Skip to main content

Geometric Scaling of Tabular Igneous Intrusions: Implications for Emplacement and Growth

  • Chapter
  • First Online:
Book cover Physical Geology of Shallow Magmatic Systems

Part of the book series: Advances in Volcanology ((VOLCAN))

Abstract

The horizontal (L) and vertical (T) dimensions of broadly tabular, sub-horizontal intrusions of mafic to felsic composition emplaced into shallow to mid-crustal levels of continental crust reveal two well-defined and continuous curves in log L vs. log T space. The data set spans six and five orders of magnitude in L (1 m to 1000 km) and T (10 cm to 10 km), respectively. Small tabular sheets and sills (mafic and felsic) define a straight line with a slope ~ 0.5 at all horizontal length scales, similar to the known geometric scaling of mafic dikes, indicating that the L/T ratio of these intrusions to increases with increasing L (horizontal lengthening dominates over vertical thickening). Laccoliths, plutons, layered mafic intrusions and batholiths define an open, continuous S-shaped curve that bifurcates from the tabular sheets and sills curve at L ~ 500 m towards higher T values. For L ~ 0.5 to 10 km the slope of this curve is ~ 1.5, corresponding to laccoliths that are characterized by a decrease in L/T ratio with increasing L (vertical thickening dominates over horizontal lengthening). Between L ~ 10 and 100 km the slope has a mean value ~ 0.8, indicating that plutons and layered mafic intrusions have a tendency for horizontal lengthening over vertical thickening as L increases. Batholiths and very large layered mafic intrusions with L > 100 km lie on a slope ~ 0 with a threshold thickness ~ 10 km. The continuous nature of the dimensional data over such a wide range of length scales reflects a spectrum of igneous emplacement processes repeated in space and time. We discuss how thresholds and transitions in this spectrum, defined by bifurcations between the curves (e.g., between sill and laccolith emplacement) and changes in slope, largely reflect depth- and time-dependent changes in emplacement mechanisms rather than factors such as magma viscosity, composition and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmalak MM, Mourgues R, Galland O, Bureau D (2012) Fracture mode analysis and related surface deformation during dyke intrusion Results from 2D experimental modelling. Earth Planet Sci Lett 359–360:93–105

    Google Scholar 

  • Annen C (2011) Implications of incremental emplacement of magma bodies for magma differentiation, thermal aureole dimensions and plutonism–volcanism relationships. Tectonophysics 500:3–10

    Google Scholar 

  • Babiker M, Gudmundsson A (2004) Geometry, structure and emplacement of mafic dykes in the Red Sea Hills, Sudan. J Afr Earth Sc 38:279–292

    Google Scholar 

  • Barnes SJ, Cruden A, Arnt N, Saumur B (2016) The mineral system approach applied to magmatic Ni-Cu-PGE sulfide deposits. Ore Geol Rev 76:296–316

    Google Scholar 

  • Bédard JH, Naslund HR, Nabelek P, Winpenny A, Hryciuk M, Hayes B, Steigerwaldt K, Hadlari T, Rainbird R, Dewing K, Girard E (2012) Fault-mediated melt ascent in a Neoproterozoic continental flood basalt province, the Franklin sills, Victoria Island, Canada. Geol Soc Am Bull 124:723–736

    Google Scholar 

  • Bolchover P, Lister JR (1999) The effect of solidification on fluid-driven fracture, with application to bladed dykes. Proc R Soc A 455:2389–2409

    Google Scholar 

  • Bunger AP, Cruden AR (2011a) Modeling the growth of laccoliths and large mafic sills: the role of magma body forces. J Geophys Res 116:B02203. doi:10.1029/2010JB007648

    Article  Google Scholar 

  • Bunger A, Cruden A (2011b) Correction to “Modelling the growth of laccoliths and large mafic sills: the role of magma body forces”. J Geophys Res 116:B08211. doi:10.1029/2011JB008618

    Article  Google Scholar 

  • Bunger A, Menand T, Cruden A, Zhang X, Halls H (2013) Analytical predictions for a natural spacing within dyke swarms. Earth Planet Sci Lett 375:270–279

