Skip to main content

Mechanical Properties of Tendons

  • Chapter
Tendon Injuries

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander RMcN. (1966) Rubber-like properties of the inner hinge-ligament of Pectinidae. J Exp Biol. 44:119–130.

    PubMed  Google Scholar 

  2. Shadwick RE. (1992) Soft composites. In Vincent JFV, ed. Biomechanics-Materials: A Practical Approach. New York: Oxford University Press; 133–164.

    Google Scholar 

  3. Ettema GJ, Goh JT, Forwood MR. (1998) A new method to measure elastic properties of plastic-viscoelastic connective tissue. Med Eng Phys. 20:308–314.

    Article  PubMed  Google Scholar 

  4. Viidik A. (1973) Functional properties of collagenous tissues. Int Rev Connect Tissue Res. 6:127–215.

    PubMed  Google Scholar 

  5. Butler DL, Goods ES, Noyes FR, Zerniche RF. (1978) Biomechanics of ligaments and tendons. Exerc Sports Sci Rev. 6:125–181.

    Google Scholar 

  6. Ker RF. (1992) Tensile fibres: strings and straps. In Vincent JFV, ed. Biomechanics-Materials: A Practical Approach. New York: Oxford University Press; 75–97.

    Google Scholar 

  7. Cumming WG, Alexander RMcN, Jayes AS. (1978) Rebound resilience of tendons in the feet of sheep. J Exp Biol. 74:75–81.

    PubMed  Google Scholar 

  8. Ker RF. (1981) Dynamic tensile properties of the plantaris tendon of sheep (Ovies aries). J Exp Biol. 93:283–302.

    PubMed  Google Scholar 

  9. Woo SL-Y, Ritter MA, Amiel D, Sanders TM, Gomez MA, Kuei SC, Garfin SR, Akeson WH. (1980) The biomechanical and biochemical properties of swine tendons—long term effects of exercise on the digital extensors. Connect Tissue Res. 7:177–183.

    PubMed  Google Scholar 

  10. Woo SL-Y, Gomez MA, Woo Y-K, Akeson WH. (1982) Mechanical properties of tendons and ligaments II. the relationships of immobilization and exercise on tissue remodelling. Biorheology. 19:397–408.

    PubMed  Google Scholar 

  11. Bennett MB, Ker RF, Dimery NJ, Alexander RMcN. (1986) Mechanical properties of various mammalian tendons. J Zool Lond (A). 209:537–548.

    Google Scholar 

  12. Shadwick RE. (1990) Elastic energy storage in tendons: mechanical differences related to function and age. J Appl Physiol. 68:1033–1040.

    PubMed  Google Scholar 

  13. Johnson GA, Tramaglini DM, Levine RE, Ohno K, Choi NY, Woo SL-Y. (1994) The tensile and viscoelastic properties of human patellar tendon. J Orthop Res. 12:96–803.

    Article  Google Scholar 

  14. Itoi E, Berglund LJ, Grabowski JJ, Schultz FM, Growney ES, Morrey BF, An KN. (1995) Tensile properties of the supraspinatus tendon. J Orthop Res. 13:578–584.

    Article  PubMed  Google Scholar 

  15. Rigby BJ, Hirai N, Spikes JD, Erying H. (1959) The mechanical properties of rat tail tendon. J Gen Physiol. 43:265–283.

    Article  Google Scholar 

  16. Partington FR, Wood GC. (1963) The role of noncollagen components in the mechanical behaviour of tendon fibres. Biochem Biophys Acta. 69:485–495.

    Article  PubMed  Google Scholar 

  17. Elliott DH. (1965) Structure and function of mammalian tendon. Biol Rev. 40:392–41.

    Article  PubMed  Google Scholar 

  18. Diamant J, Keller A, Baer E, Litt M, Arridge RGC. (1972) Collagen: ultrastructure and its relations to mechanical properties as a function of ageing. Proc Roy Soc London. (B) 180:293–315.

    Google Scholar 

  19. Pollock CM, Shadwick RE. (1994) Relationship between body mass and biomechanical properties of limb tendons in adult mammals. Am J Physiol. 266:R1016–R1021.

    PubMed  Google Scholar 

  20. Cohen RE, Hooley CJ, McCrum NG. (1976) Viscoelastic creep of collagenous tissue. J Biomech. 9:175–184.

    Article  PubMed  Google Scholar 

  21. Hooley CJ, McCrum, NG, Cohen RE. (1980) The viscoelastic deformation of tendon. J Biomech. 13:521–528.

    Article  PubMed  Google Scholar 

  22. Fung YCB. (1967) Elasticity of soft tissues in simple elongation. Am J Physiol. 213:1532–1544.

    PubMed  Google Scholar 

  23. Riemersma DJ, Schamhardt HC. (1982) The Cryo Jaw, a clamp designed for in vivo rheology studies of horse digital flexor tendons. J Biomech. 15:619–620.

    Article  PubMed  Google Scholar 

  24. Woo SL-Y, Akeson WH, Jemmott GF. (1976) Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension. J Biomech. 9:785–791.

