Skip to main content

Enzymatic Synthesis of Glycans and Glycoconjugates

  • Chapter
  • First Online:
Advances in Glycobiotechnology

Abstract

Glycoconjugates have great potential to improve human health in a multitude of different ways and fields. Prominent examples are human milk oligosaccharides and glycosaminoglycans. The typical choice for the production of homogeneous glycoconjugates is enzymatic synthesis. Through the availability of expression and purification protocols, recombinant Leloir glycosyltransferases are widely applied as catalysts for the synthesis of a wide range of glycoconjugates. Extensive utilization of these enzymes also depends on the availability of activated sugars as building blocks. Multi-enzyme cascades have proven a versatile technique to synthesize and in situ regenerate nucleotide sugar.

In this chapter, the functions and mechanisms of Leloir glycosyltransferases are revisited, and the advantage of prokaryotic sources and production systems is discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide sugar are reviewed. In the second part, recent and prominent examples of the application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosaminoglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly is revisited.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

Adenosine diphosphate

Asp:

Asparagine

CHO:

Chinese hamster ovary

CMP:

Cytidine monophosphate

CS:

Chondroitin sulfate

CTP:

Cytidine triphosphate

DS:

Dermatan sulfate

DSP:

Downstream processing

dTDP:

Deoxythymidine diphosphate

FucT:

Fucosyltransferase

GalT:

Galactosyltransferase

GDP:

Guanosine diphosphate

Glc:

Glucose

GlcA:

Glucuronic acid

GlcNAc:

N-acetylglucosamine

GRAS:

Generally recognized as safe

GT:

Glycosyltransferase

HMO:

Human milk oligosaccharide

HMW:

High-molecular-weight

HNK:

Human natural killer cell

Hp:

Heparin sulfate

HS:

Heparan sulfate

IdoA:

Iduronic acid

IgG:

Immunoglobulin G

LacNAc:

N-Acetyl-D-lactosamine

LMW:

Low-molecular-weight

LNT II:

Lacto-N-triose

Man:

Mannose

MBP:

Maltose-binding protein

MP-CE:

Multiplexed capillary electrophoresis

NDP:

Nucleoside diphosphate

Neu5Ac:

N-Acetylneuraminic acid

NMPK:

Nucleoside monophosphate kinase

NMP:

Nucleoside monophosphate

OPME:

One-pot multi-enzyme

OST:

Oligosaccharyltransferase

PEP:

Phosphoenolpyruvate

PG:

Proteoglycans

PGCS:

Proteoglycan carrying chondroitin sulfate

PGDS:

Proteoglycan carrying dermatan sulfate

PGHS:

Proteoglycan carrying heparan sulfate

PK:

Pyruvate kinase

PPK:

Polyphosphate kinase

PolyP:

Polyphosphate

Ser:

Serine

SiaT:

Sialyltransferase

STY:

Space-time yield

SuSy:

Sucrose synthase

TTN:

Total turnover numbers

UDP:

Uridine diphosphate

UTP:

Uridine triphosphate

Xyl:

Xylose

References

  1. André I, Potocki-Véronèse G, Barbe S, Moulis C, Remaud-Siméon M (2014) CAZyme discovery and design for sweet dreams. Curr Opin Chem Biol 19:17–24. https://doi.org/10.1016/j.cbpa.2013.11.014

    Article  CAS  PubMed  Google Scholar 

  2. Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77(1):521–555. https://doi.org/10.1146/annurev.biochem.76.061005.092322

    Article  CAS  PubMed  Google Scholar 

  3. Ardèvol A, Rovira C (2015) Reaction mechanisms in carbohydrate-active enzymes: glycoside hydrolases and glycosyltransferases. Insights from ab initio quantum mechanics/molecular mechanics dynamic simulations. J Am Chem Soc 137(24):7528–7547. https://doi.org/10.1021/jacs.5b01156

    Article  CAS  PubMed  Google Scholar 

  4. Tvaroška I (2015) Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods. Carbohydr Res 403:38–47. https://doi.org/10.1016/j.carres.2014.06.017

    Article  CAS  PubMed  Google Scholar 

  5. Breton C, Snajdrova L, Jeanneau C, Koca J, Imberty A (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16(2):29–37

    Article  Google Scholar 

  6. Gloster TM (2014) Advances in understanding glycosyltransferases from a structural perspective. Curr Opin Struct Biol 28:131–141. https://doi.org/10.1016/j.sbi.2014.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Teppa R, Petit D, Plechakova O, Cogez V, Harduin-Lepers A (2016) Phylogenetic-derived insights into the evolution of Sialylation in eukaryotes: comprehensive analysis of vertebrate β-galactoside α2,3/6-Sialyltransferases (ST3Gal and ST6Gal). Int J Mol Sci 17(8):1286

    Article  Google Scholar 

  8. Chao L, Jongkees S (2019) High-throughput approaches in carbohydrate-active enzymology: glycosidase and glycosyl transferase inhibitors, evolution, and discovery. Angew Chem 131(37):12880–12890. https://doi.org/10.1002/ange.201900055

    Article  Google Scholar 

  9. Benkoulouche M, Fauré R, Remaud-Siméon M, Moulis C, André I (2019) Harnessing glycoenzyme engineering for synthesis of bioactive oligosaccharides. Interface Focus 9(2):20180069. https://doi.org/10.1098/rsfs.2018.0069

    Article  PubMed  PubMed Central  Google Scholar 

  10. McArthur John B, Chen X (2016) Glycosyltransferase engineering for carbohydrate synthesis. Biochem Soc Trans 44(1):129–142. https://doi.org/10.1042/bst20150200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hancock SM, Vaughan MD, Withers SG (2006) Engineering of glycosidases and glycosyltransferases. Curr Opin Chem Biol 10(5):509–519

    Article  CAS  Google Scholar 

  12. Daude D, Andre I, Monsan P, Remaud-Simeon M (2014) Chapter 28 successes in engineering glucansucrases to enhance glycodiversification. In: Carbohydrate chemistry, vol 40. The Royal Society of Chemistry, London, pp 624–645. https://doi.org/10.1039/9781849739986-00624

    Chapter  Google Scholar 

  13. O’Neill EC, Field RA (2015) Enzymatic synthesis using glycoside phosphorylases. Carbohydr Res 403:23–37. https://doi.org/10.1016/j.carres.2014.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Slámová K, Bojarová P (2017) Engineered N-acetylhexosamine-active enzymes in glycoscience. BBA 1861(8):2070–2087. https://doi.org/10.1016/j.bbagen.2017.03.019

    Article  CAS  Google Scholar 

  15. Cobucci-Ponzano B, Moracci M (2012) Glycosynthases as tools for the production of glycan analogs of natural products. Nat Prod Rep 29(6):697–709

    Article  CAS  Google Scholar 

  16. Sprenger GA, Baumgärtner F, Albermann C (2017) Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations. J Biotechnol 258(Suppl C):79–91. https://doi.org/10.1016/j.jbiotec.2017.07.030

    Article  CAS  PubMed  Google Scholar 

  17. Han NS, Kim T-J, Park Y-C, Kim J, Seo J-H (2012) Biotechnological production of human milk oligosaccharides. Biotechnol Adv 30(6):1268–1278. https://doi.org/10.1016/j.biotechadv.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  18. Petschacher B, Nidetzky B (2016) Biotechnological production of fucosylated human milk oligosaccharides: prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems. J Biotechnol 235:61–83. https://doi.org/10.1016/j.jbiotec.2016.03.052

    Article  CAS  PubMed  Google Scholar 

  19. Seibel J, Buchholz K, Derek H (2010) Tools in oligosaccharide synthesis: current research and application. In: Advances in carbohydrate chemistry and biochemistry, vol 63. Academic Press, Cambridge, pp 101–138

    Google Scholar 

  20. Daude D, Remaud-Simeon M, Andre I (2012) Sucrose analogs: an attractive (bio)source for glycodiversification. Nat Prod Rep 29(9):945–960. https://doi.org/10.1039/C2NP20054F

    Article  CAS  PubMed  Google Scholar 

  21. Nidetzky B, Gutmann A, Zhong C (2018) Leloir glycosyltransferases as biocatalysts for chemical production. ACS Catal:6283–6300. https://doi.org/10.1021/acscatal.8b00710

  22. DeAngelis PL, Liu J, Linhardt RJ (2013) Chemoenzymatic synthesis of glycosaminoglycans: re-creating, re-modeling and re-designing nature's longest or most complex carbohydrate chains. Glycobiology 23(7):764–777. https://doi.org/10.1093/glycob/cwt016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suflita M, Fu L, He W, Koffas M, Linhardt RJ (2015) Heparin and related polysaccharides: synthesis using recombinant enzymes and metabolic engineering. Appl Microbiol Biotechnol 99(18):7465–7479. https://doi.org/10.1007/s00253-015-6821-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Danby PM, Withers SG (2016) Advances in enzymatic glycoside synthesis. ACS Chem Biol 11(7):1784–1794. https://doi.org/10.1021/acschembio.6b00340

    Article  CAS  PubMed  Google Scholar 

  25. Rich JR, Withers SG (2009) Emerging methods for the production of homogeneous human glycoproteins. Nat Chem Biol 5(4):206–215

    Article  CAS  Google Scholar 

  26. Pratta MR, Bertozzi CR (2005) Synthetic glycopeptides and glycoproteins as tools for biology. Chem Soc Rev 34:58–68

    Article  Google Scholar 

  27. Krasnova L, Wong C-H (2019) Oligosaccharide synthesis and translational innovation. J Am Chem Soc. https://doi.org/10.1021/jacs.8b11005

  28. Kittl R, Withers SG (2010) New approaches to enzymatic glycoside synthesis through directed evolution. Carbohydr Res 345(10):1272–1279. https://doi.org/10.1016/j.carres.2010.04.002

    Article  CAS  PubMed  Google Scholar 

  29. Armstrong Z, Withers SG (2013) Synthesis of glycans and glycopolymers through engineered enzymes. Biopolymers 99(10):666–674. https://doi.org/10.1002/bip.22335

    Article  CAS  PubMed  Google Scholar 

  30. Harding CM, Feldman MF (2019) Glycoengineering bioconjugate vaccines, therapeutics, and diagnostics in E. coli. Glycobiology 29(7):519–529. https://doi.org/10.1093/glycob/cwz031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim BG, Yang SM, Kim SY, Cha MN, Ahn JH (2015) Biosynthesis and production of glycosylated flavonoids in Escherichia coli: current state and perspectives. Appl Microbiol Biotechnol 99(7):2979–2988. https://doi.org/10.1007/s00253-015-6504-6

    Article  CAS  PubMed  Google Scholar 

  32. Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163(2):166–178. https://doi.org/10.1016/j.jbiotec.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  33. Zhou J, Du G, Chen J (2014) Novel fermentation processes for manufacturing plant natural products. Curr Opin Biotechnol 25(0):17–23. https://doi.org/10.1016/j.copbio.2013.08.009

    Article  CAS  PubMed  Google Scholar 

  34. Chang A, Singh S, Phillips Jr GN, Thorson JS (2011) Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Curr Opin Biotechnol 22(6):800–808. https://doi.org/10.1016/j.copbio.2011.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Breton C, Fournel-Gigleux S, Palcic MM (2012) Recent structures, evolution and mechanisms of glycosyltransferases. Curr Opin Struct Biol 22(5):540–549. https://doi.org/10.1016/j.sbi.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  36. Albesa-Jove D, Sainz-Polo MA, Marina A, Guerin ME (2017) Structural snapshots of alpha-1,3-Galactosyltransferase with native substrates: insight into the catalytic mechanism of retaining glycosyltransferases. Angew Chem Int Ed Engl 56(47):14853–14857. https://doi.org/10.1002/anie.201707922