    Google Scholar 

  • Bradley J (1965) Intrusion of major dolerite sills. Trans R Soc 3:27–55

    Google Scholar 

  • Brown EH, McClelland WC (2000) Pluton emplacement by sheeting and vertical ballooning in part of the southeast Coast Plutonic Complex, British Columbia. Geol Soc Am Bull 112:708–719

    Google Scholar 

  • Cawthorn RG (ed) (1996) Layered intrusions. Elsevier Science, Amsterdam, p 531

    Google Scholar 

  • Clough CT, Maufe HB, Bailey EB (1909) The cauldron-subsidence of Glen Coe, and the associated igneous phenomena. J Geol Soc London 65:611–678

    Google Scholar 

  • Coleman D, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32:433–436

    Google Scholar 

  • Corazzato C, Groppelli G (2004) Depth, geometry and emplacement of sills to laccoliths and their host-rock relationships: Montecampione group, Southern Alps, Italy. Geol Soc London Spec Publ 234:175–200

    Google Scholar 

  • Corry CE (1988) Laccoliths: mechanics of emplacement and growth. Geol Soc Am 220:110 (Special Publication)

    Google Scholar 

  • Cruden AR (1998) On the emplacement of tabular granites. J Geol Soc London 155:853–862

    Google Scholar 

  • Cruden AR (2006) Emplacement and growth of plutons: implications for rates of melting and mass transfer in continental crust. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, pp 455–519

    Google Scholar 

  • Cruden AR (2008) Oskarshamn site investigation: emplacement mechanisms and structural influence of a younger granite intrusion into older wall rocks—a principal study with application to the Götemar and Uthammar granites. SKB. Swedish Nuclear Fuel and Waste Management Co., R-Report R-08-138, 48 p

    Google Scholar 

  • Cruden AR, McCaffrey KJW (2001) Growth of plutons by floor subsidence: implications for rates of emplacement, intrusion spacing and melt-extraction mechanisms. Phys Chem Earth Part A 26:303–315

    Google Scholar 

  • Cruden AR, Mazzarini F, Bunger A, Musemeci G (2009) Geometry, scaling relationships and emplacement dynamics of a ca. 6 Ma shallow felsic sill complex, Calamita Peninsula, Elba Island, Italy. Eos Trans AGU, 90(52), Fall Meeting Supplement, Abstract T13A-1843

    Google Scholar 

  • Daly RA (1905) The classification of igneous intrusive bodies. J Geol 13:485–508

    Google Scholar 

  • Delaney PT, Pollard DD (1981) Deformation of host rocks and flow of magma during growth of minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico. US Geological Survey Professional Paper 1201

    Google Scholar 

  • Detournay E (2004) Propagation regimes of fluid-driven fractures in impermeable rocks. Int J Geomech 4:35–45. doi:10.1061/(ASCE)1532-3641(2004)4:1(35)

    Article  Google Scholar 

  • Dixon JM, Simpson DG (1987) Centrifuge modelling of laccolith intrusion. J Struct Geol 9(87–103):1987

    Google Scholar 

  • Ernst RE, Buchan KL, Campbell IH (2005) Frontiers in large igneous province research. Lithos 79:271–297

    Google Scholar 

  • Francis EH (1982) Magma and sediment—I. Emplacement mechanism of late Carboniferous tholeiite sills in northern Britain. J Geol Soc London 139:1–20

    Google Scholar 

  • Friese N, Vollbrecht A, Tanner DC, Fahlbusch W, Weidemann M (2012) Multi-stage emplacement of the Götemar Pluton, SE Sweden: new evidence inferred from field observations and microfabric analysis, including cathodoluminescence microscopy. Int J Earth Sci 101:1149–1167

    Google Scholar 

  • Galland this volume

    Google Scholar 

  • Galland O, Scheibert J (2013) Analytical model of surface uplift above axisymmetric flat-lying magma intrusions: implications for sill emplacement and geodesy. J Volcanol Geoth Res 253:114–130

    Google Scholar 

  • Galland O, Cobbold PR, Hallot E, de Bremond d’Ars, Delavaud G (2006) Use of vegetable oil and silica powder for scale modeling of magmatic intrusion in a deforming brittle crust. Earth Planet Sci Lett 243:786–804

    Google Scholar 

  • Galland O, Planke S, Neumann E-R, Malthe-Sørenssen A (2009) Experimental modelling of shallow magma emplacement: application to saucer-shaped intrusions. Earth Planet Sci Lett 277:373–383

