s Inequality II. Acta Sci. Math. Szeged 33, 217–223 (1972)

    MATH  MathSciNet  Google Scholar 

  11. Lindsay, B.: Mixture models: theory, geometry and applications. American Statistical Association, Virginia (1995)

    MATH  Google Scholar 

  12. Lovász, L., Vempala, S.: Logconcave functions: Geometry and Efficient Sampling Algorithms. In: Proc. of FOCS (2003)

    Google Scholar 

  13. Lovász, L., Vempala, S.: The Geometry of Logconcave Functions and an O*(n3) sampling algorithm, Microsoft Research Tech. Report MSR-TR-2003-04

    Google Scholar 

  14. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  15. Prékopa, A.: Logarithmic concave measures and functions. Acta Sci. Math. Szeged 34, 335–343 (1973)

    MATH  MathSciNet  Google Scholar 

  16. Rudelson, M.: Random vectors in the isotropic position. J. Funct. Anal. 164, 60–72 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Titterington, D.M., Smith, A.F.M., Makov, U.E.: Statistical analysis of finite mixture distributions. Wiley, Chichester (1985)

    MATH  Google Scholar 

  18. Vempala, S.: On the Spectral Method for Mixture Models, IMA workshop on Data Analysis and Optimization (2003), http://www.ima.umn.edu/talks/workshops/5-6-9.2003/vempala/vempala.html

  19. Vempala, S., Wang, G.: A spectral algorithm for learning mixtures of distributions. In: Proc. of FOCS (2002); J. Comput. System Sci. 68(4), 841–860 (2004)

    Google Scholar 

  20. Vempala, S., Wang, G.: The benefit of spectral projection for document clustering. In: Proc. of the 3rd Workshop on Clustering High Dimensional Data and its Applications. SIAM International Conference on Data Mining (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kannan, R., Salmasian, H., Vempala, S. (2005). The Spectral Method for General Mixture Models. In: Auer, P., Meir, R. (eds) Learning Theory. COLT 2005. Lecture Notes in Computer Science(), vol 3559. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11503415_30

Download citation

  • DOI: https://doi.org/10.1007/11503415_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26556-6

  • Online ISBN: 978-3-540-31892-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics