Skip to main content

Impacts of Quorum Sensing on Microbial Metabolism and Human Health

  • Chapter
  • First Online:
Future Trends in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 131))

Abstract

Bacteria were considered to be lonely ‘mutes’ for hundreds of years. However, recently it was found that bacteria usually coordinate their behaviors at the population level by producing (speaking), sensing (listening), and responding to small signal molecules. This so-called quorum sensing (QS) regulation enables bacteria to live in a ‘society’ with cell–cell communication and controls many important bacterial behaviors. In this chapter, QS systems and their signal molecules for Gram-negative and Gram-positive bacteria are introduced. Most interestingly, QS regulates the important bacterial behaviors such as metabolism and pathogenesis. QS-regulated microbial metabolism includes antibiotic synthesis, pollutant biodegradation, and bioenergy production, which are very relevant to human health. QS is also well-known for its involvement in bacterial pathogenesis, such as iin nfections by Pseudomonas aeruginosa and Staphylococcus aureus. Novel disease diagnosis strategies and antimicrobial agents have also been developed based on QS regulation on bacterial infections. In addition, to meet the requirements for the detection/quantification of QS signaling molecules for research and application, different biosensors have been constructed, which will also be reviewed here. QS regulation is essential to bacterial survival and important to human health. A better understanding of QS could lead better control/manipulation of bacteria, thus making them more helpful to people.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246

    CAS  Google Scholar 

  2. Yong YC, Zhong JJ (2009) A genetically engineered whole-cell pigment-based bacterial biosensing system for quantification of N-butyryl homoserine lactone quorum sensing signal. Biosens Bioelectron 25:41–47

    CAS  Google Scholar 

  3. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695

    CAS  Google Scholar 

  4. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    CAS  Google Scholar 

  5. Fuqua C, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    CAS  Google Scholar 

  6. Visick KL, Foster J, Doino J et al. (2000) Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J Bacteriol 182:4578–4586

    CAS  Google Scholar 

  7. Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Ann Rev Genet 43:197–222

    CAS  Google Scholar 

  8. George EA, Muir TW (2007) Molecular mechanisms of agr quorum sensing in virulent Staphylococci. ChemBioChem 8:847–855

    CAS  Google Scholar 

  9. Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197

    CAS  Google Scholar 

  10. Winzer K, Hardie KR, Williams P (2003) LuxS and autoinducer-2: their contribution to quorum sensing and metabolism in bacteria. Adv Appl Microbiol 53:291–396

    CAS  Google Scholar 

  11. Ng WL, Wei Y, Perez LJ et al. (2010) Probing bacterial transmembrane histidine kinase receptor-ligand interactions with natural and synthetic molecules. Proc Natl Acad Sci 107:5575–5580

    CAS  Google Scholar 

  12. Chen X, Schauder S, Potier N et al. (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549

    CAS  Google Scholar 

  13. Ruder WC, Lu T, Collins JJ (2011) Synthetic biology moving into the clinic. Science 333:1248–1252

    CAS  Google Scholar 

  14. Tu KC, Long T, Svenningsen SL et al. (2010) Negative feedback loops involving small regulatory RNAs precisely control the Vibrio harveyi quorum-sensing response. Mol Cell 37:567–579

    CAS  Google Scholar 

  15. Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191

    CAS  Google Scholar 

  16. Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6:959–978

    CAS  Google Scholar 

  17. Sandoz KM, Mitzimberg SM, Schuster M (2007) Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci U S A 104:15876–15881

    CAS  Google Scholar 

  18. Diggle SP, Griffin AS, Campbell GS et al. (2007) Cooperation and conflict in quorum-sensing bacterial populations. Nature 450:411-U7

    Google Scholar 

  19. Johansen L, Bryn K, Stomer FC (1975) Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes. J Bacteriol 123:1124–1130

    CAS  Google Scholar 

  20. Kovacikova G, Lin W, Skorupski K (2005) Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Mol Microbiol 57:420–433

    CAS  Google Scholar 

  21. Houdt RV, Moons P, Buj MH et al. (2006) N-Acyl-L-homoserine lactone quorum sensing controls butanediol fermentation in Serratia plymuthica RVH1 and Serratia marcescens MG1. J Bacteriol 188:4570–4572

    Google Scholar 

  22. Houdt RV, Aertsen A, Michies CW (2007) Quorum-sensing-dependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1N. Res Microbiol 158:379–385

    Google Scholar 

  23. Lenz DH, Mok KC, Lilley BN et al. (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:69–82

    CAS  Google Scholar 

  24. Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50

    CAS  Google Scholar 

  25. Wolfe AJ (2008) Quorum sensing flips the acetate switch. J Bacteriol 190:5735–5737

    CAS  Google Scholar 

  26. Studer SV, Mandel MJ, Ruby EG (2008) AinS quorum sensing regulates the Vibrio fischeri acetate switch. 190:5915–5923

    Google Scholar 

  27. McGowan SJ, Holden MTG, Bycroft BW et al. (1999) Molecular genetics of carbapenem antibiotic biosynthesis. Antonie Van Leeuwenhoek 75:135–141