    Google Scholar 

  • Geshi N, Kusumoto S, Gudmundsson A (2010) Geometric difference between non-feeder and feeder dikes. Geology 38:195–198

    Google Scholar 

  • Gilbert GK (1877) Report on the Geology of the Henry Mountains. U.S. Geographical and Geological Survey of the Rocky Mountain Region, Government Printing Office, Washington, 160 p

    Google Scholar 

  • Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14:4–11

    Google Scholar 

  • Gudmundsson A (2011a) Rock fractures in geological processes. Cambridge University Press, Cambridge, 592 p

    Google Scholar 

  • Gudmundsson this volume

    Google Scholar 

  • Gudmundsson A (2011b) Deflection of dykes into sills at discontinuities and magma-chamber formation. Tectonophysics 500:50–64

    Google Scholar 

  • Grocott J, Arevalo C, Welkner D, Cruden AR (2009) Fault-assisted vertical pluton growth: Coastal Cordillera, northern Chilean Andes. J Geol Soc London 166:295–301

    Google Scholar 

  • Halls HC, Fahrig WF (eds) (1987) Mafic Dyke swarms. Geological Association of Canada, Special Paper 34

    Google Scholar 

  • Hamilton WB (1965) Diabase sheets of the Taylor Glacier Region, Victoria Land, Antarctica. US Geological Survey, Professional Papers 456-B, 77 p

    Google Scholar 

  • Hansen DM, Cartwright J (2006) The three-dimensional geometry and growth of forced folds above saucer-shaped igneous sills. J Struct Geol 28:1520–1535

    Google Scholar 

  • Hergt JM, Brauns CM (2001) On the origin of Tasmanian dolerites. Aust J Earth Sci 48:543–549

    Google Scholar 

  • Horsman E, Morgan S, de Saint Blanquat M, Habert G, Nugent A, Hunter RA, Tikoff B (2010) Emplacement and assembly of shallow intrusions from multiple magma pulses, Henry Mountains, Utah. Earth Environ Sci Trans R Soc Edinburgh 100:1–16

    Google Scholar 

  • Hunt CB, Averitt P, Miller RL (1953) Geology and geography of the Henry Mountains region, Utah. U.S. Geological survey professional paper 228, 234 p

    Google Scholar 

  • Hutton DHW (2009) Insights into magmatism in volcanic margins: bridge structures and a new mechanism of basic sill emplacementTheron Mountains, Antarctica. Petrol Geosci 15:269–278

    Google Scholar 

  • Jackson MD, Pollard DD (1988) The laccolith-stock controversy: new results from the southern Henry Mountains, Utah. Geol Soc Am Bull 100:117–139

    Google Scholar 

  • Johnson AM, Pollard DD (1973) Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, I. Field observations, Gilbert’s model, physical properties and flow of the magma. Tectonophysics 18:261–309

    Google Scholar 

  • Kavanagh JL, Menand T, Sparks RSJ (2006) An experimental investigation of sill formation and propagation in layered elastic media. Earth Planet Sci Lett 245:799–813

    Google Scholar 

  • Kavanagh J, Boutelier D, Cruden A (2015) The mechanics of sill inception, propagation and growth: experimental evidence for rapid reduction in magmatic overpressure. Earth Planet Sci Lett 421:117–128

    Google Scholar 

  • Klimczak C, Schultz RA, Parashar R, Reeves DM (2010) Cubic law with aperture-length correlation: implications for network scale fluid flow. Hydrogeol J 18:851–862

    Google Scholar 

  • Koch F, Johnson A, Pollard DD (1981) Monoclinal bending of strata over laccolithic intrusions. Tectonophysics 74:T21–T31

    Google Scholar 

  • Leaman DE (1975) Form, mechanism, and control of dolerite intrusion near Hobart, Tasmania. Aust J Earth Sci 22:175–186

    Google Scholar 

  • Lister JR (1995) Fluid mechanical models of the interaction between solidification and flow in dykes. In: Physics and chemistry of Dykes, Balkema, pp 115–124

    Google Scholar 

  • Leuthold J, Muntener O, Baumgartner LP, Putlitz B, Ovtcharova M, Schaltegger U (2012) Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia). Earth Planet Sci Lett 325–326:85–92