    Article  CAS  PubMed  Google Scholar 

  37. Moremen KW, Ramiah A, Stuart M, Steel J, Meng L, Forouhar F, Moniz HA, Gahlay G, Gao Z, Chapla D, Wang S, Yang J-Y, Prabhakar PK, Johnson R, Rosa MD, Geisler C, Nairn AV, Seetharaman J, Wu S-C, Tong L, Gilbert HJ, LaBaer J, Jarvis DL (2017) Expression system for structural and functional studies of human glycosylation enzymes. Nat Chem Biol 14:156. https://doi.org/10.1038/nchembio.2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tiwari P, Sangwan RS, Sangwan NS (2016) Plant secondary metabolism linked glycosyltransferases: an update on expanding knowledge and scopes. Biotechnol Adv 34(5):714–739. https://doi.org/10.1016/j.biotechadv.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  39. Liang D-M, Liu J-H, Wu H, Wang B-B, Zhu H-J, Qiao J-J (2015) Glycosyltransferases: mechanisms and applications in natural product development. Chem Soc Rev 44(22):8350–8374. https://doi.org/10.1039/C5CS00600G

    Article  CAS  PubMed  Google Scholar 

  40. Skretas G, Carroll S, DeFrees S, Schwartz MF, Johnson KF, Georgiou G (2009) Expression of active human sialyltransferase ST6GalNAcI in Escherichia coli. Microb Cell Factories 8(1):50. https://doi.org/10.1186/1475-2859-8-50

    Article  CAS  Google Scholar 

  41. Bernatchez S, Gilbert M, Blanchard M-C, Karwaski M-F, Li J, DeFrees S, Wakarchuk WW (2007) Variants of the β1,3-Galactosyltransferase CgtB from the bacterium Campylobacter jejuni have distinct acceptor specificities. Glycobiology 17(12):1333–1343. https://doi.org/10.1093/glycob/cwm090

    Article  CAS  PubMed  Google Scholar 

  42. Li M, Shen J, Liu X, Shao J, Yi W, Chow CS, Wang PG (2008) Identification of a new a1,2-Fucosyltransferase involved in O-antigen biosynthesis of Escherichia coli O86:B7 and formation of H-type 3 blood group antigen. Biochemistry 47(44):11590–11597

    Article  CAS  Google Scholar 

  43. Pasek M, Boeggeman E, Ramakrishnan B, Qasba PK (2010) Galectin-1 as a fusion partner for the production of soluble and folded human β-1,4-galactosyltransferase-T7 in E. coli. Biochem Biophys Res Commun 394(3):679–684

    Article  CAS  Google Scholar 

  44. Sauerzapfe B, Namdjou DJ, Schumacher T, Linden N, Křenek K, Křen V, Elling L (2008) Characterization of recombinant fusion constructs of human β1,4-galactosyltransferase 1 and the lipase pre-propeptide from Staphylococcus hyicus. J Mol Catal B Enzym 50(2):128–140. https://doi.org/10.1016/j.molcatb.2007.09.009

    Article  CAS  Google Scholar 

  45. Engels L, Elling L (2014) WbgL: a novel bacterial α1,2-fucosyltransferase for the synthesis of 2′-fucosyllactose. Glycobiology 24(2):170–178. https://doi.org/10.1093/glycob/cwt096

    Article  CAS  PubMed  Google Scholar 

  46. Lauber J, Handrick R, Leptihn S, Dürre P, Gaisser S (2015) Expression of the functional recombinant human glycosyltransferase GalNAcT2 in Escherichia coli. Microb Cell Factories 14:3. https://doi.org/10.1186/s12934-014-0186-0

    Article  CAS  Google Scholar 

  47. Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M (2012) SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Factories 11(1):753. https://doi.org/10.1186/1475-2859-11-56

    Article  CAS  Google Scholar 

  48. Luley-Goedl C, Czabany T, Longus K, Schmölzer K, Zitzenbacher S, Ribitsch D, Schwab H, Nidetzky B (2016) Combining expression and process engineering for high-quality production of human sialyltransferase in Pichia pastoris. J Biotechnol 235:54–60. https://doi.org/10.1016/j.jbiotec.2016.03.046

    Article  CAS  PubMed  Google Scholar 

  49. Bencúrová M, Rendić D, Fabini G, Kopecky E-M, Altmann F, Wilson IBH (2003) Expression of eukaryotic glycosyltransferases in the yeast Pichia pastoris. Biochimie 85(3):413–422. https://doi.org/10.1016/S0300-9084(03)00072-5

    Article  CAS  PubMed  Google Scholar 

  50. Malissard M, Zeng S, Berger EG (1999) The yeast expression system for recombinant glycosyltransferases. Glycoconj J 16(2):125–139

    Article  CAS  Google Scholar 

  51. Kim HG, Yang SM, Lee YC, Do SI, Chung IS, Yang JM (2003) High-level expression of human glycosyltransferases in insect cells as biochemically active form. Biochem Biophys Res Commun 305(3):488–493. https://doi.org/10.1016/S0006-291X(03)00795-2

    Article  CAS  PubMed  Google Scholar 

  52. Umana P, Jean-Mairet J, Bailey JE (1999) Tetracycline-regulated overexpression of glycosyltransferases in Chinese hamster ovary cells. Biotechnol Bioeng 65(5):542–549

    Article  CAS  Google Scholar 

  53. De Vries T, Knegtel RMA, Holmes EH, Macher BA (2001) Fucosyltransferases: structure/function studies. Glycobiology 11(10):119–128

    Article  Google Scholar 

  54. Kightlinger W, Duncker KE, Ramesh A, Thames AH, Natarajan A, Stark JC, Yang A, Lin L, Mrksich M, DeLisa MP, Jewett MC (2019) A cell-free biosynthesis platform for modular construction of protein glycosylation pathways. Nat Commun 10(1):5404. https://doi.org/10.1038/s41467-019-12024-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dondapati SK, Stech M, Zemella A, Kubick S (2020) Cell-free protein synthesis: a promising option for future drug development. BioDrugs. https://doi.org/10.1007/s40259-020-00417-y

  56. Blixt O, Vasiliu D, Allin K, Jacobsen N, Warnock D, Razi N, Paulson JC, Bernatchez S, Gilbert M, Wakarchuk W (2005) Chemoenzymatic synthesis of 2-azidoethyl-ganglio-oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Carbohydr Res 340(12):1963–1972. https://doi.org/10.1016/j.carres.2005.06.008

    Article  CAS  PubMed  Google Scholar 

  57. Zhou D, Utkina N, Li D, Dong C, Druzhinina T, Veselovsky V, Liu B (2013) Biochemical characterization of a new β-1,3-galactosyltransferase WbuP from Escherichia coli O114 that catalyzes the second step in O-antigen repeating-unit. Carbohydr Res 381:43–50. https://doi.org/10.1016/j.carres.2013.08.021

    Article  CAS  PubMed  Google Scholar 

  58. X-w L, Xia C, Li L, Guan W-Y, Pettit N, Zhang H-C, Chen M, Wang PG (2009) Characterization and synthetic application of a novel β1,3-galactosyltransferase from Escherichia coli O55:H7. Bioorg Med Chem 17(14):4910–4915. https://doi.org/10.1016/j.bmc.2009.06.005

    Article  CAS  Google Scholar 

  59. Fischöder T, Laaf D, Dey C, Elling L (2017) Enzymatic synthesis of N-Acetyllactosamine (LacNAc) type 1 oligomers and characterization as multivalent galectin ligands. Molecules 22(8):1320

    Article  Google Scholar 

  60. Fischöder T, Cajic S, Reichl U, Rapp E, Elling L (2019) Enzymatic cascade synthesis provides novel linear human Milk oligosaccharides as reference standards for xCGE-LIF based high-throughput analysis. Biotechnol J 14(3):e1800305. https://doi.org/10.1002/biot.201800305

    Article  CAS  PubMed  Google Scholar 

  61. Fischöder T, Cajic S, Grote V, Heinzler R, Reichl U, Franzreb M, Rapp E, Elling L (2019) Enzymatic cascades for tailored 13C6 and 15N enriched human Milk oligosaccharides. Molecules 24(19):3482

    Article  Google Scholar 

  62. McArthur JB, Yu H, Chen X (2019) A bacterial β1–3-galactosyltransferase enables multigram-scale synthesis of human milk lacto-N-tetraose (LNT) and its fucosides. ACS Catal 9(12):10721–10726. https://doi.org/10.1021/acscatal.9b03990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li Y, Xue M, Sheng X, Yu H, Zeng J, Thon V, Chen Y, Muthana MM, Wang PG, Chen X (2016) Donor substrate promiscuity of bacterial β1–3-N-acetylglucosaminyltransferases and acceptor substrate flexibility of β1–4-galactosyltransferases. Bioorg Med Chem 24(8):1696–1705. https://doi.org/10.1016/j.bmc.2016.02.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Namdjou D-J, Chen H-M, Vinogradov E, Brochu D, Withers SG, Wakarchuk WW (2008) A beta-1,4-Galactosyltransferase from Helicobacter pylori is an efficient and versatile biocatalyst displaying a novel activity for thioglycoside synthesis. Chembiochem 9(10):1632–1640

    Article  CAS  Google Scholar 

  65. Yi W, Shao J, Zhu L, Li M, Singh M, Lu Y, Lin S, Li H, Ryu K, Shen J, Guo H, Yao Q, Bush CA, Wang PG (2005) Escherichia coli O86 O-antigen biosynthetic gene cluster and stepwise enzymatic synthesis of human blood group B antigen tetrasaccharide. J Am Chem Soc 127(7):2040–2041. https://doi.org/10.1021/ja045021y

    Article  CAS  PubMed  Google Scholar 

  66. Lairson LL, Watts AG, Wakarchuk WW, Withers SG (2006) Using substrate engineering to harness enzymatic promiscuity and expand biological catalysis. Nat Chem Biol 2(12):724–728. https://doi.org/10.1038/nchembio828

    Article  CAS  PubMed  Google Scholar 

  67. Rech C, Rosencrantz RR, Křenek K, Pelantová H, Bojarová P, Römer CE, Hanisch F-G, Křen V, Elling L (2011) Combinatorial one-pot synthesis of poly-N-acetyllactosamine oligosaccharides with Leloir-glycosyltransferases. Adv Synth Catal 353(13):2492–2500. https://doi.org/10.1002/adsc.201100375

    Article  CAS  Google Scholar 

  68. Fang J-L, Tsai T-W, Liang C-Y, Li J-Y, Yu C-C (2018) Enzymatic synthesis of human Milk Fucosides α1,2-Fucosyl Para-lacto-N-Hexaose and its isomeric derivatives. Adv Synth Catal 360(17):3213–3219. https://doi.org/10.1002/adsc.201800518

    Article  CAS  Google Scholar 

  69. Li Y, Yu H, Thon V, Chen Y, Muthana MM, Qu J, Hie L, Chen X (2014) Donor substrate promiscuity of the N-acetylglucosaminyltransferase activities of Pasteurella multocida heparosan synthase 2 (PmHS2) and Escherichia coli K5 KfiA. Appl Microbiol Biotechnol 98(3):1127–1134. https://doi.org/10.1007/s00253-013-4947-1

    Article  CAS  PubMed  Google Scholar 

  70. Chavaroche AAE, van den Broek LAM, Boeriu C, Eggink G (2012) Synthesis of heparosan oligosaccharides by Pasteurella multocida PmHS2 single-action transferases. Appl Microbiol Biotechnol 95(5):1199–1210. https://doi.org/10.1007/s00253-011-3813-2

    Article  CAS  PubMed  Google Scholar 

  71. Cai C, Edgar K, Liu J, Linhardt RJ (2013) Preparation and application of a ‘clickable’ acceptor for enzymatic synthesis of heparin oligosaccharides. Carbohydr Res 372(0):30–34. https://doi.org/10.1016/j.carres.2013.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yi W, Shen J, Zhou G, Li J, Wang PG (2008) Bacterial homologue of human blood group A transferase. J Am Chem Soc 130(44):14420–14421. https://doi.org/10.1021/ja805844y

    Article  CAS  PubMed  Google Scholar 

  73. Li J, Su G, Liu J (2017) Enzymatic synthesis of homogeneous chondroitin sulfate oligosaccharides. Angew Chem Int Ed 56(39):11784–11787. https://doi.org/10.1002/anie.201705638

    Article  CAS  Google Scholar 

  74. Sugiura N, Shimokata S, Minamisawa T, Hirabayashi J, Kimata K, Watanabe H (2008) Sequential synthesis of chondroitin oligosaccharides by immobilized chondroitin polymerase mutants. Glycoconj J 25(6):521–530. https://doi.org/10.1007/s10719-008-9105-0

