Skip to main content

Gaseous Signaling Molecules in Cardiovascular Function: From Mechanisms to Clinical Translation

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology Vol. 174

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 174))

Abstract

Carbon monoxide (CO), hydrogen sulfide (H2S), and nitric oxide (NO) constitute endogenous gaseous molecules produced by specific enzymes. These gases are chemically simple, but exert multiple effects and act through shared molecular targets to control both physiology and pathophysiology in the cardiovascular system (CVS). The gases act via direct and/or indirect interactions with each other in proteins such as heme-containing enzymes, the mitochondrial respiratory complex, and ion channels, among others. Studies of the major impacts of CO, H2S, and NO on the CVS have revealed their involvement in controlling blood pressure and in reducing cardiac reperfusion injuries, although their functional roles are not limited to these conditions. In this review, the basic aspects of CO, H2S, and NO, including their production and effects on enzymes, mitochondrial respiration and biogenesis, and ion channels are briefly addressed to provide insight into their biology with respect to the CVS. Finally, potential therapeutic applications of CO, H2S, and NO with the CVS are addressed, based on the use of exogenous donors and different types of delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071

    Article  CAS  PubMed  Google Scholar 

  • Acin-Perez R, Fernandez-Silva P, Peleato ML, Perez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539

    Article  CAS  PubMed  Google Scholar 

  • Akbarali HI, Kang M (2015) Postranslational modification of ion channels in colonic inflammation. Curr Neuropharmacol 13:234–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akrouh A, Halcomb SE, Nichols CG, Sala-Rabanal M (2009) Molecular biology of K(ATP) channels and implications for health and disease. IUBMB Life 61:971–978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alexander SP, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Catterall WA, Spedding M, Peters JA, Harmar AJ (2013) The concise guide to pharmacology 2013/14: ion channels. Br J Pharmacol 170:1607–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Algalarrondo V, Nattel S (2016) Potassium channel remodeling in heart disease. Card Electrophysiol Clin 8:337–347

    Article  PubMed  Google Scholar 

  • Allen BW, Stamler JS, Piantadosi CA (2009) Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Trends Mol Med 15:452–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Magableh MR, Kemp-Harper BK, Hart JL (2015) Hydrogen sulfide treatment reduces blood pressure and oxidative stress in angiotensin II-induced hypertensive mice. Hypertens Res 38:13–20

    Article  CAS  PubMed  Google Scholar 

  • Almeida AS, Figueiredo-Pereira C, Vieira HL (2015) Carbon monoxide and mitochondria-modulation of cell metabolism, redox response and cell death. Front Physiol 6:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Alonso-Carbajo L, Kecskes M, Jacobs G, Pironet A, Syam N, Talavera K, Vennekens R (2017) Muscling in on TRP channels in vascular smooth muscle cells and cardiomyocytes. Cell Calcium 66:48–61

    Article  CAS  PubMed  Google Scholar 

  • Amin AS, Tan HL, Wilde AA (2010) Cardiac ion channels in health and disease. Heart Rhythm 7:117–126

    Article  PubMed  Google Scholar 

  • Anand P, Stamler JS (2012) Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease. J Mol Med (Berl) 90:233–244

    Article  CAS  Google Scholar 

  • Andersen ME, Clewell HJ 3rd, Mahle DA, Gearhart JM (1994) Gas uptake studies of deuterium isotope effects on dichloromethane metabolism in female B6C3F1 mice in vivo. Toxicol Appl Pharmacol 128:158–165

    Article  CAS  PubMed  Google Scholar 

  • Andreadou I, Iliodromitis EK, Rassaf T, Schulz R, Papapetropoulos A, Ferdinandy P (2015) The role of gasotransmitters NO, H2S and CO in myocardial ischaemia/reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Br J Pharmacol 172:1587–1606

    Article  CAS  PubMed  Google Scholar 

  • Andrei SR, Sinharoy P, Bratz IN, Damron DS (2016) TRPA1 is functionally co-expressed with TRPV1 in cardiac muscle: co-localization at z-discs, costameres and intercalated discs. Channels 10:395–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Ash-Bernal R, Wise R, Wright SM (2004) Acquired methemoglobinemia: a retrospective series of 138 cases at 2 teaching hospitals. Medicine 83:265–273

    Article  PubMed  Google Scholar 

  • Asimakopoulou A, Panopoulos P, Chasapis CT, Coletta C, Zhou Z, Cirino G, Giannis A, Szabo C, Spyroulias GA, Papapetropoulos A (2013) Selectivity of commonly used pharmacological inhibitors for cystathionine β synthase (CBS) and cystathionine γ lyase (CSE). Br J Pharmacol 169:922–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avanzato D, Merlino A, Porrera S, Wang R, Munaron L, Mancardi D (2014) Role of calcium channels in the protective effect of hydrogen sulfide in rat cardiomyoblasts. Cell Physiol Biochem 33:1205–1214

    Article  CAS  PubMed  Google Scholar 

  • Babot M, Birch A, Labarbuta P, Galkin A (2014) Characterisation of the active/de-active transition of mitochondrial complex I. Biochim Biophys Acta 1837:1083–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai CX, Namekata I, Kurokawa J, Tanaka H, Shigenobu K, Furukawa T (2005) Role of nitric oxide in Ca2+ sensitivity of the slowly activating delayed rectifier K+ current in cardiac myocytes. Circ Res 96:64–72

    Article  CAS  PubMed  Google Scholar 

  • Balakumar P, Kathuria S, Taneja G, Kalra S, Mahadevan N (2012) Is targeting eNOS a key mechanistic insight of cardiovascular defensive potentials of statins? J Mol Cell Cardiol 52:83–92

    Article  CAS  PubMed  Google Scholar 

  • Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai IA, Lemmon CA, Burnett AL, O'Rourke B, Rodriguez ER, Huang PL, Lima JA, Berkowitz DE, Hare JM (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416:337–339

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Basudhar D, Ridnour LA, Cheng R, Kesarwala AH, Heinecke J, Wink DA (2016) Biological signaling by small inorganic molecules. Coord Chem Rev 306:708–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bathoorn E, Slebos DJ, Postma DS, Koeter GH, van Oosterhout AJ, van der Toorn M, Boezen HM, Kerstjens HA (2007) Anti-inflammatory effects of inhaled carbon monoxide in patients with COPD: a pilot study. Eur Respir J 30:1131–1137

    Article  CAS  PubMed  Google Scholar 

  • Belikova NA, Vladimirov YA, Osipov AN, Kapralov AA, Tyurin VA, Potapovich MV, Basova LV, Peterson J, Kurnikov IV, Kagan VE (2006) Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes. Biochemistry 45:4998–5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltowski J (2015) Hydrogen sulfide in pharmacology and medicine – an update. Pharmacol Rep 67:647–658

    Article  CAS  PubMed  Google Scholar 

  • Beltowski J, Jamroz-Wisniewska A (2014) Hydrogen sulfide and endothelium-dependent vasorelaxation. Molecules 19:21183–21199

    Article  PubMed  CAS  Google Scholar 

  • Bendall JK, Douglas G, McNeill E, Channon KM, Crabtree MJ (2014) Tetrahydrobiopterin in cardiovascular health and disease. Antioxid Redox Signal 20:3040–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benoit G, Cooney A, Giguere V, Ingraham H, Lazar M, Muscat G, Perlmann T, Renaud JP, Schwabe J, Sladek F, Tsai MJ, Laudet V (2006) International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev 58:798–836

    Article  CAS  PubMed  Google Scholar 

  • Bianco CL, Toscano JP, Bartberger MD, Fukuto JM (2017) The chemical biology of HNO signaling. Arch Biochem Biophys 617:129–136

    Article  CAS  PubMed  Google Scholar 

  • Bilban M, Haschemi A, Wegiel B, Chin BY, Wagner O, Otterbein LE (2008) Heme oxygenase and carbon monoxide initiate homeostatic signaling. J Mol Med (Berl) 86:267–279

    Article  CAS  Google Scholar 

  • Blackstone E, Morrison M, Roth MB (2005) H2S induces a suspended animation-like state in mice. Science 308:518

    Article  CAS  PubMed  Google Scholar 

  • Boczkowski J, Poderoso JJ, Motterlini R (2006) CO–metal interaction: vital signaling from a lethal gas. Trends Biochem Sci 31:614–621

    Article  CAS  PubMed  Google Scholar 

  • Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368:850–853

    Article  CAS  PubMed  Google Scholar 

  • Bouillaud F, Blachier F (2011) Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling? Antioxid Redox Signal 15:379–391

    Article  CAS  PubMed  Google Scholar 

  • Boycott HE, Dallas ML, Elies J, Pettinger L, Boyle JP, Scragg JL, Gamper N, Peers C (2013) Carbon monoxide inhibition of Cav3.2 T-type Ca2+ channels reveals tonic modulation by thioredoxin. FASEB J 27:3395–3407

    Article  CAS  PubMed  Google Scholar 

  • Brahimi-Horn MC, Pouyssegur J (2007) Oxygen, a source of life and stress. FEBS Lett 581:3582–3591

    Article  CAS  PubMed  Google Scholar 

  • Bredt DS (2003) Nitric oxide signaling specificity – the heart of the problem. J Cell Sci 116:9–15

    Article  CAS  PubMed  Google Scholar 

  • Brookes PS (2005) Mitochondrial H(+) leak and ROS generation: an odd couple. Free Radic Biol Med 38:12–23

    Article  CAS  PubMed  Google Scholar 

  • Burger DE, Lu X, Lei M, Xiang FL, Hammoud L, Jiang M, Wang H, Jones DL, Sims SM, Feng Q (2009) Neuronal nitric oxide synthase protects against myocardial infarction-induced ventricular arrhythmia and mortality in mice. Circulation 120:1345–1354

    Article  CAS  PubMed  Google Scholar 

  • Burwell LS, Brookes PS (2008) Mitochondria as a target for the cardioprotective effects of nitric oxide in ischemia-reperfusion injury. Antioxid Redox Signal 10:579–599

    Article  CAS  PubMed  Google Scholar 

  • Burwell LS, Nadtochiy SM, Tompkins AJ, Young S, Brookes PS (2006) Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J 394:627–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burwell LS, Nadtochiy SM, Brookes PS (2009) Cardioprotection by metabolic shut-down and gradual wake-up. J Mol Cell Cardiol 46:804–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buys E, Sips P (2014) New insights into the role of soluble guanylate cyclase in blood pressure regulation. Curr Opin Nephrol Hypertens 23:135–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cacanyiova S, Berenyiova A, Kristek F (2016a) The role of hydrogen sulphide in blood pressure regulation. Physiol Res 65:S273–s289

    CAS  PubMed  Google Scholar 

  • Cacanyiova S, Berenyiova A, Kristek F, Drobna M, Ondrias K, Grman M (2016b) The adaptive role of nitric oxide and hydrogen sulphide in vasoactive responses of thoracic aorta is triggered already in young spontaneously hypertensive rats. J Physiol Pharmacol 67:501–512

    CAS  PubMed  Google Scholar 

  • Calvert JW, Lefer DJ (2010) Clinical translation of nitrite therapy for cardiovascular diseases. Nitric Oxide 22:91–97

    Article  CAS  PubMed  Google Scholar 

  • Campbell DL, Stamler JS, Strauss HC (1996) Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 108:277–293