    Google Scholar 

  • Magee C, Muirhead JD, Karvelas A, Holford SP, Jackson CAL, Bastow ID, Schofield N, Stevenson CTE, McLean C, McCarthy W, Shtukert O (2016) Lateral magma flow in mafic sill complexes. Geosphere 12:809. doi:10.1130/GES01256.1

    Article  Google Scholar 

  • Malthe-Sørenssen A, Planke S, Svensen H, Jamtveit B (2004) Formation of saucer-shaped sills. In: Physical geology of high-level magmatic systems, vol 234. Geological Society, London, Special Publications, pp 215–227

    Google Scholar 

  • Marsh BD (2004) A magmatic mush column Rosetta Stone: the McMurdo Dry Valleys of Antarctica. EOS, Trans Am Geophys Union 85:497–508

    Google Scholar 

  • Mathieu L, van Wyk de Vries B, Holohan EP, Troll VR (2008) Dykes, cups, saucers and sills: analogue experiments on magma intrusion into brittle rocks. Earth Planet Sci Lett 271:1–13

    Google Scholar 

  • McCaffrey K, Petford N (1997) Are granitic plutons scale invariant? J Geol Soc London 154:1–14

    Google Scholar 

  • McQuarrie N, Rogers DW (1998) Subsidence of a volcanic basin by flexure and lower crustal flow: the eastern Snake River Palin, Idaho. Tectonics 17:203–220

    Google Scholar 

  • Miles AJ, Cartwright JA (2010) Hybrid flow sills: a new mode of igneous sheet intrusion. Geology 38:343–346

    Google Scholar 

  • Miller JS, Matzel JEP, Miller CF, Burgess SD, Miller RB (2007) Zircon growth and recycling during the assembly of large, composite arc plutons. J Volcanol Geotherm Res 167:282–299

    Google Scholar 

  • Menand T (2008) The mechanics and dynamics of sills in layered elastic rocks and their implications for the growth of laccoliths and other igneous complexes. Earth Planet Sci Lett 267:93–99. doi:10.1016/j.epsl.2007.11.043

    Article  Google Scholar 

  • Menand T (2011) Physical controls and depth of emplacement of igneous bodies: a review. Tectonophysics 500:11–19

    Google Scholar 

  • Menand T, de Saint Blanquat M, Annen C (2011) Emplacement of magma pulses and growth of magma bodies. Tectonophysics 500:1–2

    Google Scholar 

  • Menand T, Annen C, de Saint Blanquat M (2015) Rates of magma transfer in the crust: Insights into magma reservoir recharge and pluton growth. Geology 43:199–202

    Google Scholar 

  • Michel J, Baumgartner L, Putlitz B, Schaltegger U, Ovtcharova M (2008) Incremental growth of the Patagonian Torres del Paine laccolith over 90 ky. Geology 36:459–465

    Google Scholar 

  • Mudge MR (1968) Depth control of some concordant intrusions. Geol Soc Am Bull 79:315–332

    Google Scholar 

  • Muirhead JD, Airoldi G, Rowland JV, White JDL (2012) Interconnected sills and inclined sheet intrusions controlshallow magma transport in the Ferrar large igneous province, Antarctica. Geol Soc Am Bull 124:162–180

    Google Scholar 

  • Myers JS (1975) Cauldron subsidence and fluidization: mechanisms of intrusion of the Coastal Batholith of Peru into its own volcanic ejecta. Geol Soc Am Bull 86:1209–1220

    Google Scholar 

  • Nicholson R, Pollard D (1985) Dilation and linkage of echelon cracks. J Struct Geol 7:583–590

    Google Scholar 

  • Olson JE (2003) Sublinear scaling of fracture aperture versus length: An exception or the rule? J Geophys Res 108:2413. doi:10.1029/2001JB000419, B9

    Google Scholar 

  • Paterson SR, Fowler TK Jr, Miller RB (1996) Pluton emplacement in arcs: a crustal-scale exchange process. Trans R Soc Edinburgh: Earth Sci 87:115–123

    Google Scholar 

  • Perkins TK, Kern LR (1961) Widths of hydraulic fractures. J Petrol Technol 13:937–950