    Article  CAS  PubMed  Google Scholar 

  75. Green DE, DeAngelis PL (2017) Identification of a chondroitin synthase from an unexpected source, the green sulfur bacterium chlorobium phaeobacteroides. Glycobiology 27(5):469–476. https://doi.org/10.1093/glycob/cwx008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chavaroche AAE, Springer J, Kooy F, Boeriu C, Eggink G (2010) In vitro synthesis of heparosan using recombinant Pasteurella multocida heparosan synthase PmHS2. Appl Microbiol Biotechnol 85(6):1881–1891. https://doi.org/10.1007/s00253-009-2214-2

    Article  CAS  PubMed  Google Scholar 

  77. Rexer TFT, Schildbach A, Klapproth J, Schierhorn A, Mahour R, Pietzsch M, Rapp E, Reichl U (2018) One pot synthesis of GDP-mannose by a multi-enzyme cascade for enzymatic assembly of lipid-linked oligosaccharides. Biotechnol Bioeng 115(1):192–205. https://doi.org/10.1002/bit.26454

    Article  CAS  PubMed  Google Scholar 

  78. Zhao C, Wu Y, Yu H, Shah IM, Li Y, Zeng J, Liu B, Mills DA, Chen X (2016) One-pot multienzyme (OPME) synthesis of human blood group H antigens and a human milk oligosaccharide (HMOS) with highly active Thermosynechococcus elongatus [small alpha]1-2-fucosyltransferase. Chem Commun. https://doi.org/10.1039/C5CC10646J

  79. Li M, Liu X-W, Shao J, Shen J, Jia Q, Yi W, Song JK, Woodward R, Chow CS, Wang PG (2008) Characterization of a novel a1,2-Fucosyltransferase of Escherichia coli O128:B12 and functional investigation of its common motif. Biochemistry 47(1):378–387

    Article  CAS  Google Scholar 

  80. Pettit N, Styslinger T, Mei Z, Han W, Zhao G, Wang PG (2010) Characterization of WbiQ: an [alpha]1,2-fucosyltransferase from Escherichia coli O127:K63(B8), and synthesis of H-type 3 blood group antigen. Biochem Biophys Res Commun 402(2):190–195

    Article  CAS  Google Scholar 

  81. Li Q, Li Z, Duan X, Yi W (2014) A tandem enzymatic approach for detecting and imaging tumor-associated Thomsen–Friedenreich antigen disaccharide. J Am Chem Soc 136(36):12536–12539. https://doi.org/10.1021/ja5054225

    Article  CAS  PubMed  Google Scholar 

  82. Yi W, Liu X, Li Y, Li J, Xia C, Zhou G, Zhang W, Zhao W, Chen X, Wang PG (2009) Remodeling bacterial polysaccharides by metabolic pathway engineering. Proc Natl Acad Sci USA 106(11):4207–4212. https://doi.org/10.1073/pnas.0812432106

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tsai T-W, Fang J-L, Liang C-Y, Wang C-J, Huang Y-T, Wang Y-J, Li J-Y, Yu C-C (2019) Exploring the synthetic application of helicobacter pylori α1,3/4-fucosyltransferase FucTIII toward the syntheses of fucosylated human milk glycans and Lewis antigens. ACS Catal. https://doi.org/10.1021/acscatal.9b03752

  84. Yu H, Yan X, Autran CA, Li Y, Etzold S, Latasiewicz J, Robertson BM, Li J, Bode L, Chen X (2017) Enzymatic and chemoenzymatic syntheses of disialyl glycans and their necrotizing enterocolitis preventing effects. J Org Chem 82(24):13152–13160. https://doi.org/10.1021/acs.joc.7b02167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ye J, Xia H, Sun N, Liu C-C, Sheng A, Chi L, Liu X-W, Gu G, Wang S-Q, Zhao J, Wang P, Xiao M, Wang F, Cao H (2019) Reprogramming the enzymatic assembly line for site-specific fucosylation. Nat Catal. https://doi.org/10.1038/s41929-019-0281-z

  86. Bai J, Wu Z, Sugiarto G, Gadi MR, Yu H, Li Y, Xiao C, Ngo A, Zhao B, Chen X, Guan W (2019) Biochemical characterization of helicobacter pylori α1–3-fucosyltransferase and its application in the synthesis of fucosylated human milk oligosaccharides. Carbohydr Res 480:1–6. https://doi.org/10.1016/j.carres.2019.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Choi YH, Kim JH, Park BS, Kim B-G (2016) Solubilization and iterative saturation mutagenesis of α1,3-fucosyltransferase from helicobacter pylori to enhance its catalytic efficiency. Biotechnol Bioeng 113(8):1666–1675. https://doi.org/10.1002/bit.25944

    Article  CAS  PubMed  Google Scholar 

  88. Zhang L, Lau K, Cheng J, Yu H, Li Y, Sugiarto G, Huang S, Ding L, Thon V, Wang PG, Chen X (2010) Helicobacter hepaticus Hh0072 gene encodes a novel α1-3-fucosyltransferase belonging to CAZy GT11 family. Glycobiology 20(9):1077–1088. https://doi.org/10.1093/glycob/cwq068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tasnima N, Yu H, Yan X, Li W, Xiao A, Chen X (2019) Facile chemoenzymatic synthesis of Lewis a (lea) antigen in gram-scale and sialyl Lewis a (sLea) antigens containing diverse sialic acid forms. Carbohydr Res 472:115–121. https://doi.org/10.1016/j.carres.2018.12.004

    Article  CAS  PubMed  Google Scholar 

  90. Gilbert M, Brisson J-R, Karwaski M-F, Michniewicz J, Cunningham A-M, Wu Y, Young NM, Wakarchuk WW (2000) Biosynthesis of ganglioside mimics in campylobacter jejuni OH4384: identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-MHz 1H and 13C NMR analysis. J Biol Chem 275(6):3896–3906. https://doi.org/10.1074/jbc.275.6.3896

    Article  CAS  PubMed  Google Scholar 

  91. Morley TJ, Withers SG (2010) Chemoenzymatic synthesis and enzymatic analysis of 8-modified Cytidine monophosphate-Sialic acid and Sialyl lactose derivatives. J Am Chem Soc 132(27):9430–9437. https://doi.org/10.1021/ja102644a

    Article  CAS  PubMed  Google Scholar 

  92. Guo Y, Jers C, Meyer AS, Li H, Kirpekar F, Mikkelsen JD (2015) Modulating the regioselectivity of a pasteurella multocida sialyltransferase for biocatalytic production of 3′- and 6′-sialyllactose. Enzym Microb Technol 78:54–62. https://doi.org/10.1016/j.enzmictec.2015.06.012

    Article  CAS  Google Scholar 

  93. Malekan H, Fung G, Thon V, Khedri Z, Yu H, Qu J, Li Y, Ding L, Lam KS, Chen X (2013) One-pot multi-enzyme (OPME) chemoenzymatic synthesis of sialyl-Tn-MUC1 and sialyl-T-MUC1 glycopeptides containing natural or non-natural sialic acid. Bioorg Med Chem 21(16):4778–4785. https://doi.org/10.1016/j.bmc.2013.02.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tsukamoto H, Takakura Y, Yamamoto T (2007) Purification, cloning, and expression of an α/β-galactoside α-2,3-sialyltransferase from a luminous marine bacterium, photobacterium phosphoreum. J Biol Chem 282(41):29794–29802. https://doi.org/10.1074/jbc.M701907200

    Article  CAS  PubMed  Google Scholar 

  95. Schmölzer K, Eibinger M, Nidetzky B (2017) Active-site His85 of Pasteurella dagmatis sialyltransferase facilitates productive sialyl transfer and so prevents futile hydrolysis of CMP-Neu5Ac. ChemBioChem. https://doi.org/10.1002/cbic.201700113

  96. Chokhawala HA, Huang S, Lau K, Yu H, Cheng J, Thon V, Hurtado-Ziola N, Guerrero JA, Varki A, Chen X (2008) Combinatorial chemoenzymatic synthesis and high-throughput screening of sialosides. ACS Chem Biol 3(9):567–576

    Article  CAS  Google Scholar 

  97. Yamamoto T, Hamada Y, Ichikawa M, Kajiwara H, Mine T, Tsukamoto H, Takakura Y (2007) A {beta}-galactoside {alpha}2,6-sialyltransferase produced by a marine bacterium, photobacterium leiognathi JT-SHIZ-145, is active at pH 8. Glycobiology 17(11):1167–1174. https://doi.org/10.1093/glycob/cwm086

    Article  CAS  PubMed  Google Scholar 

  98. Ding L, Yu H, Lau K, Li Y, Muthana S, Wang J, Chen X (2011) Efficient chemoenzymatic synthesis of sialyl Tn-antigens and derivatives. Chem Commun 47(30):8691–8693. https://doi.org/10.1039/C1CC12732B

    Article  CAS  Google Scholar 

  99. Willis LM, Gilbert M, Karwaski MF, Blanchard MC, Wakarchuk WW (2008) Characterization of the alpha-2,8-polysialyltransferase from Neisseria meningitidis with synthetic acceptors, and the development of a self-priming polysialyltransferase fusion enzyme. Glycobiology 18(2):177–186. https://doi.org/10.1093/glycob/cwm126

    Article  CAS  PubMed  Google Scholar 

  100. Lindhout T, Iqbal U, Willis LM, Reid AN, Li J, Liu X, Moreno M, Wakarchuk WW (2011) Site-specific enzymatic polysialylation of therapeutic proteins using bacterial enzymes. Proc Natl Acad Sci 108(18):7397–7402. https://doi.org/10.1073/pnas.1019266108

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ban L, Pettit N, Li L, Stuparu AD, Cai L, Chen W, Guan W, Han W, Wang PG, Mrksich M (2012) Discovery of glycosyltransferases using carbohydrate arrays and mass spectrometry. Nat Chem Biol 8(9):769–773. https://doi.org/10.1038/nchembio.1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kightlinger W, Lin L, Rosztoczy M, Li W, DeLisa MP, Mrksich M, Jewett MC (2018) Design of glycosylation sites by rapid synthesis and analysis of glycosyltransferases. Nat Chem Biol 14(6):627–635. https://doi.org/10.1038/s41589-018-0051-2

    Article  CAS  PubMed  Google Scholar 

  103. Serna S, Hokke CH, Weissenborn M, Flitsch S, Martin-Lomas M, Reichardt NC (2013) Profiling glycosyltransferase activities by tritium imaging of glycan microarrays. Chembiochem 14(7):862–869. https://doi.org/10.1002/cbic.201300051

    Article  CAS  PubMed  Google Scholar 

  104. Lundborg M, Modhukur V, Widmalm G (2010) Glycosyltransferase functions of E. coli O-antigens. Glycobiology 20(3):366–368. https://doi.org/10.1093/glycob/cwp185

    Article  CAS  PubMed  Google Scholar 

  105. Rojas-Macias MA, Ståhle J, Lütteke T, Widmalm G (2015) Development of the ECODAB into a relational database for Escherichia coli O-antigens and other bacterial polysaccharides. Glycobiology 25(3):341–347. https://doi.org/10.1093/glycob/cwu116

    Article  CAS  PubMed  Google Scholar 

  106. Elling L (1997) Glycobiotechnology: enzymes for the synthesis of nucleotide sugars. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 58. Springer, Berlin, pp 89–144

    Google Scholar 

  107. Bülter T, Elling L (1999) Enzymatic synthesis of nucleotide sugars. Glycoconj J 16(2):147–159

    Article  Google Scholar 

  108. Engels L, Elling L (2016) Enzymatic and chemoenzymatic synthesis of nucleotide sugars: novel enzymes, novel substrates, novel products, and novel routes. In: Grunwald P (ed) Handbook of carbohydrate-modifying biocatalysts. Stanford Publishing, Stanford, pp 297–320. https://doi.org/10.4032/9789814303484

    Chapter  Google Scholar 

  109. Freeze HH, Hart GW, Schnaar RL (2017) Chapter 5: Glycosylation precursors. Essentials of glycobiology.3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  110. Varki A (2017) New and updated glycoscience-related resources at NCBI. Glycobiology 27(11):993–993. https://doi.org/10.1093/glycob/cwx077