    Article  CAS  PubMed  Google Scholar 

  • Campuzano O, Beltran-Alvarez P, Iglesias A, Scornik F, Perez G, Brugada R (2010) Genetics and cardiac channelopathies. Genet Med 12:260–267

    Article  PubMed  Google Scholar 

  • Carpenter AW, Schoenfisch MH (2012) Nitric oxide release part II. Therapeutic applications. Chem Soc Rev 41:3742–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter RN, Morton NM (2016) Cysteine and hydrogen sulphide in the regulation of metabolism: insights from genetics and pharmacology. J Pathol 238:321–332

    Article  CAS  PubMed  Google Scholar 

  • Cary SP, Winger JA, Marletta MA (2005) Tonic and acute nitric oxide signaling through soluble guanylate cyclase is mediated by nonheme nitric oxide, ATP, and GTP. Proc Natl Acad Sci U S A 102:13064–13069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316

    Article  CAS  PubMed  Google Scholar 

  • Cattaruzza M, Hecker M (2008) Protein carbonylation and decarboylation: a new twist to the complex response of vascular cells to oxidative stress. Circ Res 102:273–274

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    Article  CAS  PubMed  Google Scholar 

  • Cebova M, Kosutova M, Pechanova O (2016) Cardiovascular effects of gasotransmitter donors. Physiol Res 65:S291–s307

    CAS  PubMed  Google Scholar 

  • Chatzianastasiou A, Bibli SI, Andreadou I, Efentakis P, Kaludercic N, Wood ME, Whiteman M, Di Lisa F, Daiber A, Manolopoulos VG, Szabo C, Papapetropoulos A (2016) Cardioprotection by H2S donors: nitric oxide-dependent and independent mechanisms. J Pharmacol Exp Ther 358:431–440

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary KR, El-Sikhry H, Seubert JM (2011) Mitochondria and the aging heart. J Geriatr Cardiol 8:159–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Camara AK, Stowe DF, Hoppel CL, Lesnefsky EJ (2007) Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol 292:C137–C147

    Article  CAS  PubMed  Google Scholar 

  • Chen YY, Chu HM, Pan KT, Teng CH, Wang DL, Wang AH, Khoo KH, Meng TC (2008) Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation. J Biol Chem 283:35265–35272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Gao J, Sun W, Li L, Wang Y, Bai S, Li X, Wang R, Wu L, Li H, Xu C (2016) Involvement of exogenous H2S in recovery of cardioprotection from ischemic post-conditioning via increase of autophagy in the aged hearts. Int J Cardiol 220:681–692

    Article  PubMed  Google Scholar 

  • Chevalier M, Gilbert G, Roux E, Lory P, Marthan R, Savineau JP, Quignard JF (2014) T-type calcium channels are involved in hypoxic pulmonary hypertension. Cardiovasc Res 103:597–606

    Article  CAS  PubMed  Google Scholar 

  • Clark JE, Naughton P, Shurey S, Green CJ, Johnson TR, Mann BE, Foresti R, Motterlini R (2003) Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ Res 93:e2–e8

    Article  CAS  PubMed  Google Scholar 

  • Clayton DA (1991) Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol 7:453–478

    Article  CAS  PubMed  Google Scholar 

  • Coburn RF, Williams WJ, Kahn SB (1966) Endogenous carbon monoxide production in patients with hemolytic anemia. J Clin Invest 45:460–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen MV, Yang XM, Downey JM (2006) Nitric oxide is a preconditioning mimetic and cardioprotectant and is the basis of many available infarct-sparing strategies. Cardiovasc Res 70:231–239

    Article  CAS  PubMed  Google Scholar 

  • Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Modis K, Panopoulos P, Asimakopoulou A, Gero D, Sharina I, Martin E, Szabo C (2012a) Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci U S A 109:9161–9166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Módis K, Panopoulos P, Asimakopoulou A, Gerö D, Sharina I, Martin E, Szabo C (2012b) Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci 109:9161–9166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper CE, Brown GC (2008) The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr 40:533–539

    Article  CAS  PubMed  Google Scholar 

  • Cooper CE, Giulivi C (2007) Nitric oxide regulation of mitochondrial oxygen consumption II: molecular mechanism and tissue physiology. Am J Physiol Cell Physiol 292:C1993–C2003

    Article  CAS  PubMed  Google Scholar 

  • Cooper GJ, Zhou Y, Bouyer P, Grichtchenko II, Boron WF (2002) Transport of volatile solutes through AQP1. J Physiol 542:17–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordes CM, Bennett RG, Siford GL, Hamel FG (2009) Nitric oxide inhibits insulin-degrading enzyme activity and function through S-nitrosylation. Biochem Pharmacol 77:1064–1073

    Article  CAS  PubMed  Google Scholar 

  • Cortese-Krott MM, Fernandez BO, Kelm M, Butler AR, Feelisch M (2015) On the chemical biology of the nitrite/sulfide interaction. Nitric Oxide 46:14–24

    Article  CAS  PubMed  Google Scholar 

  • da Cunha FM, Torelli NQ, Kowaltowski AJ (2015) Mitochondrial retrograde signaling: triggers, pathways, and outcomes. Oxidative Med Cell Longev 2015:482582

    Article  CAS  Google Scholar 

  • Dahm CC, Moore K, Murphy MP (2006) Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria. J Biol Chem 281:10056–10065

    Article  CAS  PubMed  Google Scholar 

  • Daiber A, Munzel T (2015) Organic nitrate therapy, nitrate tolerance, and nitrate-induced endothelial dysfunction: emphasis on redox biology and oxidative stress. Antioxid Redox Signal 23:899–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dallas ML, Boyle JP, Milligan CJ, Sayer R, Kerrigan TL, McKinstry C, Lu P, Mankouri J, Harris M, Scragg JL, Pearson HA, Peers C (2011) Carbon monoxide protects against oxidant-induced apoptosis via inhibition of Kv2.1. FASEB J 25:1519–1530

    Article  CAS  PubMed  Google Scholar 

  • Dallas ML, Yang Z, Boyle JP, Boycott HE, Scragg JL, Milligan CJ, Elies J, Duke A, Thireau J, Reboul C, Richard S, Bernus O, Steele DS, Peers C (2012) Carbon monoxide induces cardiac arrhythmia via induction of the late Na+ current. Am J Respir Crit Care Med 186:648–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dampney RA (1994) Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 74:323–364

    Article  CAS  PubMed  Google Scholar 

  • Derbyshire ER, Marletta MA (2012) Structure and regulation of soluble guanylate cyclase. Annu Rev Biochem 81:533–559

    Article  CAS  PubMed  Google Scholar 

  • Di Lisa F, Bernardi P (2015) Modulation of mitochondrial permeability transition in ischemia-reperfusion injury of the heart. Advantages and limitations. Curr Med Chem 22:2480–2487

    Article  PubMed  CAS  Google Scholar 

  • Di Lisa F, Canton M, Menabo R, Kaludercic N, Bernardi P (2007) Mitochondria and cardioprotection. Heart Fail Rev 12:249–260

    Article  PubMed  CAS  Google Scholar 

  • Diaz F, Moraes CT (2008) Mitochondrial biogenesis and turnover. Cell Calcium 44:24–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, McCoubrey WK Jr, Maines MD (1999) Interaction of heme oxygenase-2 with nitric oxide donors. Is the oxygenase an intracellular “sink” for NO? Eur J Biochem 264:854–861

    Article  CAS  PubMed  Google Scholar 

  • Dioum EM, Rutter J, Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA, SL MK (2002) NPAS2: a gas-responsive transcription factor. Science 298:2385–2387

    Article  CAS  PubMed  Google Scholar 

  • Dong DL, Zhang Y, Lin DH, Chen J, Patschan S, Goligorsky MS, Nasjletti A, Yang BF, Wang WH (2007) Carbon monoxide stimulates the Ca2(+)-activated big conductance k channels in cultured human endothelial cells. Hypertension 50:643–651

    Article  CAS  PubMed  Google Scholar 

  • Dorsey P, Keel C, Klavens M, Hellstrom WJ (2010) Phosphodiesterase type 5 (PDE5) inhibitors for the treatment of erectile dysfunction. Expert Opin Pharmacother 11:1109–1122

    Article  CAS  PubMed  Google Scholar 

  • Drose S, Stepanova A, Galkin A (2016) Ischemic A/D transition of mitochondrial complex I and its role in ROS generation. Biochim Biophys Acta 1857:946–957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du J, Yan H, Tang C (2003) Endogenous H2S is involved in the development of spontaneous hypertension. Beijing Da Xue Xue Bao 35:102

    PubMed  Google Scholar 

  • Dugbartey GJ (2016) Diabetic nephropathy: a potential savior with “rotten-egg” smell. Pharmacol Rep 69:331–339

    Article  PubMed  CAS  Google Scholar 

  • Earley S (2012) TRPA1 channels in the vasculature. Br J Pharmacol 167:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberhardt M, Dux M, Namer B, Miljkovic J, Cordasic N, Will C, Kichko TI, de la Roche J, Fischer M, Suarez SA, Bikiel D, Dorsch K, Leffler A, Babes A, Lampert A, Lennerz JK, Jacobi J, Marti MA, Doctorovich F, Hogestatt ED, Zygmunt PM, Ivanovic-Burmazovic I, Messlinger K, Reeh P, Filipovic MR (2014) H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nat Commun 5:4381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elies J, Scragg JL, Huang S, Dallas ML, Huang D, MacDougall D, Boyle JP, Gamper N, Peers C (2014) Hydrogen sulfide inhibits Cav3.2 T-type Ca2+ channels. FASEB J 28:5376–5387

    Article  CAS  PubMed  Google Scholar 

  • Elies J, Scragg JL, Boyle JP, Gamper N, Peers C (2016) Regulation of the T-type Ca(2+) channel Cav3.2 by hydrogen sulfide: emerging controversies concerning the role of H2S in nociception. J Physiol 594:4119–4129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C, Kimura H, Chow CW, Lefer DJ (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104:15560–15565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enokido Y, Suzuki E, Iwasawa K, Namekata K, Okazawa H, Kimura H (2005) Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J 19:1854–1856

    Article  CAS  PubMed  Google Scholar 

  • Ertuna E, Loot AE, Fleming I, Yetik-Anacak G (2017) The role of eNOS on the compensatory regulation of vascular tonus by H2S in mouse carotid arteries. Nitric Oxide 69:45–50

    Article  CAS  PubMed  Google Scholar 

  • Ewing JF, Raju VS, Maines MD (1994) Induction of heart heme oxygenase-1 (HSP32) by hyperthermia: possible role in stress-mediated elevation of cyclic 3′:5′-guanosine monophosphate. J Pharmacol Exp Ther 271:408–414

    CAS  PubMed  Google Scholar 

  • Fang L, Zhao J, Chen Y, Ma T, Xu G, Tang C, Liu X, Geng B (2009) Hydrogen sulfide derived from periadventitial adipose tissue is a vasodilator. J Hypertens 27:2174–2185

    Article  CAS  PubMed  Google Scholar 

  • Farrugia G, Szurszewski JH (2014) Carbon monoxide, hydrogen sulfide, and nitric oxide as signaling molecules in the gastrointestinal tract. Gastroenterology 147:303–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fayad-Kobeissi S, Ratovonantenaina J, Dabire H, Wilson JL, Rodriguez AM, Berdeaux A, Dubois-Rande JL, Mann BE, Motterlini R, Foresti R (2016) Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule. Biochem Pharmacol 102:64–77