    Google Scholar 

  • Petford N, Cruden AR, McCaffrey KJW, Vigneresse J-L (2000) Dynamics of granitic magma formation, transport and emplacement in the Earth’s crust. Nature 408:669–673

    Google Scholar 

  • Planke et al. this volume

    Google Scholar 

  • Pollard DD, Johnson AM (1973) Mechanisms of some laccolithic intrusions in the Henry Mountains, Utah, Part II: bending and failure of overburden and sill formation. Tectonophysics 18:311–354

    Google Scholar 

  • Polteau S, Mazzini A, Galland O, Planke S, Malthe-Sørenssen A (2008) Saucer-shaped intrusions: Occurrences, emplacement and implications. Earth Planet Sci Lett 266:195–204. doi:10.1016/j.epsl.2007.11.015

    Article  Google Scholar 

  • Price NJ, Cosgrove JW (1990) Analysis of geological structures. Cambridge University Press, Cambridge, p 507

    Google Scholar 

  • Puffer JH, Block KA, Steiner JC (2009) Transmission of flood basalts through a shallow crustal sill and the correlation of sill layers with extrusive flows: the Palisades intrusive system and the basalts of the Newark basin, New Jersey, U.S.A. J Geol 117:139–155

    Google Scholar 

  • Putlitz B, Baumgartner LP, Oberhaensli R, Diamond L, Altenberger U (2001) The Torres del Paine Laccolith (Chile); intrusion and metamorphism. In: XI Goldschmidt Conference, Abstract No. 3534. Hot Springs, United States

    Google Scholar 

  • Quick JE, Sinigoi S, Mayer A (1994) Emplacement dynamics of a large mafic intrusion in the lower crust, Ivrea-Verbano Zone, northern Italy. J Geophys Res 99:21559–21573

    Google Scholar 

  • Rivalta E, Taisne B, Bunger AP, Katz RF (2015) A review of mechanical models of dike propagation: Schools of thought, results and future directions. Tectonophysics 638:1–42

    Google Scholar 

  • Rocchi S, Westerman DS, Dini A, Innocenti F, Tonarini S (2002) Two-stage growth of laccoliths at Elba Island, Italy. Geology 30:983–986

    Google Scholar 

  • Rocchi S, Westerman DS, Dini A, Farina F (2010) Intrusive sheets and sheeted intrusions at Elba Island (Italy). Geosphere 6:225–236

    Google Scholar 

  • Robertson WA, Baragar WRA (1972) The petrology and paleomagnetism of the Coronation Sills. Can J Earth Sci 9:123–140

    Google Scholar 

  • Roman-Berdiel T, Gapais D, Brun JP (1995) Analogue models of laccolith formation. J Struct Geol 17:1337–1346

    Google Scholar 

  • de Saint Blanquat M, Law RD, Bouchez J-L, Morgan SS (2001) Internal structure and emplacement of the Papoose Flat pluton: an integrated structural, petrographic, and magnetic susceptibility study. Geol Soc Am Bull 113:976–995

    Google Scholar 

  • de Saint Blanquat M, Habert G, Horsman E, Morgan S, Tikoff B, Launeau P, Gleizes G (2006) Mechanisms and duration of non-tectonically assisted magma emplacement in the upper crust: The Black Mesa pluton, Henry Mountains, Utah. Tectonophysics 428:1–31

    Google Scholar 

  • de Saint Blanquat M, Horsman E, Habert G, Morgan S, Vanderhaeghe O, Law R, Tikoff B (2011) Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics 500:20–33

    Google Scholar 

  • Saumur BM, Cruden AR (2016) On the emplacement of the Voisey’s Bay intrusion (Labrador, Canada). Geol Soc Am Bull 128:147–168

    Google Scholar 

  • Savitski AA, Detournay E (2002) Propagation of a penny-shaped fluid-driven fracture in an impermeable rock: asymptotic solutions. Int J Solids Struct 39:6311–6337

    Google Scholar 

  • Scaillet B, Searle MP (2006) Mechanisms and timescales of felsic magma segregation, ascent and emplacement in the Himalaya. Geol Soc London Spec Publ 268:293–308

    Google Scholar 

  • Schaltegger U, Brack P, Ovtcharova M, Peytcheva I, Schoene B, Stracke A, Marocchi M, Bargossi GM (2009) Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy). Earth Planet Sci Lett 286:208–218