    Article  CAS  PubMed  Google Scholar 

  111. Rupprath C, Kopp M, Hirtz D, Müller R, Elling L (2007) An enzyme module system for in situ regeneration of dTDP-activated deoxysugars. Adv Synth Catal 349(8–9):1489–1496

    Article  CAS  Google Scholar 

  112. Bar-Peled M, O'Neill MA (2011) Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. Annu Rev Plant Biol 62:127–155. https://doi.org/10.1146/annurev-arplant-042110-103918

    Article  CAS  PubMed  Google Scholar 

  113. Cai L (2012) Recent Progress in enzymatic synthesis of sugar nucleotides. J Carbohydr Chem 31(7):535–552. https://doi.org/10.1080/07328303.2012.687059

    Article  CAS  Google Scholar 

  114. Koizumi S, Endo T, Tabata K, Ozaki A (1998) Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Nat Biotechnol 16(9):847–850. https://doi.org/10.1038/nbt0998-847

    Article  CAS  PubMed  Google Scholar 

  115. Tabata K, Koizumi S, Endo T, Ozaki A (2000) Production of UDP-N-acetylglucosamine by coupling metabolically engineered bacteria. Biotechnol Lett 22(6):479–483

    Article  CAS  Google Scholar 

  116. Koizumi S, Endo T, Tabata K, Nagano H, Ohnishi J, Ozaki A (2000) Large-scale production of GDP-fucose and Lewis X by bacterial coupling. J Ind Microbiol Biotech 25(4):213–217. https://doi.org/10.1038/sj.jim.7000055

    Article  CAS  Google Scholar 

  117. Ishikawa M, Koizumi S (2010) Microbial production of N-acetylneuraminic acid by genetically engineered Escherichia coli. Carbohydr Res 345(18):2605–2609

    Article  CAS  Google Scholar 

  118. Schmolzer K, Gutmann A, Diricks M, Desmet T, Nidetzky B (2016) Sucrose synthase: a unique glycosyltransferase for biocatalytic glycosylation process development. Biotechnol Adv 34(2):88–111. https://doi.org/10.1016/j.biotechadv.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  119. Yu H, Chen X (2016) One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates. Org Biomol Chem 14(10):2809–2818. https://doi.org/10.1039/C6OB00058D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Eixelsberger T, Nidetzky B (2014) Enzymatic redox cascade for one-pot synthesis of uridine 5′-diphosphate xylose from uridine 5′-diphosphate glucose. Adv Synth Catal 356(17):3575–3584. https://doi.org/10.1002/adsc.201400766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gilormini P-A, Lion C, Noel M, Krzewinski-Recchi M-A, Harduin-Lepers A, Guérardel Y, Biot C (2016) Improved workflow for the efficient preparation of ready to use CMP-activated sialic acids. Glycobiology 26(11):1151–1156. https://doi.org/10.1093/glycob/cww084

    Article  CAS  PubMed  Google Scholar 

  122. Ye J, X-w L, Peng P, Yi W, Chen X, Wang F, Cao H (2016) Diversity-oriented enzymatic modular assembly of ABO Histo-blood group antigens. ACS Catal 6(12):8140–8144. https://doi.org/10.1021/acscatal.6b02755

    Article  CAS  Google Scholar 

  123. Yu H, Li Y, Zeng J, Thon V, Nguyen DM, Ly T, Kuang HY, Ngo A, Chen X (2016) Sequential one-pot multienzyme chemoenzymatic synthesis of glycosphingolipid glycans. J Org Chem. https://doi.org/10.1021/acs.joc.6b01905

  124. Elling L, Grothus M, Kula M-R (1993) Investigation of sucrose synthase from rice for the synthesis of various nucleotide sugars and saccharides. Glycobiology 3:349–355

    Article  CAS  Google Scholar 

  125. Elling L, Güldenberg B, Grothus M, Zervosen A, Peus M, Helfer A, Stein A, Adrian H, Kula M-R (1995) Isolation of sucrose synthase from rice (Oryza sativa) grains in pilot scale for application in carbohydrate synthesis. Biotechnol Appl Biochem 21(1):29–37

    CAS  Google Scholar 

  126. Sauerzapfe B, Engels L, Elling L (2008) Broadening the biocatalytic properties of recombinant sucrose synthase 1 from potato (Solanum tuberosum L.) by expression in Escherichia coli and Saccharomyces cerevisiae. Enzym Microb Technol 43(3):289–296. https://doi.org/10.1016/j.enzmictec.2008.04.001

    Article  CAS  Google Scholar 

  127. Römer U, Schrader H, Gunther N, Nettelstroth N, Frommer WB, Elling L (2004) Expression, purification and characterization of recombinant sucrose synthase 1 from Solanum tuberosum L. for carbohydrate engineering. J Biotechnol 107(2):135–149. https://doi.org/10.1016/j.jbiotec.2003.10.017

    Article  CAS  PubMed  Google Scholar 

  128. Zervosen A, Elling L (1996) A novel three-enzyme reaction cycle for the synthesis of N- acetyllactosamine with in situ regeneration of uridine 5′- diphosphate glucose and uridine 5′-diphosphate galactose. J Am Chem Soc 118(8):1836–1840

    Article  CAS  Google Scholar 

  129. Engels L, Henze M, Hummel W, Elling L (2015) Enzyme module systems for the synthesis of uridine 5′-diphospho-α-D-glucuronic acid and non-sulfated human natural killer cell-1 (HNK-1) epitope. Adv Synth Catal 357(8):1751–1762. https://doi.org/10.1002/adsc.201500180

    Article  CAS  Google Scholar 

  130. Zervosen A, Stein A, Adrian H, Elling L (1996) Combined enzymatic synthesis of nucleotide (deoxy) sugars from sucrose and nucleoside monophosphates. Tetrahedron 52(7):2395–2404

    Article  CAS  Google Scholar 

  131. Zervosen A, Römer U, Elling L (1998) Application of recombinant sucrose synthase large scale synthesis of ADP-glucose. J Mol Catal B Enzym 5(1–4):25–28. https://doi.org/10.1016/s1381-1177(98)00040-x

    Article  CAS  Google Scholar 

  132. Zervosen A, Elling L, Kula MR (1994) Continuous enzymatic synthesis of 2′-deoxythymidine-5′(alpha-D-glucopyranosyl)diphosphate. Angew Chem Int Ed 33(5):571–572. https://doi.org/10.1002/anie.199405711

    Article  Google Scholar 

  133. Elling L, Rupprath C, Günther N, Römer U, Verseck S, Weingarten P, Dräger G, Kirschning A, Piepersberg W (2005) An enzyme module system for the synthesis of dTDP-activated Deoxysugars from dTMP and sucrose. Chembiochem 6:1423–1430

    Article  CAS  Google Scholar 

  134. Diricks M, De Bruyn F, Van Daele P, Walmagh M, Desmet T (2015) Identification of sucrose synthase in nonphotosynthetic bacteria and characterization of the recombinant enzymes. Appl Microbiol Biotechnol 99(20):8465–8474. https://doi.org/10.1007/s00253-015-6548-7

    Article  CAS  PubMed  Google Scholar 

  135. Lemmerer M, Schmolzer K, Gutmann A, Nidetzky B (2016) Downstream processing of nucleoside-Diphospho-sugars from sucrose synthase reaction mixtures at decreased solvent consumption. Adv Synth Catal 358(19):3113–3122. https://doi.org/10.1002/adsc.201600540

    Article  CAS  Google Scholar 

  136. Kulmer ST, Gutmann A, Lemmerer M, Nidetzky B (2017) Biocatalytic cascade of polyphosphate kinase and sucrose synthase for synthesis of nucleotide-activated derivatives of glucose. Adv Synth Catal 359(2):292–301. https://doi.org/10.1002/adsc.201601078

    Article  CAS  Google Scholar 

  137. Wahl C, Hirtz D, Elling L (2016) Multiplexed capillary electrophoresis as analytical tool for fast optimization of multi-enzyme Cascade reactions – synthesis of nucleotide sugars. Biotechnol J 11(10):1298–1308. https://doi.org/10.1002/biot.201600265

    Article  CAS  PubMed  Google Scholar 

  138. Eisele A, Zaun H, Kuballa J, Elling L (2018) In vitro one-pot enzymatic synthesis of hyaluronic acid from sucrose and N-acetylglucosamine: optimization of the enzyme module system and nucleotide sugar regeneration. ChemCatChem 10(14):2969–2981. https://doi.org/10.1002/cctc.201800370

    Article  CAS  Google Scholar 

  139. Gottschalk J, Zaun H, Eisele A, Kuballa J, Elling L (2019) Key factors for a one-pot enzyme cascade synthesis of high molecular weight hyaluronic acid. Int J Mol Sci 20(22):5664

    Article  CAS  Google Scholar 

  140. Wahl C, Spiertz M, Elling L (2017) Characterization of a new UDP-sugar pyrophosphorylase from Hordeum vulgare (barley). J Biotechnol 258(Supplement C):51–55. https://doi.org/10.1016/j.jbiotec.2017.03.025

    Article  CAS  PubMed  Google Scholar 

  141. Fischöder T, Wahl C, Zerhusen C, Elling L (2019) Repetitive batch mode facilitates enzymatic synthesis of the nucleotide sugars UDP-gal, UDP-GlcNAc, and UDP-GalNAc on a multi-gram scale. Biotechnol J 14(4). https://doi.org/10.1002/biot.201800386

  142. Nahalka J, Liu Z, Chen X, Wang PG (2003) Superbeads: immobilization in sweet chemistry. Chem Eur J 9(2):372–377

    Article  CAS  Google Scholar 

  143. Heinzler R, Fischöder T, Elling L, Franzreb M (2019) Toward automated enzymatic glycan synthesis in a compartmented flow microreactor system. Adv Synth Catal 361(19):4506–4516. https://doi.org/10.1002/adsc.201900709

    Article  CAS  Google Scholar 

  144. Heinzler R, Hubner J, Fischöder T, Elling L, Franzreb M (2018) A compartmented flow microreactor system for automated optimization of bioprocesses applying immobilized enzymes. Front Bioeng Biotechnol 6(189):189. https://doi.org/10.3389/fbioe.2018.00189

    Article  PubMed  PubMed Central  Google Scholar 

  145. Orrego AH, Trobo-Maseda L, Rocha-Martin J, Guisan JM (2017) Immobilization-stabilization of a complex multimeric sucrose synthase from Nitrosomonas europaea. Synthesis of UDP-glucose. Enzym Microb Technol 105(Supplement C):51–58. https://doi.org/10.1016/j.enzmictec.2017.06.008

    Article  CAS  Google Scholar 

  146. Trobo-Maseda L, Orrego AH, Moreno-Pérez S, Fernández-Lorente G, Guisan JM, Rocha-Martin J (2017) Stabilization of multimeric sucrose synthase from Acidithiobacillus caldus via immobilization and post-immobilization techniques for synthesis of UDP-glucose. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-017-8649-y

  147. Zhao G, Guan W, Cai L, Wang PG (2010) Enzymatic route to preparative-scale synthesis of UDP-GlcNAc/GalNAc, their analogues and GDP-fucose. Nat Protocols 5(4):636–646

    Article  CAS  Google Scholar 

  148. Ohashi H, Wahl C, Ohashi T, Elling L, Fujiyama K (2017) Effective synthesis of guanosine 5 '-diphospho-beta-L-galactose using bacterial L-Fucokinase/Guanosine 5 '-Diphosphate-L-fucose pyrophosphorylase. Adv Synth Catal 359(23):4227–4234. https://doi.org/10.1002/adsc.201700901

    Article  CAS  Google Scholar 

  149. Gutmann A, Nidetzky B (2016) Unlocking the potential of Leloir glycosyltransferases for applied biocatalysis: efficient synthesis of uridine 5 '-diphosphate-glucose by sucrose synthase. Adv Synth Catal 358(22):3600–3609. https://doi.org/10.1002/adsc.201600754