    CAS  Google Scholar 

  28. Coulthurst SJ, Barnard AML, Salmond GPC (2005) Regulation and biosynthesis of carbapenem antibiotics in bacteria. Nat Rev Microbiol 3:295–306

    CAS  Google Scholar 

  29. McGowan SJ, Sebaihia M, Porter LE et al. (1996) Analysis of bacterial carbapenem antibiotic production genes reveals a novel β-lactam biosynthetic pathway. Mol Microbiol 22:415–426

    CAS  Google Scholar 

  30. Thomson NR, Crow MA, McGowan SJ et al. (2000) Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol 36:539–556

    CAS  Google Scholar 

  31. Bainton NJ, Stead P, Chhabra SR et al. (1992) N-(3-oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem J 288:997–1004

    CAS  Google Scholar 

  32. Welch M, Todd DE, Whitehead NA et al. (2000) N-Acyl homoserine lactones binding to the CarR receptor determines quorum-sensing specificity in Erwinia. EMBO J 19:631–641

    CAS  Google Scholar 

  33. McGowan SJ, Barnard AML, Bosgelmez G et al. (2005) Carbapenem antibiotic biosynthesis in Erwinia carotovora is regulated by physiological and genetic factors modulating the quorum sensing-dependent control pathway. Mol Microbiol 55:526–545

    CAS  Google Scholar 

  34. McGowan SJ, Sebaihia M, Jones S et al. (1995) Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional regulator. Microbiol SGM 141:541–550

    CAS  Google Scholar 

  35. Cox ARJ, Thomson NR, Bycroft B et al. (1998) A pheromone-independent CarR protein control carbapenem antibiotic synthesis in the opportunistic human pathogen Serratia marcescens. Microbiol SGM 144:201–209

    CAS  Google Scholar 

  36. Slater H, Crow M, Everson L et al. (2003) Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol Microbiol 47:303–320

    CAS  Google Scholar 

  37. Fineran RC, Slater H, Everson L et al. (2005) Biosynthesis of tripyrrole and β-lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol Microbiol 56:1495–1517

    CAS  Google Scholar 

  38. Coulthurst SJ, Kurz CL, Salmond GPC (2004) luxS mutants of Serratia defective in autoinducer-2-dependent quorum sensing show strain-dependent impacts on virulence and production of carbapenem and prodigiosin. Microbiol SGM 150:1901–1910

    CAS  Google Scholar 

  39. Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytolog 157:503–523

    CAS  Google Scholar 

  40. Juhas M, Eberl L, Tummler B (2005) Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 7:459–471

    CAS  Google Scholar 

  41. He YW, Zhang LH (2008) Quorum Sensing and Virulence Regulation in Xanthomonas campestris. FEMS Microbiol Rev 32:842–857

    CAS  Google Scholar 

  42. Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    CAS  Google Scholar 

  43. Kay E, Humair B, Denerbaud V et al. (2006) Two GacA-dependent small RNAs modulate the quorum sensing response in Pseudomonas aeruginosa. J Bacteriol 188:6026–6033

    CAS  Google Scholar 

  44. Huang JF, Xu YQ, Zhang HY et al. (2009) Temperature-dependent expression of phzM and its regulatory genes lasI and ptsP in rhizosphere isolate Pseudomonas sp. strain M18. Appl Environ Microbiol 75:6568–6580

    CAS  Google Scholar 

  45. Latifi A, Foglino M, Tanaka K et al. (1996) A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146

    CAS  Google Scholar 

  46. Lu JS, Huang XQ, Zhang MY et al. (2009) The distinct quorum sensing hierarchy of las and rhl in Pseudomonas sp. M18. Curr Microbiol 59:621–627

    CAS  Google Scholar 

  47. Stover CK, Pham XQm Erwin AL et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, and opportunistic pathogen. Nature 406:959–964

    CAS  Google Scholar 

  48. Li YQ, Du XL, Lu ZJ et al. (2011) Regulatory feedback loop of two phz gene clusters through 5′-untranslated regions in Pseudomonas sp. M18. PLoS ONE 6:e19413

    CAS  Google Scholar 

  49. Chin-A-Woeng TFC, van den Broek D, de Voer G et al. (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is reulated by multiple factors secreted into the growth medium. Mol Plant Microbe Inter 14:969–979

    CAS  Google Scholar 

  50. Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent Pseudomonas. Nat Rev Microbiol 3:307–319