    Article  CAS  PubMed  Google Scholar 

  • Feelisch M, Schonafinger K, Noack E (1992) Thiol-mediated generation of nitric oxide accounts for the vasodilator action of furoxans. Biochem Pharmacol 44:1149–1157

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Falgueras A, Sarquella-Brugada G, Brugada J, Brugada R, Campuzano O (2017) Cardiac channelopathies and sudden death: recent clinical and genetic advances. Biology 6

    Article  PubMed Central  CAS  Google Scholar 

  • Ferreira R (2010) The reduction of infarct size – forty years of research. Rev Port Cardiol 29:1037–1053

    PubMed  Google Scholar 

  • Filipovic MR, Eberhardt M, Prokopovic V, Mijuskovic A, Orescanin-Dusic Z, Reeh P, Ivanovic-Burmazovic I (2013) Beyond H2S and NO interplay: hydrogen sulfide and nitroprusside react directly to give nitroxyl (HNO). A new pharmacological source of HNO. J Med Chem 56:1499–1508

    Article  CAS  PubMed  Google Scholar 

  • Fink B, Bassenge E (1997) Unexpected, tolerance-devoid vasomotor and platelet actions of pentaerythrityl tetranitrate. J Cardiovasc Pharmacol 30:831–836

    Article  CAS  PubMed  Google Scholar 

  • Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387–389

    Article  CAS  PubMed  Google Scholar 

  • Finsterer J, Kothari S (2014) Cardiac manifestations of primary mitochondrial disorders. Int J Cardiol 177:754–763

    Article  PubMed  Google Scholar 

  • Fowler B (2005) Homocystein – an independent risk factor for cardiovascular and thrombotic diseases. Ther Umsch 62:641–646

    Article  CAS  PubMed  Google Scholar 

  • Francis SH, Busch JL, Corbin JD, Sibley D (2010) cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 62:525–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey N, Katus HA, Olson EN, Hill JA (2004) Hypertrophy of the heart: a new therapeutic target? Circulation 109:1580–1589

    Article  PubMed  Google Scholar 

  • Gao L, Cheng C, Sparatore A, Zhang H, Wang C (2015) Hydrogen sulfide inhibits human platelet aggregation in vitro in part by interfering gap junction channels: effects of ACS14, a hydrogen sulfide-releasing aspirin. Heart Lung Circ 24:77–85

    Article  PubMed  Google Scholar 

  • Garbers DL, Chrisman TD, Wiegn P, Katafuchi T, Albanesi JP, Bielinski V, Barylko B, Redfield MM, Burnett JC Jr (2006) Membrane guanylyl cyclase receptors: an update. Trends Endocrinol Metab 17:251–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Moss RL (2012) Nitroxyl, redox switches, cardiac myofilaments, and heart failure: a prequel to novel therapeutics? Circ Res 111:954–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng B, Yang J, Qi Y, Zhao J, Pang Y, Du J, Tang C (2004a) H2S generated by heart in rat and its effects on cardiac function. Biochem Biophys Res Commun 313:362–368

    Article  CAS  PubMed  Google Scholar 

  • Geng B, Chang L, Pan C, Qi Y, Zhao J, Pang Y, Du J, Tang C (2004b) Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun 318:756–763

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Gal J, Marczin N (2010) Carbon monoxide: endogenous mediator, potential diagnostic and therapeutic target. Ann Med 42:1–12

    Article  CAS  PubMed  Google Scholar 

  • Grabellus F, Schmid C, Levkau B, Breukelmann D, Halloran PF, August C, Takeda N, Takeda A, Wilhelm M, Deng MC, Baba HA (2002) Reduction of hypoxia-inducible heme oxygenase-1 in the myocardium after left ventricular mechanical support. J Pathol 197:230–237

    Article  PubMed  Google Scholar 

  • Greiner R, Palinkas Z, Basell K, Becher D, Antelmann H, Nagy P, Dick TP (2013) Polysulfides link H2S to protein thiol oxidation. Antioxid Redox Signal 19:1749–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griscavage JM, Fukuto JM, Komori Y, Ignarro LJ (1994) Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heme prosthetic group. Role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide. J Biol Chem 269:21644–21649

    CAS  PubMed  Google Scholar 

  • Gunasekar PG, Prabhakaran K, Li L, Zhang L, Isom GE, Borowitz JL (2004) Receptor mechanisms mediating cyanide generation in PC12 cells and rat brain. Neurosci Res 49:13–18

    Article  CAS  PubMed  Google Scholar 

  • Guo JP, Milhoan KA, Tuan RS, Lefer AM (1994) Beneficial effect of SPM-5185, a cysteine-containing nitric oxide donor, in rat carotid artery intimal injury. Circ Res 75:77–84

    Article  CAS  PubMed  Google Scholar 

  • Hara MR, Snyder SH (2006) Nitric oxide-GAPDH-Siah: a novel cell death cascade. Cell Mol Neurobiol 26:527–538

    Article  CAS  PubMed  Google Scholar 

  • Hare JM (2003) Nitric oxide and excitation-contraction coupling. J Mol Cell Cardiol 35:719–729

    Article  CAS  PubMed  Google Scholar 

  • Hare GM, Tsui AK, Crawford JH, Patel RP (2013) Is methemoglobin an inert bystander, biomarker or a mediator of oxidative stress – the example of anemia? Redox Biol 1:65–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harteneck C, Plant TD, Schultz G (2000) From worm to man: three subfamilies of TRP channels. Trends Neurosci 23:159–166

    Article  CAS  PubMed  Google Scholar 

  • Hartsfield CL (2002) Cross talk between carbon monoxide and nitric oxide. Antioxid Redox Signal 4:301–307

    Article  CAS  PubMed  Google Scholar 

  • Hartsfield CL, Alam J, Cook JL, Choi AM (1997) Regulation of heme oxygenase-1 gene expression in vascular smooth muscle cells by nitric oxide. Am J Phys 273:L980–L988

    CAS  Google Scholar 

  • Hassall CJ, Hoyle CH (1997) Heme oxygenase-2 and nitric oxide synthase in guinea-pig intracardiac neurones. Neuroreport 8:1043–1046

    Article  CAS  PubMed  Google Scholar 

  • Hayashi S, Omata Y, Sakamoto H, Higashimoto Y, Hara T, Sagara Y, Noguchi M (2004) Characterization of rat heme oxygenase-3 gene. Implication of processed pseudogenes derived from heme oxygenase-2 gene. Gene 336:241–250

    Article  CAS  PubMed  Google Scholar 

  • Hayashida R, Kondo K, Morita S, Unno K, Shintani S, Shimizu Y, Calvert JW, Shibata R, Murohara T (2017) Diallyl trisulfide augments ischemia-induced angiogenesis via an endothelial nitric oxide synthase-dependent mechanism. Circ J 81:870–878

    Article  PubMed  Google Scholar 

  • Heales SJ, Bolanos JP, Stewart VC, Brookes PS, Land JM, Clark JB (1999) Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1410:215–228

    Article  CAS  PubMed  Google Scholar 

  • Heine CL, Schmidt R, Geckl K, Schrammel A, Gesslbauer B, Schmidt K, Mayer B, Gorren AC (2015) Selective irreversible inhibition of neuronal and inducible nitric-oxide synthase in the combined presence of hydrogen sulfide and nitric oxide. J Biol Chem 290:24932–24944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heneberg P (2014) Reactive nitrogen species and hydrogen sulfide as regulators of protein tyrosine phosphatase activity. Antioxid Redox Signal 20:2191–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinkel R, Lange P, Petersen B, Gottlieb E, Ng JK, Finger S, Horstkotte J, Lee S, Thormann M, Knorr M, El-Aouni C, Boekstegers P, Reichart B, Wenzel P, Niemann H, Kupatt C (2015) Heme oxygenase-1 gene therapy provides cardioprotection via control of post-ischemic inflammation: an experimental study in a pre-clinical pig model. J Am Coll Cardiol 66:154–165

    Article  CAS  PubMed  Google Scholar 

  • Hishiki T, Yamamoto T, Morikawa T, Kubo A, Kajimura M, Suematsu M (2012) Carbon monoxide: impact on remethylation/transsulfuration metabolism and its pathophysiologic implications. J Mol Med (Berl) 90:245–254

    Article  CAS  Google Scholar 

  • Ho JJ, Man HS, Marsden PA (2012) Nitric oxide signaling in hypoxia. J Mol Med (Berl) 90:217–231

    Article  CAS  Google Scholar 

  • Hoffmann LS, Chen HH (2014) cGMP: transition from bench to bedside: a report of the 6th international conference on cGMP generators, effectors and therapeutic implications. Naunyn Schmiedeberg's Arch Pharmacol 387:707–718

    Article  CAS  Google Scholar 

  • Hom J, Sheu SS (2009) Morphological dynamics of mitochondria – a special emphasis on cardiac muscle cells. J Mol Cell Cardiol 46:811–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531

    Article  CAS  PubMed  Google Scholar 

  • Hsu MF, Meng TC (2010) Enhancement of insulin responsiveness by nitric oxide-mediated inactivation of protein-tyrosine phosphatases. J Biol Chem 285:7919–7928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua W, Chen Q, Gong F, Xie C, Zhou S, Gao L (2013) Cardioprotection of H2S by downregulating iNOS and upregulating HO-1 expression in mice with CVB3-induced myocarditis. Life Sci 93:949–954

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Chen S, Wang Y, Liu J, Yao Q, Huang Y, Li H, Zhu M, Wang S, Li L, Tang C, Tao Y, Yang G, Du J, Jin H, Down-regulated CBS (2015) H2S pathway is involved in high-salt-induced hypertension in Dahl rats. Nitric Oxide 46:192–203

    Article  CAS  PubMed  Google Scholar 

  • Humphries ES, Dart C (2015) Neuronal and cardiovascular potassium channels as therapeutic drug targets: promise and pitfalls. J Biomol Screen 20:1055–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iciek M, Kowalczyk-Pachel D, Bilska-Wilkosz A, Kwiecien I, Gorny M, Wlodek L (2015) S-sulfhydration as a cellular redox regulation. Biosci Rep 36. pii: e00304

    Article  PubMed  CAS  Google Scholar 

  • Iglesias DE, Bombicino SS, Valdez LB, Boveris A (2015) Nitric oxide interacts with mitochondrial complex III producing antimycin-like effects. Free Radic Biol Med 89:602–613

    Article  CAS  PubMed  Google Scholar 

  • Immenschuh S, Baumgart-Vogt E, Tan M, Iwahara S, Ramadori G, Fahimi HD (2003) Differential cellular and subcellular localization of heme-binding protein 23/peroxiredoxin I and heme oxygenase-1 in rat liver. J Histochem Cytochem 51:1621–1631

    Article  CAS  PubMed  Google Scholar 

  • Ishigami M, Hiraki K, Umemura K, Ogasawara Y, Ishii K, Kimura H (2009) A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal 11:205–214