    Article  CAS  Google Scholar 

  150. Kragl U, Klein T, Vasic-Racki D, Kittelmann M, Ghisalba O, Wandrey C (1996) Reaction engineering aspects of activated sugar production. CMP-Neu5Ac as an example. Ann N Y Acad Sci 799(1):577–583. https://doi.org/10.1111/j.1749-6632.1996.tb33260.x

    Article  CAS  PubMed  Google Scholar 

  151. Schmaltz RM, Hanson SR, Wong C-H (2011) Enzymes in the synthesis of Glycoconjugates. Chem Rev 111(7):4259–4307

    Article  CAS  Google Scholar 

  152. Wong C-H, Halcomb RL, Ichikawa Y, Kajimoto T (1995) Enzymes in organic synthesis: application to the problems of carbohydrate recognition (part 1). Angew Chem Int Ed Engl 34(4):412–432

    Article  CAS  Google Scholar 

  153. Chi-Huey Wong RLH, Ichikawa Y, Kajimoto T (1995) Enzymes in organic synthesis: application to the problems of carbohydrate recognition (part 2). Angew Chem Int Ed Engl 34(5):521–546

    Article  Google Scholar 

  154. Tsai T-I, Lee H-Y, Chang S-H, Wang C-H, Tu Y-C, Lin Y-C, Hwang D-R, Wu C-Y, Wong C-H (2013) Effective sugar nucleotide regeneration for the large-scale enzymatic synthesis of Globo H and SSEA4. J Am Chem Soc 135(39):14831–14839. https://doi.org/10.1021/ja4075584

    Article  CAS  PubMed  Google Scholar 

  155. Andexer JN, Richter M (2015) Emerging enzymes for ATP regeneration in biocatalytic processes. Chembiochem 16(3):380–386. https://doi.org/10.1002/cbic.201402550

    Article  CAS  PubMed  Google Scholar 

  156. Mordhorst S, Singh J, Mohr MKF, Hinkelmann R, Keppler M, Jessen HJ, Andexer JN (2019) Several polyphosphate kinase 2 enzymes catalyse the production of adenosine 5′-polyphosphates. Chembiochem 20(8):1019–1022. https://doi.org/10.1002/cbic.201800704

    Article  CAS  PubMed  Google Scholar 

  157. Mordhorst S, Maurer A, Popadić D, Brech J, Andexer JN (2017) A flexible polyphosphate-driven regeneration system for coenzyme A dependent catalysis. ChemCatChem 9(22):4164–4168. https://doi.org/10.1002/cctc.201700848

    Article  CAS  Google Scholar 

  158. Nocek B, Kochinyan S, Proudfoot M, Brown G, Evdokimova E, Osipiuk J, Edwards AM, Savchenko A, Joachimiak A, Yakunin AF (2008) Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria. Proc Natl Acad Sci 105(46):17730–17735. https://doi.org/10.1073/pnas.0807563105

    Article  PubMed  PubMed Central  Google Scholar 

  159. Christ JJ, Blank LM (2018) Enzymatic quantification and length determination of polyphosphate down to a chain length of two. Anal Biochem 548:82–90. https://doi.org/10.1016/j.ab.2018.02.018

    Article  CAS  PubMed  Google Scholar 

  160. Gutmann A, Lepak A, Diricks M, Desmet T, Nidetzky B (2017) Glycosyltransferase cascades for natural product glycosylation: use of plant instead of bacterial sucrose synthases improves the UDP-glucose recycling from sucrose and UDP. Biotechnol J 12(7):1600557. https://doi.org/10.1002/biot.201600557

    Article  CAS  Google Scholar 

  161. Hokke CH, Zervosen A, Elling L, Joziasse DH, van den Eijnden DH (1996) One-pot enzymatic synthesis of the gal(a1-3)gal(b1-4)GlcNAc sequence with in situ UDP-gal regeneration. Glycoconj J 13(4):687–692

    Article  CAS  Google Scholar 

  162. Gutmann A, Bungaruang L, Weber H, Leypold M, Breinbauer R, Nidetzky B (2014) Towards the synthesis of glycosylated dihydrochalcone natural products using glycosyltransferase-catalysed cascade reactions. Green Chem 16(9):4417–4425. https://doi.org/10.1039/C4GC00960F

    Article  CAS  Google Scholar 

  163. Schmölzer K, Lemmerer M, Nidetzky B (2018) Glycosyltransferase cascades made fit for chemical production: integrated biocatalytic process for the natural polyphenol C-glucoside nothofagin. Biotechnol Bioeng 115(3):545–556. https://doi.org/10.1002/bit.26491

    Article  CAS  PubMed  Google Scholar 

  164. Zhang L, Gao Y, Liu X, Guo F, Ma C, Liang J, Feng X, Li C (2019) Mining of sucrose synthases from Glycyrrhiza uralensis and their application in the construction of an efficient UDP-recycling system. J Agric Food Chem 67(42):11694–11702. https://doi.org/10.1021/acs.jafc.9b05178

    Article  CAS  PubMed  Google Scholar 

  165. Sun P, Cai R, Chen L, Li Y, Jia H, Yan M, Chen K (2020) Natural product glycosylation: biocatalytic synthesis of Quercetin-3,4′-O-diglucoside. Appl Biochem Biotechnol 190(2):464–474. https://doi.org/10.1007/s12010-019-03103-0

    Article  CAS  PubMed  Google Scholar 

  166. Pei J, Chen A, Zhao L, Cao F, Ding G, Xiao W (2017) One-pot synthesis of hyperoside by a three-enzyme cascade using a UDP-galactose regeneration system. J Agric Food Chem 65(29):6042–6048. https://doi.org/10.1021/acs.jafc.7b02320

    Article  CAS  PubMed  Google Scholar 

  167. Pei J, Chen A, Sun Q, Zhao L, Cao F, Tang F (2018) Construction of a novel UDP-rhamnose regeneration system by a two-enzyme reaction system and application in glycosylation of flavonoid. Biochem Eng J 139:33–42. https://doi.org/10.1016/j.bej.2018.08.007

    Article  CAS  Google Scholar 

  168. Fallacara A, Baldini E, Manfredini S, Vertuani S (2018) Hyaluronic acid in the third millennium. Polymers 10(7):701–701. https://doi.org/10.3390/polym10070701

    Article  CAS  PubMed Central  Google Scholar 

  169. Bishnoi M, Jain A, Hurkat P, Jain SK (2016) Chondroitin sulphate: a focus on osteoarthritis. Glycoconj J 33(5):693–705. https://doi.org/10.1007/s10719-016-9665-3

    Article  CAS  PubMed  Google Scholar 

  170. Mikami T, Kitagawa H (2017) Sulfated glycosaminoglycans: their distinct roles in stem cell biology. Glycoconj J 34(6):725–735. https://doi.org/10.1007/s10719-016-9732-9

    Article  CAS  PubMed  Google Scholar 

  171. Pomin VH (2015) Sulfated glycans in inflammation. Eur J Med Chem 92:353–369. https://doi.org/10.1016/j.ejmech.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  172. DeAngelis PL, White CL (2002) Identification and molecular cloning of a Heparosan synthase from pasteurella multocida type D. J Biol Chem 277(9):7209–7213. https://doi.org/10.1074/jbc.M112130200

    Article  CAS  PubMed  Google Scholar 

  173. Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72(6):455–482. https://doi.org/10.1111/j.1747-0285.2008.00741.x

    Article  CAS  PubMed  Google Scholar 

  174. Akintayo A, Stanley P (2019) Roles for golgi glycans in oogenesis and spermatogenesis. Front Cell Dev Biol 7(JUN):1–9. https://doi.org/10.3389/fcell.2019.00098

    Article  Google Scholar 

  175. Knopf-Marques H, Pravda M, Wolfova L, Velebny V, Schaaf P, Vrana NE, Lavalle P (2016) Hyaluronic acid and its derivatives in coating and delivery systems: applications in tissue engineering, regenerative medicine and immunomodulation. Adv Healthc Mater 5(22):2841–2855. https://doi.org/10.1002/adhm.201600316

    Article  CAS  PubMed  Google Scholar 

  176. DeAngelis PL, Padgett-McCue AJ (2000) Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F. J Biol Chem 275(31):24124–24129. https://doi.org/10.1074/jbc.M003385200

    Article  CAS  PubMed  Google Scholar 

  177. Weigel PH, DeAngelis PL (2007) Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem 282(51):36777–36781

    Article  CAS  Google Scholar 

  178. Zhang X, Lin L, Huang H, Linhardt RJ (2020) Chemoenzymatic synthesis of glycosaminoglycans. Acc Chem Res 53(2):335–346. https://doi.org/10.1021/acs.accounts.9b00420

    Article  CAS  PubMed  Google Scholar 

  179. Jing W, DeAngelis PL (2003) Analysis of the two active sites of the hyaluronan synthase and the chondroitin synthase of Pasteurella multocida. Glycobiology 13(10):661–671. https://doi.org/10.1093/glycob/cwg085

    Article  CAS  PubMed  Google Scholar 

  180. Lindahl U, Kusche-Gullberg M, Kjellén L (1998) Regulated diversity of Heparan sulfate. J Biol Chem 273(39):24979–24982. https://doi.org/10.1074/jbc.273.39.24979

    Article  CAS  PubMed  Google Scholar 

  181. Dhoot GK (2001) Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293(5535):1663–1666. https://doi.org/10.1126/science.293.5535.1663

    Article  CAS  PubMed  Google Scholar 

  182. Lamberg SI, Stoolmiller AC (1974) Glycosaminoglycans. A biochemical and clinical review. J Investig Dermatol 63(6):433–449. https://doi.org/10.1111/1523-1747.ep12680346

    Article  CAS  PubMed  Google Scholar 

  183. Silbert JE, Sugumaran G (2002) Biosynthesis of chondroitin/Dermatan sulfate. IUBMB Life (Int Union Biochem Mol Biol Life) 54(4):177–186. https://doi.org/10.1080/15216540214923

    Article  CAS  Google Scholar 

  184. Sugahara K, Kitagawa H (2002) Heparin and Heparan sulfate biosynthesis. IUBMB Life (Int Union Biochem Mol Biol Life) 54(4):163–175. https://doi.org/10.1080/15216540214928

    Article  CAS  Google Scholar 

  185. Victor XV, Nguyen TKN, Ethirajan M, Tran VM, Nguyen KV, Kuberan B (2009) Investigating the elusive mechanism of glycosaminoglycan biosynthesis. J Biol Chem 284(38):25842–25853. https://doi.org/10.1074/jbc.M109.043208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Bülow HE, Hobert O (2006) The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol 22(1):375–407. https://doi.org/10.1146/annurev.cellbio.22.010605.093433

    Article  CAS  PubMed  Google Scholar 

  187. Köwitsch A, Zhou G, Groth T (2018) Medical application of glycosaminoglycans: a review. J Tissue Eng Regen Med 12(1):e23–e41. https://doi.org/10.1002/term.2398

    Article  CAS  PubMed  Google Scholar 

  188. Morla S (2019) Glycosaminoglycans and glycosaminoglycan mimetics in cancer and inflammation. Int J Mol Sci 20(8):1963–1963. https://doi.org/10.3390/ijms20081963

    Article  CAS  PubMed Central  Google Scholar 

  189. Bedini E, Laezza A, Iadonisi A (2016) Chemical derivatization of sulfated glycosaminoglycans. Eur J Org Chem 2016(18):3018–3042. https://doi.org/10.1002/ejoc.201600108

    Article  CAS  Google Scholar 

  190. Gatto F, Volpi N, Nilsson H, Nookaew I, Maruzzo M, Roma A, Johansson ME, Stierner U, Lundstam S, Basso U, Nielsen J (2016) Glycosaminoglycan profiling in patients’ plasma and urine predicts the occurrence of metastatic clear cell renal cell carcinoma. Cell Rep 15(8):1822–1836. https://doi.org/10.1016/j.celrep.2016.04.056

    Article  CAS  PubMed  Google Scholar 

  191. Graham GJ, Handel TM, Proudfoot AEI (2019) Leukocyte adhesion: reconceptualizing chemokine presentation by glycosaminoglycans. Trends Immunol 40(6):472–481. https://doi.org/10.1016/j.it.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  192. Gschwandtner M, Strutzmann E, Teixeira MM, Anders HJ, Diedrichs-Möhring M, Gerlza T, Wildner G, Russo RC, Adage T, Kungl AJ (2017) Glycosaminoglycans are important mediators of neutrophilic inflammation in vivo. Cytokine 91:65–73. https://doi.org/10.1016/j.cyto.2016.12.008