    CAS  Google Scholar 

  51. Eijsink VGH, Axelsson L, Diep DB et al. (2002) Production of class II bacteriolcins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leewenhoek 81:639–654

    CAS  Google Scholar 

  52. Kleerebezem M (2004) Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25:1405–1414

    CAS  Google Scholar 

  53. Twomey D, Ross RP, Ryan M (2002) Lantibiotics produced by lactic acid bacteria: structure, function and applications. Antonie Van Leeuwenhoek 82:165–185

    CAS  Google Scholar 

  54. Siezen RJ, Kuipers OP, de Vos WM (1996) Comparison of lantibiotic gene clusters and encoded proteins. Antonie Van Leeuwenhoek 69:171–184

    CAS  Google Scholar 

  55. van der Meer JR, Polman J, Beerthuyzen MM et al. (1993) Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J Bacteriol 175:2578–2588

    Google Scholar 

  56. Kuipers OP, Beerthuyzen MM, de Ruyter PGGA et al. (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270:27299–27304

    CAS  Google Scholar 

  57. Stein T, Heinzmann S, Kiesau P et al. (2003) The spa-box for transcriptional activation of subtilin biosynthesis and immunity in Bacillus subtilis. Mol Microbiol 47:1627–1636

    CAS  Google Scholar 

  58. Klein C, Kaletta C, Entian KD (1993) Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl Environ Microbiol 59:296–303

    CAS  Google Scholar 

  59. Valle A, Bailey MJ, Whiteley AS et al. (2004) N-Acyl-L-homoserine lactones (AHLs) affect microbial community composition and function in activated sludge. Environ Microbiol 6:424–433

    CAS  Google Scholar 

  60. Hu JY, Fan Y, Lin YH et al. (2003) Microbial diversity and prevalence of virulent pathogens in biofilms developed in water reclamation system. Res Microbiol 154:623–629

    CAS  Google Scholar 

  61. Morgan-Sagastume F, Boon N, Dobbelaere S et al. (2005) Production of acylated homoserine lactones by Aeromonas and Pseudomonas strains isolated from municipal activated sludge. Can J Microbiol 51:924–933

    CAS  Google Scholar 

  62. Yeon KM, Cheong WS, Oh HS et al. (2009) Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. Environ Sci Technol 43:380–385

    CAS  Google Scholar 

  63. Yong YC, Zhong JJ (2010) N-Acylated homoserine lactone production and involvement in the biodegradation of aromatics by an environmental isolate of Pseudomonas aeruginosa. Process Biochem 45:1944–1948

    CAS  Google Scholar 

  64. Kang YS, Park W (2010) Contribution of quorum-sensing system to hexadecane degradation and biofilm formation in Acinetobacter sp. strain DR1. J Appl Microbiol 109:1650–1659

    CAS  Google Scholar 

  65. Bassler BL (2010) Small cells–big future. Mol Biol Cell 21:3786–3787

    CAS  Google Scholar 

  66. Logan BE (2009) Exoelectrogenic Bacteria that Power Microbial Fuel Cells. Nat Rev Microbiol 7:375–381

    CAS  Google Scholar 

  67. Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4:497–508

    CAS  Google Scholar 

  68. Yong YC, Zhong JJ (2010) Recent advances in biodegradation in China: new microorganisms and pathways, Biodegradation engineering, and bioenergy from pollutants biodegradation. Proc Biochem 45:1937–1943

    CAS  Google Scholar 

  69. Yong YC, Dong XC, Chan-Park MB et al. (2012) Macroporous and monolithic three-dimensional anode for high-performance Microbial Fuel Cells. ACS Nano 6:2394–2400

    CAS  Google Scholar 

  70. Venkataraman A, Rosenbaum M, Arends JBA et al. (2010) Quorum sensing regulates electric current generation of Pseudomonas aeruginosa PA14 in bioelectrochemical systems. Electro Commun 12:459–462

    CAS  Google Scholar 

  71. Yong YC, Yu YY, Li CM et al. (2011) Bioelectricity enhancement via overexpression of quorum sensing system in Pseudomonas aeruginosa-inoculated microbial fuel cells. Biosens Bioelectron 30:87–92

    CAS  Google Scholar 

  72. Schwille P (2011) Bottom-up synthetic biology: engineering in a thinker’s world. Science 333:1252–1254

    CAS  Google Scholar 

  73. Song H, Payne S, Tan C, You L (2011) Programming microbial population dynamics by engineered cell–cell communication. Biotechnol J 6:837–849

    CAS  Google Scholar 

  74. Collins J (2012) Bits and pieces come to life. Nature 483:S8–S10

    CAS  Google Scholar 

  75. Balagadde FK, Song H, Ozaki J et al. (2008) A synthetic Escherichia coli predator-prey ecosystem. Mol Syst Biol 4:187