    Article  CAS  PubMed  Google Scholar 

  • Ishii I, Akahoshi N, XN Y, Kobayashi Y, Namekata K, Komaki G, Kimura H (2004) Murine cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochem J 381:113–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii I, Akahoshi N, Yamada H, Nakano S, Izumi T, Suematsu M (2010) Cystathionine gamma-Lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J Biol Chem 285:26358–26368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson JR (2009) Statins in endothelial signaling and activation. Antioxid Redox Signal 11:811–821

    Article  CAS  PubMed  Google Scholar 

  • Jaggar JH, Li A, Parfenova H, Liu J, Umstot ES, Dopico AM, Leffler CW (2005) Heme is a carbon monoxide receptor for large-conductance Ca2+−activated K+ channels. Circ Res 97:805–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain SK, Bull R, Rains JL, Bass PF, Levine SN, Reddy S, McVie R, Bocchini JA (2010) Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation? Antioxid Redox Signal 12:1333–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarosz AP, Wei W, Gauld JW, Auld J, Ozcan F, Aslan M, Mutus B (2015) Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is inactivated by S-sulfuration in vitro. Free Radic Biol Med 89:512–521

    Article  CAS  PubMed  Google Scholar 

  • Jennings ML (2013) Transport of H2S and HS(−) across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl(−)/HS(−) exchange. Am J Physiol Cell Physiol 305:C941–C950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji X, Zhou C, Ji K, Aghoghovbia RE, Pan Z, Chittavong V, Ke B, Wang B (2016) Click and release: a chemical strategy toward developing gasotransmitter prodrugs by using an intramolecular Diels-Alder reaction. Angew Chem Int Ed 55:15846–15851

    Article  CAS  Google Scholar 

  • Johnson RA, Lavesa M, DeSeyn K, Scholer MJ, Nasjletti A (1996) Heme oxygenase substrates acutely lower blood pressure in hypertensive rats. Am J Phys 271:H1132–H1138

    CAS  Google Scholar 

  • Jugdutt BI (1994) Use of nitroglycerin for the treatment of acute myocardial infarction. Heart Vessel 9:3–13

    Article  CAS  Google Scholar 

  • Kabil O, Yadav V, Banerjee R (2016) Heme-dependent metabolite switching regulates H2S synthesis in response to endoplasmic reticulum (ER) stress. J Biol Chem 291:16418–16423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaczara P, Motterlini R, Rosen GM, Augustynek B, Bednarczyk P, Szewczyk A, Foresti R, Chlopicki S (2015) Carbon monoxide released by CORM-401 uncouples mitochondrial respiration and inhibits glycolysis in endothelial cells: A role for mitoBKCa channels. Biochim Biophys Acta 1847:1297–1309

    Article  CAS  PubMed  Google Scholar 

  • Kajimura M, Fukuda R, Bateman RM, Yamamoto T, Suematsu M (2010) Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid Redox Signal 13:157–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamoun P, Belardinelli MC, Chabli A, Lallouchi K, Chadefaux-Vekemans B (2003) Endogenous hydrogen sulfide overproduction in down syndrome. Am J Med Genet A 116a:310–311

    Article  PubMed  Google Scholar 

  • Kanai A, Epperly M, Pearce L, Birder L, Zeidel M, Meyers S, Greenberger J, de Groat W, Apodaca G, Peterson J (2004) Differing roles of mitochondrial nitric oxide synthase in cardiomyocytes and urothelial cells. Am J Physiol Heart Circ Physiol 286:H13–H21

    Article  CAS  PubMed  Google Scholar 

  • Kaniak-Golik A, Skoneczna A (2015) Mitochondria-nucleus network for genome stability. Free Radic Biol Med 82:73–104

    Article  CAS  PubMed  Google Scholar 

  • Kashfi K, Olson KR (2013) Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem Pharmacol 85:689–703

    Article  CAS  PubMed  Google Scholar 

  • Kawano T, Zoga V, Kimura M, Liang MY, HE W, Gemes G, McCallum JB, Kwok WM, Hogan QH, Sarantopoulos CD (2009) Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation. Mol Pain 5:1744–8069

    Article  CAS  Google Scholar 

  • Keef KD, Hume JR, Zhong J (2001) Regulation of cardiac and smooth muscle Ca(2+) channels (Ca(V)1.2a,b) by protein kinases. Am J Physiol Cell Physiol 281:C1743–C1756

    Article  CAS  PubMed  Google Scholar 

  • Kevil CG, Patel RP (2010) S-nitrosothiol biology and therapeutic potential in metabolic disease. Curr Opin Investig Drugs 11:1127–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kida M, Sugiyama T, Yoshimoto T, Ogawa Y (2013) Hydrogen sulfide increases nitric oxide production with calcium-dependent activation of endothelial nitric oxide synthase in endothelial cells. Eur J Pharm Sci 48:211–215

    Article  CAS  PubMed  Google Scholar 

  • Kim JB (2014) Channelopathies. Korean J Pediatr 57:1–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim HP, Ryter SW, Choi AM (2006) CO as a cellular signaling molecule. Annu Rev Pharmacol Toxicol 46:411–449

    Article  CAS  PubMed  Google Scholar 

  • Kimura H (2014) The physiological role of hydrogen sulfide and beyond. Nitric Oxide 41:4–10

    Article  CAS  PubMed  Google Scholar 

  • Kimura H (2016) Hydrogen polysulfide (H2S n ) signaling along with hydrogen sulfide (H2S) and nitric oxide (NO). J Neural Transm (Vienna) 123:1235–1245

    Article  CAS  Google Scholar 

  • Kina-Tanada M, Sakanashi M, Tanimoto A, Kaname T, Matsuzaki T, Noguchi K, Uchida T, Nakasone J, Kozuka C, Ishida M, Kubota H, Taira Y, Totsuka Y, Kina SI, Sunakawa H, Omura J, Satoh K, Shimokawa H, Yanagihara N, Maeda S, Ohya Y, Matsushita M, Masuzaki H, Arasaki A, Tsutsui M (2017) Long-term dietary nitrite and nitrate deficiency causes the metabolic syndrome, endothelial dysfunction and cardiovascular death in mice. Diabetologia 60(6):1138–1151

    Article  CAS  PubMed  Google Scholar 

  • Knecht KR, Milam S, Wilkinson DA, Fedinec AL, Leffler CW (2010) Time-dependent action of carbon monoxide on the newborn cerebrovascular circulation. Am J Physiol Heart Circ Physiol 299:H70–H75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohlhaas M, Nickel AG, Bergem S, Casadei B, Laufs U, Maack C (2017) Endogenous nitric oxide formation in cardiac myocytes does not control respiration during beta-adrenergic stimulation. J Physiol 595:3781–3798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokkinos P (2014) Cardiorespiratory fitness, exercise, and blood pressure. Hypertension 64:1160–1164

    Article  CAS  PubMed  Google Scholar 

  • Kolluru GK, Prasai PK, Kaskas AM, Letchuman V, Pattillo CB (2016) Oxygen tension, H2S, and NO bioavailability: is there an interaction? J Appl Physiol 120:263–270

    Article  CAS  PubMed  Google Scholar 

  • Kondo K, Bhushan S, King AL, Prabhu SD, Hamid T, Koenig S, Murohara T, Predmore BL, Gojon G Sr, Gojon G Jr, Wang R, Karusula N, Nicholson CK, Calvert JW, Lefer DJ (2013) H(2)S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation 127:1116–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koppen M, Langer T (2007) Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases. Crit Rev Biochem Mol Biol 42:221–242

    Article  CAS  PubMed  Google Scholar 

  • Kovick RB, Tillisch JH, Berens SC, Bramowitz AD, Shine KI (1976) Vasodilator therapy for chronic left ventricular failure. Circulation 53:322–328

    Article  CAS  PubMed  Google Scholar 

  • Kozai D, Sakaguchi R, Ohwada T, Mori Y (2015) Deciphering subtype-selective modulations in TRPA1 biosensor channels. Curr Neuropharmacol 13:266–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo S, Doe I, Kurokawa Y, Nishikawa H, Kawabata A (2007) Direct inhibition of endothelial nitric oxide synthase by hydrogen sulfide: contribution to dual modulation of vascular tension. Toxicology 232:138–146

    Article  CAS  PubMed  Google Scholar 

  • Kuo IY, Howitt L, Sandow SL, McFarlane A, Hansen PB, Hill CE (2014) Role of T-type channels in vasomotor function: team player or chameleon? Pflugers Arch 466:767–779

    Article  CAS  PubMed  Google Scholar 

  • Kyle BD, Braun AP (2014) The regulation of BK channel activity by pre- and post-translational modifications. Front Physiol 5:316

    Article  PubMed  PubMed Central  Google Scholar 

  • Laggner H, Hermann M, Esterbauer H, Muellner MK, Exner M, Gmeiner BM, Kapiotis S (2007) The novel gaseous vasorelaxant hydrogen sulfide inhibits angiotensin-converting enzyme activity of endothelial cells. J Hypertens 25:2100–2104

    Article  CAS  PubMed  Google Scholar 

  • Lancaster JR Jr (2006) Nitroxidative, nitrosative, and nitrative stress: kinetic predictions of reactive nitrogen species chemistry under biological conditions. Chem Res Toxicol 19:1160–1174

    Article  CAS  PubMed  Google Scholar 

  • Lancel S, Hassoun SM, Favory R, Decoster B, Motterlini R, Neviere R (2009) Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J Pharmacol Exp Ther 329:641–648

    Article  CAS  PubMed  Google Scholar 

  • Lang JD Jr, Teng X, Chumley P, Crawford JH, Isbell TS, Chacko BK, Liu Y, Jhala N, Crowe DR, Smith AB, Cross RC, Frenette L, Kelley EE, Wilhite DW, Hall CR, Page GP, Fallon MB, Bynon JS, Eckhoff DE, Patel RP (2007) Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation. J Clin Invest 117:2583–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SR, Han J (2017) Mitochondrial metabolic inhibition and cardioprotection. Korean Circ J 47:168–170

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee BS, Heo J, Kim YM, Shim SM, Pae HO, Kim YM, Chung HT (2006) Carbon monoxide mediates heme oxygenase 1 induction via Nrf2 activation in hepatoma cells. Biochem Biophys Res Commun 343:965–972

    Article  CAS  PubMed  Google Scholar 

  • Lee SW, Cheng Y, Moore PK, Bian JS (2007) Hydrogen sulphide regulates intracellular pH in vascular smooth muscle cells. Biochem Biophys Res Commun 358:1142–1147

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim N, Noh Y, Xu Z, Ko K, Rhee B, Han J (2016) Mitochondrial DNA, mitochondrial dysfunction, and cardiac manifestations. Front Biosci (Landmark Ed) 21:1410–1426

    Article  CAS  Google Scholar 

  • Lefer AM, Lefer DJ (1993) Pharmacology of the endothelium in ischemia-reperfusion and circulatory shock. Annu Rev Pharmacol Toxicol 33:71–90

    Article  CAS  PubMed  Google Scholar 

  • Lefer AM, Murohara T (1995) Comparative pharmacology of nitric oxide and nitric oxide generators on cardiac contractility in mammalian species. Int J Cardiol 50:239–242