    Article  CAS  PubMed  Google Scholar 

  193. Honarpardaz A, Irani S, Pezeshki-Modaress M, Zandi M, Sadeghi A (2019) Enhanced chondrogenic differentiation of bone marrow mesenchymal stem cells on gelatin/glycosaminoglycan electrospun nanofibers with different amount of glycosaminoglycan. J Biomed Mater Res A 107(1):38–48. https://doi.org/10.1002/jbm.a.36501

    Article  CAS  PubMed  Google Scholar 

  194. Mhanna R, Becher J, Schnabelrauch M, Reis RL, Pashkuleva I (2017) Sulfated alginate as a mimic of sulfated glycosaminoglycans: binding of growth factors and effect on stem cell behavior. Adv Biosyst 1(7):1700043–1700043. https://doi.org/10.1002/adbi.201700043

    Article  CAS  Google Scholar 

  195. Park PW (2016) Glycosaminoglycans and infection. Front Biosci 21(6):4455–4455. https://doi.org/10.2741/4455

    Article  Google Scholar 

  196. Sobczak AIS, Pitt SJ, Stewart AJ (2018) Glycosaminoglycan neutralization in coagulation control. Arterioscler Thromb Vasc Biol 38(6):1258–1270. https://doi.org/10.1161/ATVBAHA.118.311102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Cooper C, Rannou F, Richette P, Bruyère O, Al-Daghri N, Altman RD, Brandi ML, Collaud Basset S, Herrero-Beaumont G, Migliore A, Pavelka K, Uebelhart D, Reginster JY (2017) Use of intraarticular hyaluronic acid in the management of knee osteoarthritis in clinical practice. Arthritis Care Res 69(9):1287–1296. https://doi.org/10.1002/acr.23204

    Article  Google Scholar 

  198. Fallacara A, Vertuani S, Panozzo G, Pecorelli A, Valacchi G, Manfredini S (2017) Novel artificial tears containing cross-linked hyaluronic acid: an in vitro re-epithelialization study. Molecules 22(12):1–13. https://doi.org/10.3390/molecules22122104

    Article  CAS  Google Scholar 

  199. Kawada C, Yoshida T, Yoshida H, Sakamoto W, Odanaka W, Sato T, Yamasaki T, Kanemitsu T, Masuda Y, Urushibata O (2015) Ingestion of hyaluronans (molecular weights 800 k and 300 k) improves dry skin conditions: a randomized, double blind, controlled study. J Clin Biochem Nutr 56(1):66–73. https://doi.org/10.3164/jcbn.14-81

    Article  CAS  PubMed  Google Scholar 

  200. Kawada C, Yoshida T, Yoshida H, Matsuoka R, Sakamoto W, Odanaka W, Sato T, Yamasaki T, Kanemitsu T, Masuda Y, Urushibata O (2014) Ingested hyaluronan moisturizes dry skin. Nutr J 13(1):70–70. https://doi.org/10.1186/1475-2891-13-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Cyphert JM, Trempus CS, Garantziotis S (2015) Size matters: molecular weight specificity of Hyaluronan effects in cell biology. Int J Cell Biol 2015:1–8. https://doi.org/10.1155/2015/563818

    Article  CAS  Google Scholar 

  202. Simental-Mendía M, Sánchez-García A, Vilchez-Cavazos F, Acosta-Olivo CA, Peña-Martínez VM, Simental-Mendía LE (2018) Effect of glucosamine and chondroitin sulfate in symptomatic knee osteoarthritis: a systematic review and meta-analysis of randomized placebo-controlled trials. Rheumatol Int 38 (8):1413–1428. doi:https://doi.org/10.1007/s00296-018-4077-2

  203. Jin J, Tilve S, Huang Z, Zhou L, Geller H, Yu P (2018) Effect of chondroitin sulfate proteoglycans on neuronal cell adhesion, spreading and neurite growth in culture. Neural Regen Res 13(2):289–297. https://doi.org/10.4103/1673-5374.226398

    Article  PubMed  PubMed Central  Google Scholar 

  204. Shida M, Mikami T, Tamura J-I, Kitagawa H (2017) A characteristic chondroitin sulfate trisaccharide unit with a sulfated fucose branch exhibits neurite outgrowth-promoting activity: novel biological roles of fucosylated chondroitin sulfates isolated from the sea cucumber Apostichopus japonicus. Biochem Biophys Res Commun 487(3):678–683. https://doi.org/10.1016/j.bbrc.2017.04.114

    Article  CAS  PubMed  Google Scholar 

  205. Kamermans A, Planting KE, Jalink K, van Horssen J, de Vries HE (2019) Reactive astrocytes in multiple sclerosis impair neuronal outgrowth through TRPM7-mediated chondroitin sulfate proteoglycan production. Glia 67(1):68–77. https://doi.org/10.1002/glia.23526

    Article  PubMed  Google Scholar 

  206. Wisowski G, Koźma EM, Bielecki T, Pudełko A, Olczyk K (2017) Dermatan sulfate is a player in the transglutaminase 2 interaction network. PLoS One 12(2):e0172263. https://doi.org/10.1371/journal.pone.0172263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Mizumoto S, Kosho T, Yamada S, Sugahara K (2017) Pathophysiological significance of dermatan sulfate proteoglycans revealed by human genetic disorders. Pharmaceuticals 10(4):34–34. https://doi.org/10.3390/ph10020034

    Article  CAS  PubMed Central  Google Scholar 

  208. Biran R, Pond D (2017) Heparin coatings for improving blood compatibility of medical devices. Adv Drug Deliv Rev 112:12–23. https://doi.org/10.1016/j.addr.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  209. Linhardt RJ (2016) Heparin and anticoagulation. Front Biosci 21(7):4462–4462. https://doi.org/10.2741/4462

    Article  Google Scholar 

  210. Tykesson E, Maccarana M, Thorsson H, Liu J, Malmström A, Ellervik U, Westergren-Thorsson G (2019) Recombinant dermatan sulfate is a potent activator of heparin cofactor II-dependent inhibition of thrombin. Glycobiology 29(6):446–451. https://doi.org/10.1093/glycob/cwz019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Gao W, Xu Y, Liu J, Ho M (2016) Epitope mapping by a Wnt-blocking antibody: evidence of the Wnt binding domain in heparan sulfate. Sci Rep 6(1):26245–26245. https://doi.org/10.1038/srep26245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Yin Y, Wang A, Feng L, Wang Y, Zhang H, Zhang I, Bany BM, Ma L (2018) Heparan sulfate proteoglycan Sulfation regulates uterine differentiation and signaling during embryo implantation. Endocrinology 159(6):2459–2472. https://doi.org/10.1210/en.2018-00105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Pirard D, Vereecken P, Mélot C, Heenen M (2005) Three percent diclofenac in 2.5% hyaluronan gel in the treatment of actinic keratoses: a meta-analysis of the recent studies. Arch Dermatol Res 297(5):185–189. https://doi.org/10.1007/s00403-005-0601-9

    Article  CAS  PubMed  Google Scholar 

  214. Aya KL, Stern R (2014) Hyaluronan in wound healing: rediscovering a major player. Wound Repair Regen 22(5):579–593. https://doi.org/10.1111/wrr.12214

    Article  PubMed  Google Scholar 

  215. Tagliagambe M, Elstrom TA, Ward DB (2017) Hyaluronic acid sodium salt 0.2% gel in the treatment of a recalcitrant distal leg ulcer: a case report. J Clin Aesthetic Dermatol 10(11):49–51

    Google Scholar 

  216. Liesegang TJ (1990) Viscoelastic substances in ophthalmology. Surv Ophthalmol 34(4):268–293. https://doi.org/10.1016/0039-6257(90)90027-S

    Article  CAS  PubMed  Google Scholar 

  217. Bowman S, Awad ME, Hamrick MW, Hunter M, Fulzele S (2018) Recent advances in hyaluronic acid based therapy for osteoarthritis. Clin Transl Med 7(1). https://doi.org/10.1186/s40169-017-0180-3

  218. Sun SF, Hsu CW, Lin HS, Liou IH, Chen YH, Hung CL (2017) Comparison of single intra-articular injection of novel Hyaluronan (HYA-JOINT plus) with synvisc-one for knee osteoarthritis: a randomized, controlled, double-blind trial of efficacy and safety. J Bone Joint Surg (Am Vol) 99(6):462–471. https://doi.org/10.2106/JBJS.16.00469

    Article  Google Scholar 

  219. Singh JA, Noorbaloochi S, MacDonald R, Maxwell LJ (2015) Singh JA (ed) Chondroitin for osteoarthritis, vol 176. Wiley, Chichester, pp 139–148. https://doi.org/10.1002/14651858.CD005614.pub2

    Chapter  Google Scholar 

  220. Volpi N (2002) Oral bioavailability of chondroitin sulfate (Condrosulf®) and its constituents in healthy male volunteers. Osteoarthr Cartil 10(10):768–777. https://doi.org/10.1053/joca.2002.0824

    Article  CAS  Google Scholar 

  221. Saltissi D, Morgan C, Westhuyzen J, Healy H (1999) Comparison of low-molecular-weight heparin (enoxaparin sodium) and standard unfractionated heparin for haemodialysis anticoagulation. Nephrol Dial Transplant 14(11):2698–2703. https://doi.org/10.1093/ndt/14.11.2698

    Article  CAS  PubMed  Google Scholar 

  222. Vitale C, Berutti S, Bagnis C, Soragna G, Gabella P, Fruttero C, Marangella M (2013) Dermatan sulfate: an alternative to unfractionated heparin for anticoagulation in hemodialysis patients. J Nephrol 26(1):158–163. https://doi.org/10.5301/jn.5000105

    Article  CAS  PubMed  Google Scholar 

  223. Hayashi T, Takatori H, Horii R, Nio K, Terashima T, Iida N, Kitahara M, Shimakami T, Arai K, Kitamura K, Kawaguchi K, Yamashita T, Sakai Y, Yamashita T, Mizukoshi E, Honda M, Toyama T, Okumura K, Kozaka K, Kaneko S (2019) Danaparoid sodium-based anticoagulation therapy for portal vein thrombosis in cirrhosis patients. BMC Gastroenterol 19(1):217–217. https://doi.org/10.1186/s12876-019-1140-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Rusnati M, Lembo D (2016) Heparan sulfate proteoglycans: a multifaceted target for novel approaches in antiviral drug discovery. J Bioeng Biomed Sci 6(2):6–8. https://doi.org/10.4172/2155-9538.1000177

    Article  CAS  Google Scholar 

  225. Modhiran N, Gandhi NS, Wimmer N, Cheung S, Stacey K, Young PR, Ferro V, Watterson D (2019) Dual targeting of dengue virus virions and NS1 protein with the heparan sulfate mimic PG545. Antivir Res 168(April):121–127. https://doi.org/10.1016/j.antiviral.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  226. Barritault D, Gilbert-Sirieix M, Rice KL, Siñeriz F, Papy-Garcia D, Baudouin C, Desgranges P, Zakine G, Saffar J-L, van Neck J (2017) RGTA® or ReGeneraTing agents mimic heparan sulfate in regenerative medicine: from concept to curing patients. Glycoconj J 34(3):325–338. https://doi.org/10.1007/s10719-016-9744-5

    Article  CAS  PubMed  Google Scholar 

  227. Ayerst BI, Merry CLR, Day AJ (2017) The good the bad and the ugly of Glycosaminoglycans in tissue engineering applications. Pharmaceuticals 10(4):54–54. https://doi.org/10.3390/ph10020054

    Article  CAS  PubMed Central  Google Scholar 

  228. Celikkin N, Rinoldi C, Costantini M, Trombetta M, Rainer A, Święszkowski W (2017) Naturally derived proteins and glycosaminoglycan scaffolds for tissue engineering applications. Mater Sci Eng C 78:1277–1299. https://doi.org/10.1016/j.msec.2017.04.016