    Google Scholar 

  76. Sayut DJ, Niu Y, Sun L (2009) Construction and enhancement of a minimal genetic AND gate. Appl Environ Microbiol 75:637–642

    CAS  Google Scholar 

  77. Song H, Payne S, Gray M et al. (2009) Spatiotemporal modulation of biodiversity in a synthetic chemical-meiated ecosystem. Nat Chem Biol 5:929–935

    CAS  Google Scholar 

  78. Williams P, Winzer K, Chan WC et al. (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc B Biol Sci 362:1119–1134

    CAS  Google Scholar 

  79. D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337–353

    Google Scholar 

  80. Steindler L, Venturi V (2007) Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol Lett 266:1–7

    CAS  Google Scholar 

  81. Swift S, Karlyshev AV, Fish L et al. (1997) Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicidia: Identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J Bacteriol 179:5271–5281

    CAS  Google Scholar 

  82. McClean KH, Winson MK, Fish L et al. (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiol SGM 143:3703–3711

    CAS  Google Scholar 

  83. Poulter S, Carlton TM, Su X et al. (2010) Engineering of new prodigiosin-based biosensors of Serratia for facile detection of short-chain N-acylhomoserine lactone quorum-sensing molecules. Environ Microbiol Rep 2:322–328

    CAS  Google Scholar 

  84. Llamas I, Keshavan N, Gonzalez JE (2004) Use of Sinorhizobium meliloti as an indicator for specific detection of long-chain N-acyl homoserine lactones. Appl Environ Microbiol 70:3715–3723

    CAS  Google Scholar 

  85. Struss A, Pasini P, Ensor CM (2010) Paper strip whole cell biosensors: a portable test for the semiquantitative detection of bacterial quorum sensing molecules. Anal Chem 82:4457–4463

    CAS  Google Scholar 

  86. Blosser RS, Gray KM (2000) Extraction of violacein from Chromobacterium violaceum provides a new quantitative bioassay for N-acyl homoserine lactone autoinducers. J Microbiol Methods 40:47–55

    CAS  Google Scholar 

  87. Dufour P, Jarraud S, Vandenesch F et al. (2002) High genetic variability of the agr locus in Staphylococcus species. J Bacteriol 184:1180–1186

    CAS  Google Scholar 

  88. Mandic-Mulec I, Kraigher B, Cepon U et al. (2003) Variability of the quorum sensing system in natural isolates of Bacillus sp. Food Technol Biotechnol 41:23–28

    Google Scholar 

  89. Ji G, Beavis R, Novick RP (1997) Bacterial interference caused by autoinducing peptide variants. Science 276:2027–2030

    CAS  Google Scholar 

  90. Jarraud S, Lyon GJ, Figueiredo AM et al. (2000) Exofoliation-producing strains define a fourth agr specificity group in Staphylococcus aureus. J Bacteriol 182:6517–6522

    CAS  Google Scholar 

  91. Lyon GJ, Mayville P, Muir TW et al. (2000) Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibtion to the receptor-histidine kinase, AgrC. Proc Natl Acad Sci U S A 97:13330–13335

    CAS  Google Scholar 

  92. Ansaldi M, Marolt D, Stebe T et al. (2002) Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants. Mol Microbiol 44:1561–1573

    CAS  Google Scholar 

  93. Stefanic P, Mandic-Mulec I (2009) Social interaction and distribution of Bacillus substilis pherotypes at microscale. J Bacteriol 191:1756–1764

    CAS  Google Scholar 

  94. Bassler BL, Wright M, Showalter RE et al. (1993) Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol 773–786

    Google Scholar 

  95. Miller ST, Xavier KB, Campagna SR et al. (2004) Salmonella typhimurium recognizes a chemically distinct form of bacterial quorum-sensing signal AI-2. Mol Cell 15:677–687

    CAS  Google Scholar 

  96. Jones MB, Blaser MJ (2003) Detection of a luxS-signaling molecule in Bacillus anthracis. Infect Immun 71:3914–3919

    CAS  Google Scholar 

  97. Han XG, Lu CP (2009) Detection of autoinducer-2 and analysis of the profile of luxS and pfs transcription in Streptococcus suis serotype 2. Curr Microbiol 58:146–152

    CAS  Google Scholar 

  98. Novak EA, Shao HJ, Daep CA et al. (2010) Autoinducer-2 and QseC control biofilm formation and in vivo virulence of Aggregatibacter actinomycetemcomitans. Infect Immun 78:2919–2926

    CAS  Google Scholar 

  99. Li X, Han Y, Yang Q et al. (2010) Detection of quorum sensing signal molecules and mutation of luxS gene in Vibrio ichthyoenteri. Res Microbiol 161:51–57

    CAS  Google Scholar 

  100. DeKeermaecker SC, Vanderleyden J (2003) Constraints on detection of autoinducer-2 (AI-2) signalling molecules using Vibrio harveyi as a reporter. Microbiol SGM 149:1953–1956