    Article  CAS  PubMed  Google Scholar 

  • Leitner LM, Wilson RJ, Yan Z, Godecke A (2017) Reactive oxygen species/nitric oxide mediated inter-organ communication in skeletal muscle wasting diseases. Antioxid Redox Signal 26:700–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leon-Paravic CG, Figueroa VA, Guzman DJ, Valderrama CF, Vallejos AA, Fiori MC, Altenberg GA, Reuss L, Retamal MA (2014) Carbon monoxide (CO) is a novel inhibitor of connexin hemichannels. J Biol Chem 289:36150–36157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitt MD, Abdel-Rehim MS, Furne J (2011) Free and acid-labile hydrogen sulfide concentrations in mouse tissues: anomalously high free hydrogen sulfide in aortic tissue. Antioxid Redox Signal 15:373–378

    Article  CAS  PubMed  Google Scholar 

  • Li S, Yang G (2015) Hydrogen sulfide maintains mitochondrial DNA replication via demethylation of TFAM. Antioxid Redox Signal 23:630–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH, Moore PK (2008) Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117:2351–2360

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhang C, Sun W, Li L, Wu B, Bai S, Li H, Zhong X, Wang R, Wu L, Xu C (2015) Exogenous hydrogen sulfide restores cardioprotection of ischemic post-conditioning via inhibition of mPTP opening in the aging cardiomyocytes. Cell Biosci 5:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X-H, Xue W-L, Wang M-J, Zhou Y, Zhang C-C, Sun C, Zhu L, Liang K, Chen Y, Tao B-B, Tan B, Yu B, Zhu Y-C (2017) H2S regulates endothelial nitric oxide synthase protein stability by promoting microRNA-455-3p expression. Sci Rep 7:44807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Li S, Li Z, Zhang J, Han JS, Zhang Y, Yin ZT, Wang HS (2017) A safety evaluation of profound hypothermia-induced suspended animation for delayed resuscitation at 90 or 120 min. Mil Med Res 4:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Lloyd D (2006) Hydrogen sulfide: clandestine microbial messenger? Trends Microbiol 14:456–462

    Article  CAS  PubMed  Google Scholar 

  • Lo Faro ML, Fox B, Whatmore JL, Winyard PG, Whiteman M (2014) Hydrogen sulfide and nitric oxide interactions in inflammation. Nitric Oxide 41:38–47

    Article  CAS  PubMed  Google Scholar 

  • Long Q, Yang K, Yang Q (2015) Regulation of mitochondrial ATP synthase in cardiac pathophysiology. Am J Cardiovasc Dis 5:19–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowicka E, Beltowski J (2007) Hydrogen sulfide (H2S) – the third gas of interest for pharmacologists. Pharmacol Rep 59:4–24

    CAS  PubMed  Google Scholar 

  • Lundberg JO, Gladwin MT, Weitzberg E (2015) Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discov 14:623–641

    Article  CAS  PubMed  Google Scholar 

  • Magierowski M, Magierowska K, Szmyd J, Surmiak M, Sliwowski Z, Kwiecien S, Brzozowski T (2016) Hydrogen sulfide and carbon monoxide protect gastric mucosa compromised by mild stress against alendronate injury. Dig Dis Sci 61:3176–3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maines MD (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 2:2557–2568

    Article  CAS  PubMed  Google Scholar 

  • Malekova L, Krizanova O, Ondrias K (2009) H(2)S and HS(−) donor NaHS inhibits intracellular chloride channels. Gen Physiol Biophys 28:190–194

    Article  CAS  PubMed  Google Scholar 

  • Mani S, Li H, Untereiner A, Wu L, Yang G, Austin RC, Dickhout JG, Lhotak S, Meng QH, Wang R (2013) Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation 127:2523–2534

    Article  CAS  PubMed  Google Scholar 

  • Marshall HE, Stamler JS (1999) Exhaled nitric oxide (NO), NO synthase activity, and regulation of nuclear factor (NF)-kappaB. Am J Respir Cell Mol Biol 21:296–297

    Article  CAS  PubMed  Google Scholar 

  • Martelli A, Rapposelli S, Calderone V (2006) NO-releasing hybrids of cardiovascular drugs. Curr Med Chem 13:609–625

    Article  CAS  PubMed  Google Scholar 

  • Martin E, Berka V, Tsai AL, Murad F (2005) Soluble guanylyl cyclase: the nitric oxide receptor. Methods Enzymol 396:478–492

    Article  CAS  PubMed  Google Scholar 

  • Martins PN, Reuzel-Selke A, Jurisch A, Atrott K, Pascher A, Pratschke J, Buelow R, Neuhaus P, Volk HD, Tullius SG (2005) Induction of carbon monoxide in the donor reduces graft immunogenicity and chronic graft deterioration. Transplant Proc 37:379–381

    Article  CAS  PubMed  Google Scholar 

  • Martins PN, Reutzel-Selke A, Jurisch A, Denecke C, Attrot K, Pascher A, Kotsch K, Pratschke J, Neuhaus P, Volk HD, Tullius SG (2006) Induction of carbon monoxide in donor animals prior to organ procurement reduces graft immunogenicity and inhibits chronic allograft dysfunction. Transplantation 82:938–944

    Article  PubMed  Google Scholar 

  • Matsumoto T, Takahashi M, Nakae I, Kinoshita M (1995) Vasorelaxing effect of S-nitrosocaptopril on dog coronary arteries: no cross-tolerance with nitroglycerin. J Pharmacol Exp Ther 275:1247–1253

    CAS  PubMed  Google Scholar 

  • McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–R560

    Article  CAS  PubMed  Google Scholar 

  • McCleskey EW, Fox AP, Feldman D, Tsien RW (1986) Different types of calcium channels. J Exp Biol 124:177–190

    CAS  PubMed  Google Scholar 

  • McCoubrey WK Jr, Huang TJ, Maines MD (1997) Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem 247:725–732

    Article  CAS  PubMed  Google Scholar 

  • McMahon TJ, Ahearn GS, Moya MP, Gow AJ, Huang YC, Luchsinger BP, Nudelman R, Yan Y, Krichman AD, Bashore TM, Califf RM, Singel DJ, Piantadosi CA, Tapson VF, Stamler JS (2005) A nitric oxide processing defect of red blood cells created by hypoxia: deficiency of S-nitrosohemoglobin in pulmonary hypertension. Proc Natl Acad Sci U S A 102:14801–14806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Megson IL, Leslie SJ (2009) LA-419, a nitric-oxide donor for the treatment of cardiovascular disorders. Curr Opin Investig Drugs 10:276–285

    CAS  PubMed  Google Scholar 

  • Meigh L, Greenhalgh SA, Rodgers TL, Cann MJ, Roper DI, Dale N (2013) CO(2)directly modulates connexin 26 by formation of carbamate bridges between subunits. eLife 2:e01213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mikami Y, Shibuya N, Kimura Y, Nagahara N, Yamada M, Kimura H (2011) Hydrogen sulfide protects the retina from light-induced degeneration by the modulation of Ca2+ influx. J Biol Chem 286:39379–39386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikami Y, Shibuya N, Ogasawara Y, Kimura H (2013) Hydrogen sulfide is produced by cystathionine gamma-lyase at the steady-state low intracellular Ca(2+) concentrations. Biochem Biophys Res Commun 431:131–135

    Article  CAS  PubMed  Google Scholar 

  • Milkiewicz M, Ispanovic E, Doyle JL, Haas TL (2006) Regulators of angiogenesis and strategies for their therapeutic manipulation. Int J Biochem Cell Biol 38:333–357

    Article  CAS  PubMed  Google Scholar 

  • Mistry RK, Brewer AC (2017) Redox regulation of gasotransmission in the vascular system: a focus on angiogenesis. Free Radic Biol Med 108:500–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto R, Koike S, Takano Y, Shibuya N, Kimura Y, Hanaoka K, Urano Y, Ogasawara Y, Kimura H (2017) Polysulfides (H2Sn) produced from the interaction of hydrogen sulfide (H2S) and nitric oxide (NO) activate TRPA1 channels. Sci Rep 7:45995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modis K, Panopoulos P, Coletta C, Papapetropoulos A, Szabo C (2013) Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A. Biochem Pharmacol 86:1311–1319

    Article  CAS  PubMed  Google Scholar 

  • Modis K, Bos EM, Calzia E, van Goor H, Coletta C, Papapetropoulos A, Hellmich MR, Radermacher P, Bouillaud F, Szabo C (2014) Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects. Br J Pharmacol 171:2123–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modis K, Ju Y, Ahmad A, Untereiner AA, Altaany Z, Wu L, Szabo C, Wang R (2016) S-sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics. Pharmacol Res 113:116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery MR, Rubin RJ (1971) The effect of carbon monoxide inhalation on in vivo drug metabolism in the rat. J Pharmacol Exp Ther 179:465–473

    CAS  PubMed  Google Scholar 

  • Morrison ML, Blackwood JE, Lockett SL, Iwata A, Winn RK, Roth MB (2008) Surviving blood loss using hydrogen sulfide. J Trauma 65:183–188

    Article  CAS  PubMed  Google Scholar 

  • Motterlini R, Foresti R (2017) Biological signaling by carbon monoxide and carbon monoxide-releasing molecules (CO-RMs). Am J Physiol Cell Physiol 11

    Google Scholar 

  • Motterlini R, Otterbein LE (2010) The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 9:728–743

    Article  CAS  PubMed  Google Scholar 

  • Motterlini R, Sawle P, Hammad J, Bains S, Alberto R, Foresti R, Green CJ (2005) CORM-A1: a new pharmacologically active carbon monoxide-releasing molecule. FASEB J 19:284–286

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Sanchez J, Chanez-Cardenas ME (2014) A review on hemeoxygenase-2: focus on cellular protection and oxygen response. Oxidative Med Cell Longev 2014:604981

    Article  CAS  Google Scholar 

  • Munzel T, Feil R, Mulsch A, Lohmann SM, Hofmann F, Walter U (2003) Physiology and pathophysiology of vascular signaling controlled by guanosine 3′,5′-cyclic monophosphate-dependent protein kinase [corrected]. Circulation 108:2172–2183

    Article  PubMed  Google Scholar 

  • Musameh MD, Fuller BJ, Mann BE, Green CJ, Motterlini R (2006) Positive inotropic effects of carbon monoxide-releasing molecules (CO-RMs) in the isolated perfused rat heart. Br J Pharmacol 149:1104–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustafa AK, Gadalla MM, Snyder SH (2009a) Signaling by gasotransmitters. Sci Signal 2:re2

    PubMed  PubMed Central  Google Scholar 

  • Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH (2009b) H2S signals through protein S-sulfhydration. Sci Signal 2:ra72

    PubMed  PubMed Central  Google Scholar 

  • Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109:1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagpure BV, Bian JS (2016) Interaction of hydrogen sulfide with nitric oxide in the cardiovascular system. Oxidative Med Cell Longev 2016:6904327

    Article  CAS  Google Scholar 

  • Napoli C, Cirino G, Del Soldato P, Sorrentino R, Sica V, Condorelli M, Pinto A, Ignarro LJ (2001) Effects of nitric oxide-releasing aspirin versus aspirin on restenosis in hypercholesterolemic mice. Proc Natl Acad Sci U S A 98:2860–2864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ndisang JF, Tabien HE, Wang R (2004) Carbon monoxide and hypertension. J Hypertens 22:1057–1074

    Article  CAS  PubMed  Google Scholar 

  • Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A (2016) Preferential nitrite inhibition of the mitochondrial F1FO-ATPase activities when activated by Ca(2+) in replacement of the natural cofactor Mg(2+). Biochim Biophys Acta 1860:345–353