    Article  CAS  Google Scholar 

  229. Kim M, Erickson IE, Choudhury M, Pleshko N, Mauck RL (2012) Transient exposure to TGF-β3 improves the functional chondrogenesis of MSC-laden hyaluronic acid hydrogels. J Mech Behav Biomed Mater 11:92–101. https://doi.org/10.1016/j.jmbbm.2012.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Bhakta G, Rai B, Lim ZXH, Hui JH, Stein GS, van Wijnen AJ, Nurcombe V, Prestwich GD, Cool SM (2012) Hyaluronic acid-based hydrogels functionalized with heparin that support controlled release of bioactive BMP-2. Biomaterials 33(26):6113–6122. https://doi.org/10.1016/j.biomaterials.2012.05.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Cai Z, Gu Y, Cheng J, Li J, Xu Z, Xing Y, Wang C, Wang Z (2019) Decellularization, cross-linking and heparin immobilization of porcine carotid arteries for tissue engineering vascular grafts. Cell Tissue Bank 20(4):569–578. https://doi.org/10.1007/s10561-019-09792-5

    Article  CAS  PubMed  Google Scholar 

  232. Silva JM, Georgi N, Costa R, Sher P, Reis RL, van Blitterswijk CA, Karperien M, Mano JF (2013) Nanostructured 3D constructs based on chitosan and chondroitin Sulphate multilayers for cartilage tissue engineering. PLoS One 8(2). https://doi.org/10.1371/journal.pone.0055451

  233. Grand View R (2020) Hyaluronic acid market size worth $16.6 billion by 2027. CAGR: 8.1%

    Google Scholar 

  234. iHealthcareAnaylyst (2020) Global heparin anticoagulant market $14.6 billion by 2027

    Google Scholar 

  235. Grand View R (2019) Chondroitin sulfate market size, share & trends analysis report by source (synthetic, bovine, swine, poultry, shark), by application (Nutraceuticals, pharmaceuticals, animal feed, personal care), and segment forecasts, 2019–2025

    Google Scholar 

  236. Badri A, Williams A, Linhardt RJ, Koffas MAG (2018) The road to animal-free glycosaminoglycan production: current efforts and bottlenecks. Curr Opin Biotechnol 53:85–92. https://doi.org/10.1016/j.copbio.2017.12.018

    Article  CAS  PubMed  Google Scholar 

  237. Sze JH, Brownlie JC, Love CA (2016) Biotechnological production of hyaluronic acid: a mini review. 3 Biotech 6(1):1–9. https://doi.org/10.1007/s13205-016-0379-9

    Article  Google Scholar 

  238. Guerrini M, Beccati D, Shriver Z, Naggi A, Viswanathan K, Bisio A, Capila I, Lansing JC, Guglieri S, Fraser B, Al-Hakim A, Gunay NS, Zhang Z, Robinson L, Buhse L, Nasr M, Woodcock J, Langer R, Venkataraman G, Linhardt RJ, Casu B, Torri G, Sasisekharan R (2008) Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol 26(6):669–675. https://doi.org/10.1038/nbt1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Szajek AY, Chess E, Johansen K, Gratzl G, Gray E, Keire D, Linhardt RJ, Liu J, Morris T, Mulloy B, Nasr M, Shriver Z, Torralba P, Viskov C, Williams R, Woodcock J, Workman W, Al-Hakim A (2016) The US regulatory and pharmacopeia response to the global heparin contamination crisis. Nat Biotechnol 34(6):625–630. https://doi.org/10.1038/nbt.3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Datta P, Linhardt RJ, Sharfstein ST (2019) Industrial production of glycosaminoglycans. Encycl microbiol:681–690. https://doi.org/10.1016/B978-0-12-809633-8.12224-1

  241. Zhang J, Ding X, Yang L, Kong Z (2006) A serum-free medium for colony growth and hyaluronic acid production by Streptococcus zooepidemicus NJUST01. Appl Microbiol Biotechnol 72(1):168–172. https://doi.org/10.1007/s00253-005-0253-x

    Article  CAS  PubMed  Google Scholar 

  242. Xiong J, Bhaskar U, Li G, Fu L, Li L, Zhang F, Dordick JS, Linhardt RJ (2013) Immobilized enzymes to convert N-sulfo, N-acetyl heparosan to a critical intermediate in the production of bioengineered heparin. J Biotechnol 167(3):241–247. https://doi.org/10.1016/j.jbiotec.2013.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Chen X, Chen R, Yu X, Tang D, Yao W, Gao X (2017) Metabolic engineering of Bacillus subtilis for biosynthesis of heparosan using heparosan synthase from Pasteurella multocida, PmHS1. Bioprocess Biosyst Eng 40(5):675–681. https://doi.org/10.1007/s00449-016-1732-4

    Article  CAS  PubMed  Google Scholar 

  244. He W, Fu L, Li G, Andrew Jones J, Linhardt RJ, Koffas M (2015) Production of chondroitin in metabolically engineered E. coli. Metab Eng 27:92–100. https://doi.org/10.1016/j.ymben.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  245. Jin P, Zhang L, Yuan P, Kang Z, Du G, Chen J (2016) Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis. Carbohydr Polym 140:424–432. https://doi.org/10.1016/j.carbpol.2015.12.065

    Article  CAS  PubMed  Google Scholar 

  246. Zhou Z, Li Q, Huang H, Wang H, Wang Y, Du G, Chen J, Kang Z (2018) A microbial-enzymatic strategy for producing chondroitin sulfate glycosaminoglycans. Biotechnol Bioeng 115(6):1561–1570. https://doi.org/10.1002/bit.26577

    Article  CAS  PubMed  Google Scholar 

  247. DeAngelis PL (2012) Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow. Appl Microbiol Biotechnol 94(2):295–305. https://doi.org/10.1007/s00253-011-3801-6

    Article  CAS  PubMed  Google Scholar 

  248. DeAngelis PL, Jing W, Drake RR, Achyuthan AM (1998) Identification and molecular cloning of a unique hyaluronan synthase from Pasteurella multocida. J Biol Chem 273(14):8454–8458. https://doi.org/10.1074/jbc.273.14.8454

    Article  CAS  PubMed  Google Scholar 

  249. Kobayashi S, Fujikawa S-I, Ohmae M (2003) Enzymatic synthesis of chondroitin and its derivatives catalyzed by Hyaluronidase. J Am Chem Soc 125(47):14357–14369. https://doi.org/10.1021/ja036584x

    Article  CAS  PubMed  Google Scholar 

  250. Lane RS, Ange KS, Zolghadr B, Liu X, Schäffer C, Linhardt RJ, DeAngelis PL (2017) Expanding glycosaminoglycan chemical space: towards the creation of sulfated analogs, novel polymers and chimeric constructs. Glycobiology 27(7):646–656. https://doi.org/10.1093/glycob/cwx021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Wang Y, Li S, Xu X, Tan Y, Liu X-W, Fang J (2020) Chemoenzymatic synthesis of homogeneous chondroitin polymers and its derivatives. Carbohydr Polym 232(2019):115822–115822. https://doi.org/10.1016/j.carbpol.2019.115822

    Article  CAS  PubMed  Google Scholar 

  252. Zhang L, Huang H, Wang H, Chen J, Du G, Kang Z (2016) Rapid evolution of hyaluronan synthase to improve hyaluronan production and molecular mass in Bacillus subtilis. Biotechnol Lett 38(12):2103–2108. https://doi.org/10.1007/s10529-016-2193-1

    Article  CAS  PubMed  Google Scholar 

  253. Fu X, Shang W, Wang S, Liu Y, Qu J, Chen X, Wang PG, Fang J (2017) A general strategy for the synthesis of homogeneous hyaluronan conjugates and their biological applications. Chem Commun 53(25):3555–3558. https://doi.org/10.1039/C6CC09431G

    Article  CAS  Google Scholar 

  254. Li S, Wang S, Fu X, Liu XW, Wang PG, Fang J (2017) Sequential one-pot multienzyme synthesis of hyaluronan and its derivative. Carbohydr Polym 178:221–227. https://doi.org/10.1016/j.carbpol.2017.09.041

    Article  CAS  PubMed  Google Scholar 

  255. Chavaroche AAE, van den Broek LAM, Springer J, Boeriu C, Eggink G (2011) Analysis of the polymerization initiation and activity of Pasteurella multocida Heparosan synthase PmHS2, an enzyme with Glycosyltransferase and UDP-sugar hydrolase activity. J Biol Chem 286(3):1777–1785. https://doi.org/10.1074/jbc.M110.136754

    Article  CAS  PubMed  Google Scholar 

  256. Ninomiya T, Sugiura N, Tawada A, Sugimoto K, Watanabe H, Kimata K (2002) Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4. J Biol Chem 277(24):21567–21575. https://doi.org/10.1074/jbc.M201719200

    Article  CAS  PubMed  Google Scholar 

  257. Osawa T, Sugiura N, Shimada H, Hirooka R, Tsuji A, Shirakawa T, Fukuyama K, Kimura M, Kimata K, Kakuta Y (2009) Crystal structure of chondroitin polymerase from Escherichia coli K4. Biochem Biophys Res Commun 378(1):10–14

    Article  CAS  Google Scholar 

  258. Chen Y, Li Y, Yu H, Sugiarto G, Thon V, Hwang J, Ding L, Hie L, Chen X (2013) Tailored design and synthesis of Heparan sulfate oligosaccharide analogues using sequential one-pot multienzyme systems. Angew Chem Int Ed 52(45):11852–11856. https://doi.org/10.1002/anie.201305667

    Article  CAS  Google Scholar 

  259. Bhaskar U, Li G, Fu L, Onishi A, Suflita M, Dordick JS, Linhardt RJ (2015) Combinatorial one-pot chemoenzymatic synthesis of heparin. Carbohydr Polym 122:399–407. https://doi.org/10.1016/j.carbpol.2014.10.054

    Article  CAS  PubMed  Google Scholar 

  260. Bode L (2012) Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22(9):1147–1162. https://doi.org/10.1093/glycob/cws074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Morrow AL, Yu Y (2017) Chapter 7 – potential public health impact of human Milk oligosaccharides. In: McGuire MK, McGuire MA, Bode L (eds) Prebiotics and probiotics in human Milk. Academic Press, San Diego, pp 207–222. https://doi.org/10.1016/B978-0-12-802725-7.00007-5

    Chapter  Google Scholar 

  262. Bych K, Mikš MH, Johanson T, Hederos MJ, Vigsnæs LK, Becker P (2019) Production of HMOs using microbial hosts — from cell engineering to large scale production. Curr Opin Biotechnol 56:130–137. https://doi.org/10.1016/j.copbio.2018.11.003

    Article  CAS  PubMed  Google Scholar 

  263. Faijes M, Castejón-Vilatersana M, Val-Cid C, Planas A (2019) Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnol Adv 37(5):667–697. https://doi.org/10.1016/j.biotechadv.2019.03.014

    Article  CAS  PubMed  Google Scholar 

  264. Bode L, Campbell S, Furneaux R, Beauprez J, Muscroft-Taylor A (2017) Chapter 9 – making human Milk oligosaccharides available for research and application – approaches, challenges, and future opportunities. In: McGuire MK, McGuire MA, Bode L (eds) Prebiotics and probiotics in human Milk. Academic Press, San Diego, pp 251–293. https://doi.org/10.1016/B978-0-12-802725-7.00009-9

    Chapter  Google Scholar 

  265. Ruzic L, Bolivar JM, Nidetzky B (2020) Glycosynthase reaction meets the flow: continuous synthesis of lacto-N-triose II by engineered β-hexosaminidase immobilized on solid support. Biotechnol Bioeng 117(5):1597–1602. https://doi.org/10.1002/bit.27293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Schmölzer K, Weingarten M, Baldenius K, Nidetzky B (2019) Glycosynthase principle transformed into biocatalytic process technology: lacto- N-triose II production with engineered exo-Hexosaminidase. ACS Catal 9(6):5503–5514. https://doi.org/10.1021/acscatal.9b01288

    Article  CAS  Google Scholar 

  267. Industrial Enzyme Applications (2019) Industrial enzyme applications. Wiley-V C H Verlag Gmbh, Weinheim. https://doi.org/10.1002/9783527813780