    Google Scholar 

  101. Turovskiy Y, Chikindas ML (2006) Autoinducer-2 bioassay is a qualitative, not quantitative method influenced by glucose. J Microbiol Methods 66:497–503

    CAS  Google Scholar 

  102. Vilchez R, Lemme A, Thiel V et al. (2007) Analyzing traces of autoinducer-2 requires standardization of the Vibrio harveyi bioassay. Anal Bioanal Chem 387:489–496

    CAS  Google Scholar 

  103. Zhu J, Pei D (2007) A LuxP-based fluorescent sensor for bacterial autoinducer II. ACS Chem Biol 3:110–119

    Google Scholar 

  104. Van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8:511–522

    Google Scholar 

  105. Zhu J, Chai Y, Zhong Z et al. (2003) Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol 69:6949–6953

    CAS  Google Scholar 

  106. Ling EA, Ellison ML, Pesci EC (2009) A novel plasmid for detection of N-acyl homoserine lactones. Plasmid 62:16–21

    CAS  Google Scholar 

  107. Chai Y, Winans SC (2004) Site-directed mutagenesis of a LuxR-type quorum-sensing transcription factor: alteration of autoinducer specificity. Mol Microbiol 51:765–776

    CAS  Google Scholar 

  108. Steindler L, Devescovi G, Subramoni S et al. (2008) A versatile plasmid biosensor useful to identify quorum sensing LuxR-family orphans in bacterial strains. J Microbiol Methods 73:273–275

    CAS  Google Scholar 

  109. Collins CH, Arnold FH, Leadbetter JR (2005) Directed evolution of Vibrio fischeri LuxR for increased sensitivity to a broad spectrum of acyl-homoserine lactones. Mol Microbiol 55:712–723

    CAS  Google Scholar 

  110. Hawkins AC, Aronld FH, Stuermer R et al. (2007) Directed evolution of Vibrio fischeri LuxR for improved response to butanoyl-homoserine lactone. Appl Environ Microbiol 73:5775–5781

    CAS  Google Scholar 

  111. Collins CH, Leadbetter JR, Arnold FH (2006) Dual selection enhances the signaling specificity of a variant of the quorum-sensing transcription activator LuxR. Nat Biotech 24:708–712

    CAS  Google Scholar 

  112. Chen LC, Tsou LT, Chen FJ (2009) Ligand-receptor recognition for activation of quorum sensing in Staphylococcus aureus. J Microbiol 47:572–581

    Google Scholar 

  113. DeGrado WF (2003) Biosensor design. Nature 423:132–133

    CAS  Google Scholar 

  114. Looger LL, Dwyer MA, Smith JJ et al. (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423:185–190

    CAS  Google Scholar 

  115. Burmolle M, Hansen LH, Sorensen SJ (2005) Use of a whole-cell biosensor and flow cytometry to detect AHL production by an indigenous soil community during decomposition of litter. Microb Ecol 50:221–229

    CAS  Google Scholar 

  116. Lumjiaktase P, Aguilar C, Battin T et al. (2010) Construction of self-transmissible green fluorescent protein-based biosensor plasmids and their use for identification of N-acyl homoserine-producing bacteria in lake sediments. Appl Environ Microbiol 76:6119–6127

    CAS  Google Scholar 

  117. Boyen F, Eeckhaut V, Immerseel FV et al. (2009) Quorum sensing in veterinary pathogens: mechanisms, clinical importance and future perspectives. Vet Mcirobiol 135:187–195

    CAS  Google Scholar 

  118. Antunes LCM, Ferreira RBR, Buckner MMC et al. (2010) Quorum sensing in bacterial virulence. Microbiol SGM 156:2271–2282

    CAS  Google Scholar 

  119. Asad S, Opal SM (2008) Bench-to-beside review: quorum sensing and the role of cell-to-cell communication during invasive bacterial infection. Crit Care 12:236

    Google Scholar 

  120. Yao Y, Vuong C, Kocianova S et al. (2006) Characterization of the Staphylococcus epidermidis accessory-gene regulator response: quorum-sensing regulation of resistance to human innate host defense. J Infect Dis 193:841–848

    Google Scholar 

  121. Tavio MM, Aquili VD, Poveda JB et al. (2010) Quorum-sensing regulator sdiA and marA is involved in in vitro-selected multidrug resistance of Escherichia coli. J Antimicrob Chemoth 65:1178–1186

    CAS  Google Scholar 

  122. Poole K (2001) Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotech 3:255–263

    CAS  Google Scholar 

  123. Maseda H, Sawada I, Saito K et al. (2004) Enhancement of the mexAB-oprM efflux pump expression by a quorum-sensing autoinducer and its cancellation by a regulator, mexT, of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa. Antimicrob Agents Chemoth 48:1320–1328