    Article  CAS  PubMed  Google Scholar 

  • Nicholson CK, Lambert JP, Molkentin JD, Sadoshima J, Calvert JW (2013) Thioredoxin 1 is essential for sodium sulfide-mediated cardioprotection in the setting of heart failure. Arterioscler Thromb Vasc Biol 33:744–751

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer BA, Mery L, Zawar C, Suckow A, Monje F, Pardo LA, Stuhmer W, Flockerzi V, Hoth M (2001) Ion channels in health and disease. 83rd Boehringer Ingelheim Fonds International Titisee Conference. EMBO Rep 2:568–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilius B, Carbone E (2014) Amazing T-type calcium channels: updating functional properties in health and disease. Pflugers Arch 466:623–626

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Hess P, Lansman JB, Tsien RW (1985) A novel type of cardiac calcium channel in ventricular cells. Nature 316:443–446

    Article  CAS  PubMed  Google Scholar 

  • Nishida M, Sawa T, Kitajima N, Ono K, Inoue H, Ihara H, Motohashi H, Yamamoto M, Suematsu M, Kurose H, van der Vliet A, Freeman BA, Shibata T, Uchida K, Kumagai Y, Akaike T (2012) Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat Chem Biol 8:714–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisoli E, Falcone S, Tonello C, Cozzi V, Palomba L, Fiorani M, Pisconti A, Brunelli S, Cardile A, Francolini M, Cantoni O, Carruba MO, Moncada S, Clementi E (2004) Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci U S A 101:16507–16512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2-an update. Free Radic Biol Med 66:36–44

    Article  CAS  PubMed  Google Scholar 

  • Nussbaum C, Klinke A, Adam M, Baldus S, Sperandio M (2013) Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid Redox Signal 18:692–713

    Article  CAS  PubMed  Google Scholar 

  • Nystul TG, Roth MB (2004) Carbon monoxide-induced suspended animation protects against hypoxic damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A 101:9133–9136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno K, Okuda K, Uehara T (2015) Endogenous S-sulfhydration of PTEN helps protect against modification by nitric oxide. Biochem Biophys Res Commun 456:245–249

    Article  CAS  PubMed  Google Scholar 

  • Okubo K, Takahashi T, Sekiguchi F, Kanaoka D, Matsunami M, Ohkubo T, Yamazaki J, Fukushima N, Yoshida S, Kawabata A (2011) Inhibition of T-type calcium channels and hydrogen sulfide-forming enzyme reverses paclitaxel-evoked neuropathic hyperalgesia in rats. Neuroscience 188:148–156

    Article  CAS  PubMed  Google Scholar 

  • Okubo K, Matsumura M, Kawaishi Y, Aoki Y, Matsunami M, Okawa Y, Sekiguchi F, Kawabata A (2012) Hydrogen sulfide-induced mechanical hyperalgesia and allodynia require activation of both Cav3.2 and TRPA1 channels in mice. Br J Pharmacol 166:1738–1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver JJ, Hughes VE, Dear JW, Webb DJ (2010) Clinical potential of combined organic nitrate and phosphodiesterase type 5 inhibitor in treatment-resistant hypertension. Hypertension 56:62–67

    Article  CAS  PubMed  Google Scholar 

  • Otterbein LE, Foresti R, Motterlini R (2016) Heme oxygenase-1 and carbon monoxide in the heart: the balancing act between danger signaling and pro-survival. Circ Res 118:1940–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owens EO (2010) Endogenous carbon monoxide production in disease. Clin Biochem 43:1183–1188

    Article  PubMed  CAS  Google Scholar 

  • Ozen M, Zhao H, Lewis DB, Wong RJ, Stevenson DK (2015) Heme oxygenase and the immune system in normal and pathological pregnancies. Front Pharmacol 6:84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagliaro P, Gattullo D, Rastaldo R, Losano G (2001) Involvement of nitric oxide in ischemic preconditioning. Ital Heart J 2:660–668

    CAS  PubMed  Google Scholar 

  • Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  CAS  PubMed  Google Scholar 

  • Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabó C (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci 106:21972–21977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papapetropoulos A, Hobbs AJ, Topouzis S (2015a) Extending the translational potential of targeting NO/cGMP-regulated pathways in the CVS. Br J Pharmacol 172:1397–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papapetropoulos A, Foresti R, Ferdinandy P (2015b) Pharmacology of the “gasotransmitters” NO, CO and H2S: translational opportunities. Br J Pharmacol 172:1395–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardee KI, Xu X, Reinking J, Schuetz A, Dong A, Liu S, Zhang R, Tiefenbach J, Lajoie G, Plotnikov AN, Botchkarev A, Krause HM, Edwards A (2009) The structural basis of gas-responsive transcription by the human nuclear hormone receptor REV-ERBbeta. PLoS Biol 7:e43

    Article  PubMed  CAS  Google Scholar 

  • Park CM, Nagel RL (1984) Sulfhemoglobinemia. Clinical and molecular aspects. N Engl J Med 310:1579–1584

    Article  CAS  PubMed  Google Scholar 

  • Patel HH, Insel PA (2009) Lipid rafts and caveolae and their role in compartmentation of redox signaling. Antioxid Redox Signal 11:1357–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul BD, Snyder SH (2012) H2S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13:499–507

    Article  CAS  PubMed  Google Scholar 

  • Paul BT, Manz DH, Torti FM, Torti SV (2017) Mitochondria and iron: current questions. Expert Rev Hematol 10:65–79

    Article  CAS  PubMed  Google Scholar 

  • Pearce LL, Kanai AJ, Birder LA, Pitt BR, Peterson J (2002) The catabolic fate of nitric oxide: the nitric oxide oxidase and peroxynitrite reductase activities of cytochrome oxidase. J Biol Chem 277:13556–13562

    Article  CAS  PubMed  Google Scholar 

  • Pechanova O, Simko F (2009) Chronic antioxidant therapy fails to ameliorate hypertension: potential mechanisms behind. J Hypertens Suppl 27:S32–S36

    Article  CAS  PubMed  Google Scholar 

  • Pechanova O, Varga ZV, Cebova M, Giricz Z, Pacher P, Ferdinandy P (2015) Cardiac NO signalling in the metabolic syndrome. Br J Pharmacol 172:1415–1433

    Article  CAS  PubMed  Google Scholar 

  • Penney DG (1988) Hemodynamic response to carbon monoxide. Environ Health Perspect 77:121–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen LC (1977) The effect of inhibitors on the oxygen kinetics of cytochrome c oxidase. Biochim Biophys Acta 460:299–307

    Article  CAS  PubMed  Google Scholar 

  • Piantadosi CA, Carraway MS, Babiker A, Suliman HB (2008) Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res 103:1232–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picard M, Wallace DC, Burelle Y (2016) The rise of mitochondria in medicine. Mitochondrion 30:105–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polhemus DJ, Lefer DJ (2014) Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res 114:730–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polhemus DJ, Li Z, Pattillo CB, Gojon G Sr, Gojon G Jr, Giordano T, Krum H (2015) A novel hydrogen sulfide prodrug, SG1002, promotes hydrogen sulfide and nitric oxide bioavailability in heart failure patients. Cardiovasc Ther 33:216–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhakar NR, Semenza GL (2012) Gaseous messengers in oxygen sensing. J Mol Med (Berl) 90:265–272

    Article  CAS  Google Scholar 

  • Pun PB, Lu J, Kan EM, Moochhala S (2010) Gases in the mitochondria. Mitochondrion 10:83–93

    Article  CAS  PubMed  Google Scholar 

  • Puranik M, Weeks CL, Lahaye D, Kabil O, Taoka S, Nielsen SB, Groves JT, Banerjee R, Spiro TG (2006) Dynamics of carbon monoxide binding to cystathionine beta-synthase. J Biol Chem 281:13433–13438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian Y, Matson JB (2017) Gasotransmitter delivery via self-assembling peptides: treating diseases with natural signaling gases. Adv Drug Deliv Rev 110–111:137–156

    Article  CAS  PubMed  Google Scholar 

  • Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Jarvinen T, Savolainen J (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–270

    Article  CAS  PubMed  Google Scholar 

  • Retamal MA (2016) Carbon monoxide modulates connexin function through a lipid peroxidation-dependent process: a hypothesis. Front Physiol 7

    Google Scholar 

  • Retamal MA, Yin S, Altenberg GA, Reuss L (2009) Modulation of Cx46 hemichannels by nitric oxide. Am J Physiol Cell Physiol 296:C1356–C1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riccio DA, Malowitz JR, Cotten CM, Murtha AP, McMahon TJ (2016) S-Nitrosylated fetal hemoglobin in neonatal human blood. Biochem Biophys Res Commun 473:1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochette L, Cottin Y, Zeller M, Vergely C (2013) Carbon monoxide: mechanisms of action and potential clinical implications. Pharmacol Ther 137:133–152

    Article  CAS  PubMed  Google Scholar 

  • Roden DM, Balser JR, George AL Jr, Anderson ME (2002) Cardiac ion channels. Annu Rev Physiol 64:431–475

    Article  CAS  PubMed  Google Scholar 

  • Rodgers PA, Vreman HJ, Dennery PA, Stevenson DK (1994) Sources of carbon monoxide (CO) in biological systems and applications of CO detection technologies. Semin Perinatol 18:2–10

    CAS  PubMed  Google Scholar 

  • Rossello X, Yellon DM (2016) A critical review on the translational journey of cardioprotective therapies. Int J Cardiol 220:176–184

    Article  PubMed  Google Scholar 

  • Rossoni G, Berti M, Colonna VD, Bernareggi M, Del Soldato P, Berti F (2000) Myocardial protection by the nitroderivative of aspirin, NCX 4016: in vitro and in vivo experiments in the rabbit. Ital Heart J 1:146–155

    CAS  PubMed  Google Scholar 

  • Rossoni G, Manfredi B, Tazzari V, Sparatore A, Trivulzio S, Del Soldato P, Berti F (2010) Activity of a new hydrogen sulfide-releasing aspirin (ACS14) on pathological cardiovascular alterations induced by glutathione depletion in rats. Eur J Pharmacol 648:139–145

    Article  CAS  PubMed  Google Scholar 

  • Rothberg BS (2012) The BK channel: a vital link between cellular calcium and electrical signaling. Protein Cell 3:883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salloum FN, Chau VQ, Hoke NN, Abbate A, Varma A, Ockaili RA, Toldo S, Kukreja RC (2009) Phosphodiesterase-5 inhibitor, tadalafil, protects against myocardial ischemia/reperfusion through protein-kinase g-dependent generation of hydrogen sulfide. Circulation 120:S31–S36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salloum FN, Das A, Samidurai A, Hoke NN, Chau VQ, Ockaili RA, Stasch JP, Kukreja RC (2012) Cinaciguat, a novel activator of soluble guanylate cyclase, protects against ischemia/reperfusion injury: role of hydrogen sulfide. Am J Physiol Heart Circ Physiol 302:H1347–H1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sartiani L, Cerbai E, Lonardo G, DePaoli P, Tattoli M, Cagiano R, Carratu MR, Cuomo V, Mugelli A (2004) Prenatal exposure to carbon monoxide affects postnatal cellular electrophysiological maturation of the rat heart: a potential substrate for arrhythmogenesis in infancy. Circulation 109:419–423