    Google Scholar 

  • Schultz RA, Soliva R, Fossen H, Okubo CH (2008a) Dependence of displacement–length scaling relations for fractures and deformation bands on the volumetric changes across them. J Struct Geol 30:1405–1411

    Google Scholar 

  • Schultz RA, Mege D, Diot H (2008b) Emplacement conditions of igneous dikes in Ethiopian Traps. J Volcanol Geotherm Res 178:683–692

    Google Scholar 

  • Schofield NJ, Brown DJ, Magee C, Stevenson CT (2012) Sill morphology and comparison of brittle and non-brittle emplacement mechanisms. J Geol Soc London 169:127–141

    Google Scholar 

  • Shirley DN (1987) Differentiation and compaction in the Palisades Sill, New Jersey. J Petrol 28:835–865

    Google Scholar 

  • Skarmeta JJ, Castelli JC (1997) Intrusion sintectonica del granito de las Torres del Paine, Andes Patagonicos de Chile. Rev Geol Chile 24:55–74

    Google Scholar 

  • Smith RJ (2009) Use and misuse of the reduced major axis for line-fitting. Am J Phys Anthropol 140:476–486

    Google Scholar 

  • Sneddon IN, Lowengrub M (1969) Crack problems in the classical theory of elasticity. Wiley, New York, p 230

    Google Scholar 

  • Thomson K (2007) Determining magma flow in sills, dykes and laccoliths and their implications for sill emplacement mechanisms. Bull Volc 70:183–201

    Google Scholar 

  • Thomson K, Hutton D (2004) Geometry and growth of sill complexes: insights using 3D seismic from the North Rockall Trough. Bull Volc 66:364–375

    Google Scholar 

  • Thomson K, Schofield N (2008) Lithological and structural controls on the emplacement and morphology of sills in sedimentary basins. Geol Soc London Spec Publ 302:31–44

    Google Scholar 

  • Vigneresse JL (1995) Control of granite emplacement by regional deformation. Tectonophysics 249:173–186

    Google Scholar 

  • Walker GPL (1993) Re-evaluation of inclined intrusive sheets and dykes in the Cuillins volcano, Isle of Skye. Geol Soc London Spec Publ 76:489–497

    Google Scholar 

  • Walker KR (1969) The Palisades sill, New Jersey: a reinvestigation. Geological Society of America Special Paper 111, 155 p

    Google Scholar 

  • Walker RJ (2016) Controls on transgressive sill growth. Geology 44:99–102

    Google Scholar 

  • White SM, Crisp JA, Spera FJ (2006) Long-term volumetric eruption rates and magma budgets. Geochem Geophys Geosyst 7:Q03010. doi:10.1029/2005GC001002

    Article  Google Scholar 

  • Westerman et al. this volume

    Google Scholar 

  • Wiebe RA, Collins WJ (1998) Depositional features and stratigraphic sections in granitic plutons: Implications for the emplacement and crystallization of granitic magma. J Struct Geol 20:1273–1289

    Google Scholar 

  • Wilson PIR, McCaffrey KJW, Wilson R, Jarvis I, Holdsworth RE (2016) Deformation structures associated with the Trachyte Mesa intrusion, Henry Mountains, Utah: implications for sill and laccolith emplacement mechanisms. J Struct Geol 87:30–46

    Google Scholar 

  • Zenzri H, Kerr LM (2001) Mechanical analyses of the emplacement of laccoliths and lopoliths. J Geophys Res 106:13781–13792

    Google Scholar 

Download references

Acknowledgements

We are grateful to Sergio Rocchi and Christoph Breitkeuz for their forbearance and editorial input, and two anonymous reviewers for positive comments and suggestions. Michael Lishman is thanked for introducing ARC to the Whin Sill at High Cup Nick and for Fig. 3a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Cruden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cruden, A.R., McCaffrey, K.J.W., Bunger, A.P. (2017). Geometric Scaling of Tabular Igneous Intrusions: Implications for Emplacement and Growth . In: Breitkreuz, C., Rocchi, S. (eds) Physical Geology of Shallow Magmatic Systems. Advances in Volcanology. Springer, Cham. https://doi.org/10.1007/11157_2017_1000

Download citation

Publish with us

Policies and ethics