    CAS  Google Scholar 

  124. Koch C, Hoiby N (1993) Pathogenesis of cystic fibrosis. Lancet 341:1065–1069

    CAS  Google Scholar 

  125. Bodey GP, Bolivar R, Fainstein V et al. (1983) Infections caused by Pseudomonas aeruginosa. Rev Infect Dis 5:279–313

    CAS  Google Scholar 

  126. Passador L, Cook JM, Gambello MJ et al. (1993) Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127–1130

    CAS  Google Scholar 

  127. Pearson JP, Gray KM, Passador L et al. (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. U S A 91:197–201

    CAS  Google Scholar 

  128. Ochsner UA, Koch AK, Fiechter A et al. (1994) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176:2044–2054

    CAS  Google Scholar 

  129. Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:6424–6428

    CAS  Google Scholar 

  130. Pesci EC, Milbank JBJ, Pearson JP et al. (1999) Quinolone signaling in the cell to cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229–11234

    CAS  Google Scholar 

  131. Gallagher LA, McKnight SL, Kuznetsova MS et al. (2002) Functions required for extracellular quinolone signalling by Pseudomonas aeruginosa. J Bacteriol 184:6472–6480

    CAS  Google Scholar 

  132. Staskawicz BJ, Mudgett MB, Dangl JL et al. (2001) Common and contrasting themes of plant and animal diseases. Science 292:2285–2289

    CAS  Google Scholar 

  133. Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60

    CAS  Google Scholar 

  134. Schuster M, Lostroh CP, Ogi T et al. (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079

    CAS  Google Scholar 

  135. Toder DS, Ferrell SJ, Nezezon JL et al. (1994) lasA and lasB genes of Pseudomonas aeruginosa: analysis of transcription and gene product activity. Infect Immun 62:1320–1327

    CAS  Google Scholar 

  136. Latifi A, Winson MK, Foglino M et al. (1995) Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites trough quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17:333–343

    CAS  Google Scholar 

  137. Pessi G, Haas D (2000) Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa. J Bacteriol 182:6940–6949

    CAS  Google Scholar 

  138. Gambello MJ, Kaye S, Iglewski BH (1993) LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun 61:1180–1184

    CAS  Google Scholar 

  139. Oschsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:6424–6428

    Google Scholar 

  140. Brint JM, Ohman DE (1995) Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol 177:7155–7163

    CAS  Google Scholar 

  141. Winzer K, Falconer C, Garber NC et al. (2000) The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 182:6401–6411

    CAS  Google Scholar 

  142. Cao H, Krishnan G, Goumnerov B et al. (2001) A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci U S A 98:14613–14618

    CAS  Google Scholar 

  143. Kirsts MJ, Parsek MR (2006) Does Pseudomonas aeruginosa use intercellular signaling to build biofilm communities? Cell Microbiol 8:1841–1849

    Google Scholar 

  144. Hoiby N, Bjarnsholt T, Givskov M et al. (2010) Antibiotic resistance of bacterial biofilms. Intl J Antimicrob Agents 35:322–332

    Google Scholar 

  145. Erickson DL, Endersby R, Kirkham A et al. (2002) Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect Immun 70:1783–1790

    CAS  Google Scholar 

  146. Singh PK, Schaefer AL, Parsek MR et al. (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764

    CAS  Google Scholar 

  147. Rumbaugh KP, Griswold JA, Iglewski BH et al. (1999) Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67:5854–5862

    CAS  Google Scholar 

  148. Tang HB, DiMango E, Bryan R et al. (1996) Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun 64:37–43

    CAS  Google Scholar 

  149. Pearson JP, Feldman M, Iglewski BH et al. (2000) Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun 68:4331–4334

    CAS  Google Scholar 

  150. Smith RS, Harris SG, Phipps R et al. (2002) The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone contributes to virulence and induces inflammation in vivo. J Bacteriol 184:1132–1139

    CAS  Google Scholar 

  151. Wu H, Song Z, Givskov M et al. (2001) Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiol SGM 147:1105–1113

    CAS  Google Scholar 

  152. Collier DN, Anderson L, McKnight SL et al. (2002) A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol Lett 215:41–46

    CAS  Google Scholar 

  153. Lowy FD (1998) Medical progress-Staphylococcus aureus infections. N Eng J Med 339:520–532

    CAS  Google Scholar 

  154. Roux A, Payne SM, Gilmore MS (2009) Microbial telesensing: probing the environment for friends, foes, and food. Cell Host Microbe 6:115–124

    CAS  Google Scholar 

  155. Ziebandt AK, Becher D, Ohlsen K et al. (2004) The influence of agr and σB in growth phase dependent regulation of virulence factors in Staphylococcus aureus. Proteomics 4:3034–3037