    Article  PubMed  Google Scholar 

  • Sayed N, Baskaran P, Ma X, van den Akker F, Beuve A (2007) Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation. Proc Natl Acad Sci U S A 104:12312–12317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz K, Siddiqi N, Singh S, Neil CJ, Dawson DK, Frenneaux MP (2014) The breathing heart – mitochondrial respiratory chain dysfunction in cardiac disease. Int J Cardiol 171:134–143

    Article  PubMed  Google Scholar 

  • Scragg JL, Dallas ML, Wilkinson JA, Varadi G, Peers C (2008) Carbon monoxide inhibits L-type Ca2+ channels via redox modulation of key cysteine residues by mitochondrial reactive oxygen species. J Biol Chem 283:24412–24419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL, Prabhakar NR (2012) Gas biology: small molecular medicine. J Mol Med 90:213–215

    Article  PubMed  Google Scholar 

  • Sen N (2017) Functional and molecular insights of hydrogen sulfide signaling and protein sulfhydration. J Mol Biol 429:543–561

    Article  CAS  PubMed  Google Scholar 

  • Serafim RA, Primi MC, Trossini GH, Ferreira EI (2012) Nitric oxide: state of the art in drug design. Curr Med Chem 19:386–405

    Article  CAS  PubMed  Google Scholar 

  • Shao M, Zhuo C, Jiang R, Chen G, Shan J, Ping J, Tian H, Wang L, Lin C, Hu L (2017) Protective effect of hydrogen sulphide against myocardial hypertrophy in mice. Oncotarget 8:22344–22352

    PubMed  PubMed Central  Google Scholar 

  • Sharma HS, Das DK, Verdouw PD (1999) Enhanced expression and localization of heme oxygenase-1 during recovery phase of porcine stunned myocardium. Mol Cell Biochem 196:133–139

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Shen Z, Miao L, Xin X, Lin S, Zhu Y, Guo W, Zhu YZ (2015) miRNA-30 family inhibition protects against cardiac ischemic injury by regulating cystathionine-gamma-lyase expression. Antioxid Redox Signal 22:224–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O (1996) Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 93:13176–13181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibahara S, Nakayama M, Kitamuro T, Udono-Fujimori R, Takahashi K (2003) Repression of heme oxygenase-1 expression as a defense strategy in humans. Exp Biol Med (Maywood) 228:472–473

    Article  CAS  Google Scholar 

  • Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 4:1366

    Article  PubMed  CAS  Google Scholar 

  • Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M (2000) Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 52:557–594

    CAS  PubMed  Google Scholar 

  • Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Takahashi N, Mori Y (2014) TRPs as chemosensors (ROS, RNS, RCS, gasotransmitters). Handb Exp Pharmacol 223:767–794

    Article  CAS  PubMed  Google Scholar 

  • Shintani T, Iwabuchi T, Soga T, Kato Y, Yamamoto T, Takano N, Hishiki T, Ueno Y, Ikeda S, Sakuragawa T, Ishikawa K, Goda N, Kitagawa Y, Kajimura M, Matsumoto K, Suematsu M (2009) Cystathionine beta-synthase as a carbon monoxide-sensitive regulator of bile excretion. Hepatology 49:141–150

    Article  CAS  PubMed  Google Scholar 

  • Sikora M, Drapala A, Ufnal M (2014) Exogenous hydrogen sulfide causes different hemodynamic effects in normotensive and hypertensive rats via neurogenic mechanisms. Pharmacol Rep 66:751–758

    Article  CAS  PubMed  Google Scholar 

  • Sjoberg F, Singer M (2013) The medical use of oxygen: a time for critical reappraisal. J Intern Med 274:505–528

    Article  CAS  PubMed  Google Scholar 

  • Snijder PM, Frenay AR, de Boer RA, Pasch A, Hillebrands JL, Leuvenink HG, van Goor H (2015) Exogenous administration of thiosulfate, a donor of hydrogen sulfide, attenuates angiotensin II-induced hypertensive heart disease in rats. Br J Pharmacol 172:1494–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soni H, Patel P, Rath AC, Jain M, Mehta AA (2010) Cardioprotective effect with carbon monoxide releasing molecule-2 (CORM-2) in isolated perfused rat heart: role of coronary endothelium and underlying mechanism. Vasc Pharmacol 53:68–76

    Article  CAS  Google Scholar 

  • Srinivasan S, Avadhani NG (2012) Cytochrome c oxidase dysfunction in oxidative stress. Free Radic Biol Med 53:1252–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stram AR, Payne RM (2016) Post-translational modifications in mitochondria: protein signaling in the powerhouse. Cell Mol Life Sci 73:4063–4073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugishima M, Sakamoto H, Noguchi M, Fukuyama K (2003) Crystal structures of ferrous and CO-, CN(−)-, and NO-bound forms of rat heme oxygenase-1 (HO-1) in complex with heme: structural implications for discrimination between CO and O2 in HO-1. Biochemistry 42:9898–9905

    Article  CAS  PubMed  Google Scholar 

  • Suliman HB, Carraway MS, Tatro LG, Piantadosi CA (2007) A new activating role for CO in cardiac mitochondrial biogenesis. J Cell Sci 120:299–308

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Picht E, Ginsburg KS, Bers DM, Steenbergen C, Murphy E (2006) Hypercontractile female hearts exhibit increased S-nitrosylation of the L-type Ca2+ channel alpha1 subunit and reduced ischemia/reperfusion injury. Circ Res 98:403–411

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Morgan M, Shen RF, Steenbergen C, Murphy E (2007) Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res 101:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Sun YG, Cao YX, Wang WW, Ma SF, Yao T, Zhu YC (2008) Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovasc Res 79:632–641

    Article  CAS  PubMed  Google Scholar 

  • Szabo C (2010) Gaseotransmitters: new frontiers for translational science. Sci Transl Med 2:59ps54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo C, Coletta C, Chao C, Modis K, Szczesny B, Papapetropoulos A, Hellmich MR (2013) Tumor-derived hydrogen sulfide, produced by cystathionine-beta-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc Natl Acad Sci U S A 110:12474–12479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S, Lin H, Geshi N, Mori Y, Kawarabayashi Y, Takami N, Mori MX, Honda A, Inoue R (2008) Nitric oxide-cGMP-protein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. J Physiol 586:4209–4223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi N, Kozai D, Mori Y (2012) TRP channels: sensors and transducers of gasotransmitter signals. Front Physiol 3:324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi K, Kakimoto Y, Toda K, Naruse K (2013) Mechanobiology in cardiac physiology and diseases. J Cell Mol Med 17:225–232

    Article  PubMed  PubMed Central  Google Scholar 

  • Takano N, Yamamoto T, Adachi T, Suematsu M (2010) Assessing a shift of glucose biotransformation by LC-MS/MS-based metabolome analysis in carbon monoxide-exposed cells. Adv Exp Med Biol 662:101–107

    Article  CAS  PubMed  Google Scholar 

  • Talavera K, Nilius B (2006) Biophysics and structure-function relationship of T-type Ca2+ channels. Cell Calcium 40:97–114

    Article  CAS  PubMed  Google Scholar 

  • Tang XD, Xu R, Reynolds MF, Garcia ML, Heinemann SH, Hoshi T (2003) Haem can bind to and inhibit mammalian calcium-dependent Slo1 BK channels. Nature 425:531–535

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Wu L, Liang W, Wang R (2005) Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol 68:1757–1764

    CAS  PubMed  Google Scholar 

  • Tang G, Wu L, Wang R (2010) Interaction of hydrogen sulfide with ion channels. Clin Exp Pharmacol Physiol 37:753–763

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi S, Kimura T, Umeki T, Kimura Y, Kimura H, Ishii I, Itoh N, Naito Y, Yamamoto H, Niki I (2012) Protein phosphorylation involved in the gene expression of the hydrogen sulphide producing enzyme cystathionine gamma-lyase in the pancreatic beta-cell. Mol Cell Endocrinol 350:31–38

    Article  CAS  PubMed  Google Scholar 

  • Taoka S, Banerjee R (2001) Characterization of NO binding to human cystathionine beta-synthase: possible implications of the effects of CO and NO binding to the human enzyme. J Inorg Biochem 87:245–251

    Article  CAS  PubMed  Google Scholar 

  • Taoka S, Ohja S, Shan X, Kruger WD, Banerjee R (1998) Evidence for heme-mediated redox regulation of human cystathionine beta-synthase activity. J Biol Chem 273:25179–25184

    Article  CAS  PubMed  Google Scholar 

  • Teng H, Wu B, Zhao K, Yang G, Wu L, Wang R (2013) Oxygen-sensitive mitochondrial accumulation of cystathionine β-synthase mediated by Lon protease. Proc Natl Acad Sci 110:12679–12684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teodoro RO, O’Farrell PH (2003) Nitric oxide-induced suspended animation promotes survival during hypoxia. EMBO J 22:580–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas DD, Heinecke JL, Ridnour LA, Cheng RY, Kesarwala AH, Switzer CH, McVicar DW, Roberts DD, Glynn S, Fukuto JM, Wink DA, Miranda KM (2015) Signaling and stress: the redox landscape in NOS2 biology. Free Radic Biol Med 87:204–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorup C, Jones CL, Gross SS, Moore LC, Goligorsky MS (1999) Carbon monoxide induces vasodilation and nitric oxide release but suppresses endothelial NOS. Am J Physiol Ren Physiol 277:F882–F889

    Article  CAS  Google Scholar 

  • Tomasova L, Dobrowolski L, Jurkowska H, Wrobel M, Huc T, Ondrias K, Ostaszewski R, Ufnal M (2016) Intracolonic hydrogen sulfide lowers blood pressure in rats. Nitric Oxide 60:50–58

    Article  CAS  PubMed  Google Scholar 

  • Tonks NK (2013) Protein tyrosine phosphatases – from housekeeping enzymes to master regulators of signal transduction. FEBS J 280:346–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toohey JI (2011) Sulfur signaling: is the agent sulfide or sulfane? Anal Biochem 413:1–7

    Article  CAS  PubMed  Google Scholar 

  • Traylor TG, Sharma VS (1992) Why NO? Biochemistry 31:2847–2849

    Article  CAS  PubMed  Google Scholar 

  • Tsai AL, Martin E, Berka V, Olson JS (2012) How do heme-protein sensors exclude oxygen? Lessons learned from cytochrome c′, Nostoc puntiforme heme nitric oxide/oxygen-binding domain, and soluble guanylyl cyclase. Antioxid Redox Signal 17:1246–1263

    Article  CAS  Google Scholar 

  • Ulker SN, Kocer G, Senturk UK (2017) Carbon monoxide does not contribute to vascular tonus improvement in exercise-trained rats with chronic nitric oxide synthase inhibition. Nitric Oxide 65:60–67

    Article  CAS  PubMed  Google Scholar 

  • Untereiner AA, Fu M, Modis K, Wang R, Ju Y, Wu L (2016) Stimulatory effect of CSE-generated H2S on hepatic mitochondrial biogenesis and the underlying mechanisms. Nitric Oxide 58:67–76