    Book  Google Scholar 

  268. Seeberger PH (2015) The logic of automated glycan assembly. Acc Chem Res 48(5):1450–1463. https://doi.org/10.1021/ar5004362

    Article  CAS  PubMed  Google Scholar 

  269. Li T, Liu L, Wei N, Yang J-Y, Chapla DG, Moremen KW, Boons G-J (2019) An automated platform for the enzyme-mediated assembly of complex oligosaccharides. Nat Chem 11(3):229–236. https://doi.org/10.1038/s41557-019-0219-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Council NR (2012) Transforming Glycoscience: a roadmap for the future. The National Academies Press, Washington. https://doi.org/10.17226/13446

    Book  Google Scholar 

  271. Panza M, Pistorio SG, Stine KJ, Demchenko AV (2018) Automated chemical oligosaccharide synthesis: novel approach to traditional challenges. Chem Rev 118(17):8105–8150. https://doi.org/10.1021/acs.chemrev.8b00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Wen L, Edmunds G, Gibbons C, Zhang J, Gadi MR, Zhu H, Fang J, Liu X, Kong Y, Wang PG (2018) Toward automated enzymatic synthesis of oligosaccharides. Chem Rev 118(17):8151–8187. https://doi.org/10.1021/acs.chemrev.8b00066

    Article  CAS  PubMed  Google Scholar 

  273. Fair RJ, Hahm HS, Seeberger PH (2015) Combination of automated solid-phase and enzymatic oligosaccharide synthesis provides access to α(2,3)-sialylated glycans. Chem Commun 51(28):6183–6185. https://doi.org/10.1039/C5CC01368B

    Article  CAS  Google Scholar 

  274. Hahm HS, Schlegel MK, Hurevich M, Eller S, Schuhmacher F, Hofmann J, Pagel K, Seeberger PH (2017) Automated glycan assembly using the Glyconeer 2.1 synthesizer. Proc Natl Acad Sci 114(17):E3385–E3389. https://doi.org/10.1073/pnas.1700141114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Zhang J, Chen C, Gadi MR, Gibbons C, Guo Y, Cao X, Edmunds G, Wang S, Liu D, Yu J, Wen L, Wang PG (2018) Machine-driven enzymatic oligosaccharide synthesis by using a peptide synthesizer. Angew Chem Int Ed 57(51):16638–16642. https://doi.org/10.1002/anie.201810661

    Article  CAS  Google Scholar 

  276. Guberman M, Seeberger PH (2019) Automated glycan assembly: a perspective. J Am Chem Soc 141(14):5581–5592. https://doi.org/10.1021/jacs.9b00638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Hahm HS, Broecker F, Kawasaki F, Mietzsch M, Heilbronn R, Fukuda M, Seeberger PH (2017) Automated glycan assembly of Oligo-N-acetyllactosamine and Keratan sulfate probes to study virus-glycan interactions. Chem 2(1):114–124. https://doi.org/10.1016/j.chempr.2016.12.004

    Article  CAS  Google Scholar 

  278. Moremen KW, Ramiah A, Stuart M, Steel J, Meng L, Forouhar F, Moniz HA, Gahlay G, Gao Z, Chapla D, Wang S, Yang J-Y, Prabhakar PK, Johnson R, Rosa MD, Geisler C, Nairn AV, Seetharaman J, Wu S-C, Tong L, Gilbert HJ, LaBaer J, Jarvis DL (2018) Expression system for structural and functional studies of human glycosylation enzymes. Nat Chem Biol 14(2):156–162. https://doi.org/10.1038/nchembio.2539

    Article  CAS  PubMed  Google Scholar 

  279. Micoli F, Del Bino L, Alfini R, Carboni F, Romano MR, Adamo R (2019) Glycoconjugate vaccines: current approaches towards faster vaccine design. Expert Rev Vaccines 18(9):881–895. https://doi.org/10.1080/14760584.2019.1657012

    Article  CAS  PubMed  Google Scholar 

  280. Rappuoli R (2018) Glycoconjugate vaccines: principles and mechanisms. Sci Transl Med 10(456):eaat4615. https://doi.org/10.1126/scitranslmed.aat4615

    Article  CAS  PubMed  Google Scholar 

  281. Costantino P, Rappuoli R, Berti F (2011) The design of semi-synthetic and synthetic glycoconjugate vaccines. Expert Opin Drug Discovery 6(10):1045–1066. https://doi.org/10.1517/17460441.2011.609554

    Article  CAS  Google Scholar 

  282. Kay E, Cuccui J, Wren BW (2019) Recent advances in the production of recombinant glycoconjugate vaccines. NPJ Vaccines 4(1):16. https://doi.org/10.1038/s41541-019-0110-z

    Article  PubMed  PubMed Central  Google Scholar 

  283. MacCalman TE, Phillips-Jones MK, Harding SE (2019) Glycoconjugate vaccines: some observations on carrier and production methods. Biotechnol Genet Eng Rev 35(2):93–125. https://doi.org/10.1080/02648725.2019.1703614

    Article  PubMed  Google Scholar 

  284. Oldrini D, Fiebig T, Romano MR, Proietti D, Berger M, Tontini M, De Ricco R, Santini L, Morelli L, Lay L, Gerardy-Schahn R, Berti F, Adamo R (2018) Combined chemical synthesis and tailored enzymatic elongation provide fully synthetic and conjugation-ready Neisseria meningitidis Serogroup X vaccine antigens. ACS Chem Biol 13(4):984–994. https://doi.org/10.1021/acschembio.7b01057

    Article  CAS  PubMed  Google Scholar 

  285. Mahour R, Klapproth J, Rexer TFT, Schildbach A, Klamt S, Pietzsch M, Rapp E, Reichl U (2018) Establishment of a five-enzyme cell-free cascade for the synthesis of uridine diphosphate N-acetylglucosamine. J Biotechnol 283:120–129. https://doi.org/10.1016/j.jbiotec.2018.07.027

    Article  CAS  PubMed  Google Scholar 

  286. Cymer F, Beck H, Rohde A, Reusch D (2018) Therapeutic monoclonal antibody N-glycosylation – structure, function and therapeutic potential. Biologicals 52:1–11. https://doi.org/10.1016/j.biologicals.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  287. Van Landuyt L, Lonigro C, Meuris L, Callewaert N (2019) Customized protein glycosylation to improve biopharmaceutical function and targeting. Curr Opin Biotechnol 60:17–28. https://doi.org/10.1016/j.copbio.2018.11.017

    Article  CAS  PubMed  Google Scholar 

  288. Wang Z, Zhu J, Lu H (2020) Antibody glycosylation: impact on antibody drug characteristics and quality control. Appl Microbiol Biotechnol 104(5):1905–1914. https://doi.org/10.1007/s00253-020-10368-7

    Article  CAS  PubMed  Google Scholar 

  289. Jefferis R (2016) Posttranslational modifications and the immunogenicity of biotherapeutics. J Immunol Res 2016. https://doi.org/10.1155/2016/5358272

  290. Alter G, Ottenhoff THM, Joosten SA (2018) Antibody glycosylation in inflammation, disease and vaccination. Semin Immunol 39:102–110. https://doi.org/10.1016/j.smim.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  291. Liu L (2015) Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and fc-fusion proteins. J Pharm Sci 104(6):1866–1884. https://doi.org/10.1002/jps.24444

    Article  CAS  PubMed  Google Scholar 

  292. Beck A, Reichert JM (2012) Marketing approval of mogamulizumab: a triumph for glyco-engineering. MAbs 4(4):419–425. https://doi.org/10.4161/mabs.20996

    Article  PubMed  PubMed Central  Google Scholar 

  293. Wang Q, Chung C-Y, Chough S, Betenbaugh MJ (2018) Antibody glycoengineering strategies in mammalian cells. Biotechnol Bioeng 115(6):1378–1393. https://doi.org/10.1002/bit.26567

    Article  CAS  PubMed  Google Scholar 

  294. Mastrangeli R, Palinsky W, Bierau H (2018) Glycoengineered antibodies: towards the next-generation of immunotherapeutics. Glycobiology 29(3):199–210. https://doi.org/10.1093/glycob/cwy092

    Article  CAS  Google Scholar 

  295. Malik S, Thomann M (2016) In vitro glycoengineering – suitability for BioPharmamanufacturing. Application Note p 8

    Google Scholar 

  296. Thomann M, Schlothauer T, Dashivets T, Malik S, Avenal C, Bulau P, Rüger P, Reusch D (2015) In vitro glycoengineering of IgG1 and its effect on fc receptor binding and ADCC activity. PLoS One 10(8). https://doi.org/10.1371/journal.pone.0134949

  297. Li C, Wang L-X (2018) Chemoenzymatic methods for the synthesis of glycoproteins. Chem Rev 118(17):8359–8413. https://doi.org/10.1021/acs.chemrev.8b00238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Wang L-X, Tong X, Li C, Giddens JP, Li T (2019) Glycoengineering of antibodies for modulating functions. Annu Rev Biochem 88(1):433–459. https://doi.org/10.1146/annurev-biochem-062917-012911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Giddens JP, Lomino JV, DiLillo DJ, Ravetch JV, Wang LX (2018) Site-selective chemoenzymatic glycoengineering of fab and fc glycans of a therapeutic antibody. Proc Natl Acad Sci U S A 115(47):12023–12027. https://doi.org/10.1073/pnas.1812833115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Ramírez AS, Boilevin J, Biswas R, Gan BH, Janser D, Aebi M, Darbre T, Reymond J-L, Locher KP (2017) Characterization of the single-subunit oligosaccharyltransferase STT3A from Trypanosoma brucei using synthetic peptides and lipid-linked oligosaccharide analogs. Glycobiology 27(6):525–535. https://doi.org/10.1093/glycob/cwx017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Jaffee MB, Imperiali B (2013) Optimized protocol for expression and purification of membrane-bound PglB, a bacterial oligosaccharyl transferase. Protein Expr Purif 89(2):241–250. https://doi.org/10.1016/j.pep.2013.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Boilevin JM, Reymond JL (2018) Synthesis of lipid-linked oligosaccharides (LLOs) and their Phosphonate analogues as probes to study protein glycosylation enzymes. Synthesis 50(14):2631–2654. https://doi.org/10.1055/s-0037-1609735

    Article  CAS  Google Scholar 

  303. Tsai TI, Li ST, Liu CP, Chen KY, Shivatare SS, Lin CW, Liao SF, Lin CW, Hsu TL, Wu YT, Tsai MH, Lai MY, Lin NH, Wu CY, Wong CH (2017) An effective bacterial fucosidase for glycoprotein remodeling. ACS Chem Biol 12(1):63–72. https://doi.org/10.1021/acschembio.6b00821

    Article  CAS  PubMed  Google Scholar 

  304. Li C, Li T, Wang LX (2018) Chemoenzymatic defucosylation of therapeutic antibodies for enhanced effector functions using bacterial α-fucosidases. Methods Mol Biol 1827. https://doi.org/10.1007/978-1-4939-8648-4_19

  305. Sun B, Bao W, Tian X, Li M, Liu H, Dong J, Huang W (2014) A simplified procedure for gram-scale production of sialylglycopeptide (SGP) from egg yolks and subsequent semi-synthesis of Man3GlcNAc oxazoline. Carbohydr Res 396:62–69. https://doi.org/10.1016/j.carres.2014.07.013

    Article  CAS  PubMed  Google Scholar 

  306. Liu L, Prudden AR, Bosman GP, Boons GJ (2017) Improved isolation and characterization procedure of sialylglycopeptide from egg yolk powder. Carbohydr Res 452:122–128. https://doi.org/10.1016/j.carres.2017.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Tayi VS, Butler M (2018) Solid-phase enzymatic remodeling produces high yields of single Glycoform antibodies. Biotechnol J 13(4). https://doi.org/10.1002/biot.201700381

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Elling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rexer, T., Laaf, D., Gottschalk, J., Frohnmeyer, H., Rapp, E., Elling, L. (2020). Enzymatic Synthesis of Glycans and Glycoconjugates. In: Rapp, E., Reichl, U. (eds) Advances in Glycobiotechnology. Advances in Biochemical Engineering/Biotechnology, vol 175. Springer, Cham. https://doi.org/10.1007/10_2020_148

Download citation

Publish with us

Policies and ethics