    CAS  Google Scholar 

  156. Dunman PM, Murphy E, Haney S et al. (2001) Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183:7341–7353

    CAS  Google Scholar 

  157. Novick RP, Ross HF, Projan SJ et al. (1993) Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12:3967–3975

    CAS  Google Scholar 

  158. Boles BR, Horswill AR (2008) Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4:e1000052

    Google Scholar 

  159. Kumari A, Pasini P, Daunert S (2008) Detection of bacterial quorum sensing N-acyl homoserine lactones in clinical samples. Anal Bioanal Chem 391:1619–1627

    CAS  Google Scholar 

  160. Kumari A, Pasini P, Deo SK et al. (2006) Biosensing systems for the detection of bacterial quorum signaling molecules. Anal Chem 78:7603–7609

    CAS  Google Scholar 

  161. Halatsi K, Oikonomou I, Lambiri M et al. (2006) PCR detection of Salmonella spp. Using primers targeting the quorum sensing gene sdiA. FEMS Microbiol Lett 259:201–207

    CAS  Google Scholar 

  162. Oikonomou I, Halatsi K, Kyriacou A (2008) Selective PCR: a novel internal amplification control strategy for enhanced senstivity in Salmonella diagnosis. Lett Appl Microbiol 46:456–461

    CAS  Google Scholar 

  163. Zhu H, Sun SJ, Dang HY (2008) PCR detection of Serratia spp. Using primers targeting pfs and luxS genes involved in AI-2-dependent quorum sensing. Curr Microbiol 57:326–330

    CAS  Google Scholar 

  164. Clatworthy AE, Pierson E, Hung DT (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3:541–548

    CAS  Google Scholar 

  165. Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9:117–128

    CAS  Google Scholar 

  166. Werner G, Strommenger B, Witte W et al. (2008) Acquired vancomycin resistance in clinically relevant pathogens. Future Microbiol 3:547–562

    CAS  Google Scholar 

  167. Musk DJ, Hergenrother PJ (2006) Chemical countermeasures for the control of bacterial biofilms: Effective compounds and promising targets. Curr Med Chem 13:2163–2177

    CAS  Google Scholar 

  168. Zhao G, Wan W, Mansouri S et al. (2003) Chemical synthesis of S-ribosyl-L-homocysteine and activity assay as a LuxS substrate. Bioorg Med Chem Lett 13:3897–3900

    CAS  Google Scholar 

  169. Alfaro JF, Zhang T, Wynn DP et al. (2004) Synthesis of LuxS inhibitors targeting bacterial cell–cell communication. Org Lett 6:3043–3046

    CAS  Google Scholar 

  170. Czajkowski R, Jafra S (2009) Quenching of acylhomoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochim Pol 56:1–16

    CAS  Google Scholar 

  171. Park J, Jagasia R, Kaufmann GF et al. (2007) Infection control by antibody disruption of bacterial quorum sensing signaling. Chem Biol 14:1119–1127

    CAS  Google Scholar 

  172. Ni N, Li M, Wang J et al. (2009) Inhibitors and antagonists of bacterial quorum sensing. Med Res Rev 29:65–124

    CAS  Google Scholar 

  173. Muh U, Schuster M, Heim R et al. (2006) Novel Pseudomonas aeruginosa quorum-sensing inhibitors identifed in an ultra-high-throughput screen. Antimicrob Agents Chemoth 50:3674–3679

    CAS  Google Scholar 

  174. Hentzer M, Wu H, Andersen JB et al. (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815

    CAS  Google Scholar 

  175. Manefield M, Rasmussen TB, Hentzer M et al. (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiol SGM 148:1119–1127

    CAS  Google Scholar 

  176. Defoirdt T, Miyamoto CM, Wood TK et al. (2007) The natural furanone (5Z)-4- bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of of the transcriptional regulator protein LuxR. Environ Microbiol 9:2486–2495

    CAS  Google Scholar 

  177. Zang T, Lee BWK, Cannon LM et al. (2009) A naturally occurring brominated furanone covalently modifies and inactivates LuxS. Bioorg Med Chem Lett 19:6200–6204

    CAS  Google Scholar 

  178. Defoirdt T, Boon N, Bossier P (2010) Can bacteria evolve resistance to quorum sensing disruption. PLOS Pathog 6:e1000989

    Google Scholar 

  179. Winson MK, Swift S, Fish L et al. (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192

    CAS  Google Scholar 

  180. Khan SR, Mavrodi DV, Jog GJ et al. (2005) Activation of the phz operon of Pseudomonas fluorescens 2–79 requires the LuxR homolog PhzR, N-(3-OH-Hexanoyl)-L-homoserine lactone produced by the LuxI homolog PhzI, and a cis-acting phz box. J Bacteriol 187:6517–6527