    Article  CAS  PubMed  Google Scholar 

  • Valerio A, Nisoli E (2015) Nitric oxide, interorganelle communication, and energy flow: a novel route to slow aging. Front Cell Dev Biol 3:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandiver M, Snyder SH (2012) Hydrogen sulfide: a gasotransmitter of clinical relevance. J Mol Med 90:255–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasquez-Trincado C, Garcia-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, Lavandero S (2016) Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol 594:509–525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vega RB, Konhilas JP, Kelly DP, Leinwand LA (2017) Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metab 25:1012–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vicente JB, Colaco HG, Mendes MI, Sarti P, Leandro P, Giuffre A (2014) NO* binds human cystathionine beta-synthase quickly and tightly. J Biol Chem 289:8579–8587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vicente JB, Malagrino F, Arese M, Forte E, Sarti P, Giuffre A (2016) Bioenergetic relevance of hydrogen sulfide and the interplay between gasotransmitters at human cystathionine beta-synthase. Biochim Biophys Acta 1857:1127–1138

    Article  CAS  PubMed  Google Scholar 

  • Victorino VJ, Mencalha AL, Panis C (2015) Post-translational modifications disclose a dual role for redox stress in cardiovascular pathophysiology. Life Sci 129:42–47

    Article  CAS  PubMed  Google Scholar 

  • Villanueva C, Kross RD (2012) Antioxidant-induced stress. Int J Mol Sci 13:2091–2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volpato MD, Gian P, Searles BAR, Yu PDB, Scherrer-Crosbie MDPDM, Bloch MD, Kenneth D, Ichinose MDF, Zapol MD, Warren M (2008a) Inhaled hydrogen sulfide: a rapidly reversible inhibitor of cardiac and metabolic function in the mouse. Anesthesiology 108:659–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volpato GP, Searles R, Yu B, Scherrer-Crosbie M, Bloch KD, Ichinose F, Zapol WM (2008b) Inhaled hydrogen sulfide: a rapidly reversible inhibitor of cardiac and metabolic function in the mouse. Anesthesiology 108:659–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter A, Gutknecht J (1986) Permeability of small nonelectrolytes through lipid bilayer membranes. J Membr Biol 90:207–217

    Article  CAS  PubMed  Google Scholar 

  • Wang R (2003) The gasotransmitter role of hydrogen sulfide. Antioxid Redox Signal 5:493–501

    Article  PubMed  CAS  Google Scholar 

  • Wang R (2012) Shared signaling pathways among gasotransmitters. Proc Natl Acad Sci U S A 109:8801–8802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R (2014) Gasotransmitters: growing pains and joys. Trends Biochem Sci 39:227–232

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Chau LY (2010) Heme oxygenase-1 in cardiovascular diseases: molecular mechanisms and clinical perspectives. Chang Gung Med J 33:13–24

    CAS  PubMed  Google Scholar 

  • Wang R, Wu L, Wang Z (1997) The direct effect of carbon monoxide on KCa channels in vascular smooth muscle cells. Pflugers Arch 434:285–291

    Article  CAS  PubMed  Google Scholar 

  • Wang PG, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk AJ (2002) Nitric oxide donors: chemical activities and biological applications. Chem Rev 102:1091–1134

    Article  CAS  PubMed  Google Scholar 

  • Wang YY, Chang RB, Liman ER (2010) TRPA1 is a Component of the Nociceptive Response to CO(2) (CO(2) Sensing by TRPA1). J Neurosci 30:12958–12963

    Google Scholar 

  • Wang R, Szabo C, Ichinose F, Ahmed A, Whiteman M, Papapetropoulos A (2015a) The role of H2S bioavailability in endothelial dysfunction. Trends Pharmacol Sci 36:568–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Tang ZP, Zhao W, Cong BH, JQ L, Tang XL, Li XH, Zhu XY, Ni X (2015b) MiR-22/Sp-1 links estrogens with the up-regulation of cystathionine gamma-lyase in myocardium, which contributes to estrogenic cardioprotection against oxidative stress. Endocrinology 156:2124–2137

    Article  PubMed  Google Scholar 

  • Watanabe M, Osada J, Aratani Y, Kluckman K, Reddick R, Malinow MR, Maeda N (1995) Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci 92:1585–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, Rashid R, Miall P, Deanfield J, Benjamin N, MacAllister R, Hobbs AJ, Ahluwalia A (2008) Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 51:784–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wedmann R, Ivanovic-Burmazovic I, Filipovic MR (2017) Nitrosopersulfide (SSNO-) decomposes in the presence of sulfide, cyanide or glutathione to give HSNO/SNO-: consequences for the assumed role in cell signalling. Interface Focus 7:20160139

    Article  PubMed  PubMed Central  Google Scholar 

  • Wegiel B, Nemeth Z, Correa-Costa M, Bulmer AC, Otterbein LE (2014) Heme oxygenase-1: a metabolic nike. Antioxid Redox Signal 20:1709–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegiel B, Hauser CJ, Otterbein LE (2015) Heme as a danger molecule in pathogen recognition. Free Radic Biol Med 89:651–661

    Article  CAS  PubMed  Google Scholar 

  • Wesseling S, Fledderus JO, Verhaar MC, Joles JA (2015) Beneficial effects of diminished production of hydrogen sulfide or carbon monoxide on hypertension and renal injury induced by NO withdrawal. Br J Pharmacol 172:1607–1619

    Article  CAS  PubMed  Google Scholar 

  • Whiteman M, Li L, Kostetski I, Chu SH, Siau JL, Bhatia M, Moore PK (2006) Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun 343:303–310

    Article  CAS  PubMed  Google Scholar 

  • Whiteman M, Gooding KM, Whatmore JL, Ball CI, Mawson D, Skinner K, Tooke JE, Shore AC (2010) Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia 53:1722–1726

    Article  CAS  PubMed  Google Scholar 

  • Whiteman M, Perry A, Zhou Z, Bucci M, Papapetropoulos A, Cirino G, Wood ME (2015) Phosphinodithioate and phosphoramidodithioate hydrogen sulfide donors. Handb Exp Pharmacol 230:337–363

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson WJ, Kemp PJ (2011) Carbon monoxide: an emerging regulator of ion channels. J Physiol 589:3055–3062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams SE, Wootton P, Mason HS, Bould J, Iles DE, Riccardi D, Peers C, Kemp PJ (2004) Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science 306:2093–2097

    Article  CAS  PubMed  Google Scholar 

  • Wong CM, Marcocci L, Das D, Wang X, Luo H, Zungu-Edmondson M, Suzuki YJ (2013) Mechanism of protein decarbonylation. Free Radic Biol Med 65:1126–1133

    Article  CAS  PubMed  Google Scholar 

  • Woo J, Iyer S, Cornejo MC, Mori N, Gao L, Sipos I, Maines M, Buelow R (1998) Stress protein-induced immunosuppression: inhibition of cellular immune effector functions following overexpression of haem oxygenase (HSP 32). Transpl Immunol 6:84–93

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Wang R (2005) Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 57:585–630

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Cao K, Lu Y, Wang R (2002) Different mechanisms underlying the stimulation of K(Ca) channels by nitric oxide and carbon monoxide. J Clin Invest 110:691–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu ML, Ho YC, Lin CY, Yet SF (2011) Heme oxygenase-1 in inflammation and cardiovascular disease. Am J Cardiovasc Dis 1:150–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, JP E, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Takano N, Ishiwata K, Suematsu M (2011) Carbon monoxide stimulates global protein methylation via its inhibitory action on cystathionine beta-synthase. J Clin Biochem Nutr 48:96–100

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yet SF, Pellacani A, Patterson C, Tan L, Folta SC, Foster L, Lee WS, Hsieh CM, Perrella MA (1997) Induction of heme oxygenase-1 expression in vascular smooth muscle cells. A link to endotoxic shock. J Biol Chem 272:4295–4301

    Article  CAS  PubMed  Google Scholar 

  • Yet SF, Tian R, Layne MD, Wang ZY, Maemura K, Solovyeva M, Ith B, Melo LG, Zhang L, Ingwall JS, Dzau VJ, Lee ME, Perrella MA (2001) Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circ Res 89:168–173

    Article  CAS  PubMed  Google Scholar 

  • Yong QC, Pan TT, LF H, Bian JS (2008) Negative regulation of beta-adrenergic function by hydrogen sulphide in the rat hearts. J Mol Cell Cardiol 44:701–710

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase – a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2:669–677

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:596–607

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Jin H, Tang C, Du J, Zhang Z (2017a) Sulfur-containing gaseous signal molecules, ion channels and cardiovascular diseases. Br J Pharmacol https://doi.org/10.1111/bph.13829 [Epub ahead of print]

  • Yu L, Li S, Tang X, Li Z, Zhang J, Xue X, Han J, Liu Y, Zhang Y, Zhang Y, Xu Y, Yang Y, Wang H (2017b) Diallyl trisulfide ameliorates myocardial ischemia-reperfusion injury by reducing oxidative stress and endoplasmic reticulum stress-mediated apoptosis in type 1 diabetic rats: role of SIRT1 activation. Apoptosis 22:942–954

    Article  CAS  PubMed  Google Scholar 

  • Yuan S, Pardue S, Shen X, Alexander JS, Orr AW, Kevil CG (2016) Hydrogen sulfide metabolism regulates endothelial solute barrier function. Redox Biol 9:157–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Sun Y, Tsai H, Tang C, Jin H, Du J (2012) Hydrogen sulfide inhibits L-type calcium currents depending upon the protein sulfhydryl state in rat cardiomyocytes. PLoS One 7:10

    PubMed Central  Google Scholar 

  • Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20:6008–6016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Ndisang JF, Wang R (2003) Modulation of endogenous production of H2S in rat tissues. Can J Physiol Pharmacol 81:848–853

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Biggs TD, Xian M (2014) Hydrogen sulfide (H2S) releasing agents: chemistry and biological applications. Chem Commun (Camb) 50:11788–11805

    Article  CAS  Google Scholar 

  • Ziolo MT, Katoh H, Bers DM (2001) Positive and negative effects of nitric oxide on Ca(2+) sparks: influence of beta-adrenergic stimulation. Am J Physiol Heart Circ Physiol 281:H2295–H2303

    Article  CAS  PubMed  Google Scholar 

  • Zobi F (2013) CO and CO-releasing molecules in medicinal chemistry. Future Med Chem 5:175–188

    Article  CAS  PubMed  Google Scholar 

  • Zuckerbraun BS, Chin BY, Wegiel B, Billiar TR, Czsimadia E, Rao J, Shimoda L, Ifedigbo E, Kanno S, Otterbein LE (2006) Carbon monoxide reverses established pulmonary hypertension. J Exp Med 203:2109–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors apologize for the vast number of outstanding publications that could not be cited owing to space limitations. This work was supported by the Priority Research Centers Program (2010-0020224) and the Basic Science Research Program (2015R1A2A1A13001900 and 2015R1D1A3A01015596) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, S.R., Nilius, B., Han, J. (2018). Gaseous Signaling Molecules in Cardiovascular Function: From Mechanisms to Clinical Translation. In: Nilius, B., de Tombe, P., Gudermann, T., Jahn, R., Lill, R., Petersen, O. (eds) Reviews of Physiology, Biochemistry and Pharmacology Vol. 174. Reviews of Physiology, Biochemistry and Pharmacology, vol 174. Springer, Cham. https://doi.org/10.1007/112_2017_7

Download citation

Publish with us

Policies and ethics