    CAS  Google Scholar 

  181. Riedel K, Hentzer M, Geisenberger O et al. (2001) N-Acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147:3249–3262

    CAS  Google Scholar 

  182. Lyon GJ, Wright JS, Muir TW et al. (2002) Key determinants of receptor activation in the agr autoinducing peptides of Staphylococcus aureus. Biochemistry 41:10095–10104

    CAS  Google Scholar 

  183. Tortosa P, Logsdon L, Kraigher B et al. (2001) Specificity and genetic polymorphism of the Bacillus competence quorum sensing system. J Bacteriol 183:451–460

    CAS  Google Scholar 

  184. Ishida K, Lincke T, Behnken S et al. (2010) Induced biosynthesis of cryptic polyketide metabolites in a Burkholderia thailandensis quorum sensing mutant. J Am Chem Soc 132:13966–13968

    CAS  Google Scholar 

  185. Khan SR, Herman J, Krank J et al. (2007) N-(3-Hydroxyhexanoyl)-L-homoserine lactone is the biologically relevant quormone that regulates the phz operon of Pseudomonas chlororaphis strain 30–84. Appl Environ Microbiol 73:7443–7455

    CAS  Google Scholar 

  186. Chin-A-Woeng TFC, van den Broek D, de Voer G et al. (2001) Phenazine-1-carboxamode production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact 14:969–979

    CAS  Google Scholar 

  187. Recio E, Colinas A, Rumbero A et al. (2004) PI factor, a novel type quorum-sensing inducer elicits pimaricin production in Streptomyces natalensis. J Biol Chem 279:41586–41593

    CAS  Google Scholar 

  188. Anton N, Santos-Aberturas J, Mendes MV et al. (2007) PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis. Microbiol SGM 153:3174–3183

    CAS  Google Scholar 

  189. EI-Sayed AK, Hothersall J, Thomas CM (2001) Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiol SGM 147:2127–2139

    Google Scholar 

  190. Yan A, Huang XQ, Liu HM et al. (2007) An rhl-like quorum-sensing system negatively regulates pyoluteorin production in Pseudomonas sp. M18. Microbiol SGM 153:16–28

    CAS  Google Scholar 

  191. Huang XQ, Zhang XH, Xu YQ (2008) Positive regulation of pyoluteorin biosynthesis in Pseudomonas sp. M18 quorum-sensing regulator VqsR. J Microbiol Biotechnol 18:828–836

    CAS  Google Scholar 

  192. Lu JS, Huang XQ, Li K et al. (2009) LysR family transcriptional regulator PqsR as repressor of pyoluteorin biosynthesis and activator of phenazine-1-carboxylic acid biosynthesis in Pseudomonas sp. M18. J Biotechnol 143:1–9

    CAS  Google Scholar 

  193. Schmidt S, Blom JF, Pernthaler J et al. (2009) Production of the antifungal compound pyrrolnitrin is quorum sensing-regulated in members of the Burkholderia cepacia complex. Environ Microbiol 11:1422–1437

    Google Scholar 

  194. Liu X, Bimerew M, Ma Y et al. (2007) Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiol Lett 270:299–305

    CAS  Google Scholar 

  195. Seyedsayamdost MR, Chandler JR, Blodgett JAV et al. (2010) Quorum-sensing-regulated bactobolin production by Burkholoderia thailandensis E264. Org Lett 12:716–719

    CAS  Google Scholar 

  196. Woodyer RD, Shao Z, Thomas PM et al. (2006) Heterologous production of fosfomycin and identification of the minimal biosynthetic gene cluster. Chem Biol 13:1171–1182

    CAS  Google Scholar 

  197. Fontaine L, Boutry C, Guedon E et al. (2007) Quorum-sensing regulation of the production of Blp bacteriocins in Streptococcus thermophilus. J Bacteriol 189:7195–7205

    CAS  Google Scholar 

  198. Straume D, Kjos M, Nes IF et al. (2007) Quorum-sensing based bacteriocins production is down-regulated by N-terminally truncated species of gene activators. Mol Genet Genomics 278:283–293

    CAS  Google Scholar 

  199. Barnard AML, Bowden SD, Burr T et al. (2007) Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Phil Trans R Soc B 362:1165–1183

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (project Nos. 30821005 and 20876096) and the National Key Basic Research Program of China (973 Program, Nos. 2009CB118906 and 2012CB721006). YCY thanks the financial support from the Biofuels Institute and the start-up grant from Jiangsu University. JJZ appreciates the National 985 Project and the University Distinguished Professorship program (SJTU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jiang Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yong, YC., Zhong, JJ. (2012). Impacts of Quorum Sensing on Microbial Metabolism and Human Health. In: Zhong, JJ. (eds) Future Trends in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2012_138

Download citation

Publish with us

Policies and ethics