    Article  PubMed  Google Scholar 

  25. Loren GJ, Lieber RL. (1995) Tendon biomechanical properties enhance human wrist muscle specialization. J Biomech. 28:791–799.

    Article  PubMed  Google Scholar 

  26. Matthews LS, Ellis D. (1968) Viscoelastic properties of cat tendon: Effects of time after death and preservation by freezing. J Biomech. 1:65–71.

    Article  Google Scholar 

  27. Smith CW, Young IS, Kearney JN. (1996) Mechanical properties of tendons: Changes with sterilization and preservation. J Biomech Eng. 118:56–61.

    PubMed  Google Scholar 

  28. Haut TL, Haut RC. (1997) The state of tissue hydration determines the strain-rate-sensitive stiffness of human patellar tendon. J Biomech. 30:79–81.

    Article  PubMed  Google Scholar 

  29. Savolainen J, Myllyla V, Myllyla R, Vihko V, Vaanannen K, Takala TE. (1988) Effects of denervation and immobilization on collagen synthesis in rat skeletal muscle and tendon. Am J Physiol. 254:R897–R902.

    PubMed  Google Scholar 

  30. Loitz BJ, Zernicke RF, Vailas AC, Kody MH, Meals RA. (1989) Effects of short-term immobilization versus continuous passive motion on the biomechanical and biochemical properties of rat tendon. Clin Orthop. 224:265–271.

    Google Scholar 

  31. Vailas AC, Deluna DM, Lewis LL, Curwin SL, Roy RR, Alford EK. (1988) Adaptation of bone and tendon to prolonged hindlimb suspension in rats. J Appl Physiol. 65:373–376.

    PubMed  Google Scholar 

  32. Viidik A. (1982) Age-related changes in connective tissues. In: Viidik A. Lectures on Gerontology. London: Academic; 173–211.

    Google Scholar 

  33. Barnard K, Light ND, Sims TJ, Bailey AJ. (1987) Chemistry of the collagen cross-links. Origin and partial characterization of a putative mature cross-link of collagen. Biomech J. 244:303–309.

    Google Scholar 

  34. Tipton CM, Vailas AC, Matthes RD. (1986) Experimental studies on the influence of physical activity on ligaments, tendons and joints: a brief review. Acta Med Scand. (Suppl)71:157–168.

    Google Scholar 

  35. Blanton PL, Biggs NL. (1970) Ultimate tensile strength of fetal and adult human tendons. J Biomech. 3:181–189.

    Article  PubMed  Google Scholar 

  36. Maganaris CN, Paul JP. (2002) Tensile properties of the in vivo human gastrocnemius tendon. J Biomech. 35:1639–1646.

    Article  PubMed  Google Scholar 

  37. Vogel HG. (1980) Influence of maturation and ageing on mechanical and biochemical properties of connective tissue in rats. Mech Ageing Dev. 14:283–292.

    Article  PubMed  Google Scholar 

  38. Vogel HG. (1983) Age dependence of mechanical properties of rat tail tendons (hysteresis experiments). Aktuelle Gerontol. 13:22–27.

    PubMed  Google Scholar 

  39. Blevins FT, Hecker AT, Bigler GT, Boland AL, Hayes WC. (1994) The effects of donor age and strain rate on the biomechanical properties of bone-patellar tendon-bone allografts. Am J Sports Med. 22:328–333.

    PubMed  Google Scholar 

  40. Hubbard RP, Soutas-Little RW. (1984) Mechanical properties of human tendon and their age dependence. J Biomech Eng. 106:144–150.

    PubMed  Google Scholar 

  41. Nakagawa Y, Hayashi K, Yamamoto N, Nagashima K. (1996) Age-related changes in biomechanical properties of the Achilles tendon in rabbits. Eur J Appl Physiol. 73:7–10.

    Article  Google Scholar 

  42. Phelps D, Sonstegard DA, Matthews LS. (1974) Corticosteroid injection effects on the biomechanical properties of rabbit patellar tendons. Clin Orthop Rel Res. 100:345–348.

    Google Scholar 

  43. Wood TO, Cooke PH, Goodship AE. (1988) The effect of anabolic steroids on the mechanical properties and crimp morphology of the rat tendon. Am J Sports Med. 16:153–158.

    PubMed  Google Scholar 

  44. Noyes FR, Grood ES, Nussbaum NS, Cooper SM. (1977) Effect of intraarticular corticosteroids on ligament properties. a biomechanical and histological study in rhesus knees. Clin Orthop Rel Res. 123:197–209.

    Google Scholar 

  45. Herrick R, Herrick S. (1987) Ruptured triceps in a power lifter presenting a cubital tunnel syndrome: a case report. Am J Sports Med. 15:515–516.

    Google Scholar 

  46. Ker RF, Alexander RMcN, Bennett MB. (1988) Why are mammalian tendons so thick? J Zool Lond. 216:309–324.

    Google Scholar 

  47. Witzmann FA, Kim DH, Fitts RH. (1983) Effect of hindlimb immobilization on the fatigability of skeletal muscle. J Appl Physiol. 54:1242–1248.

    PubMed  Google Scholar 

  48. Powell PL, Roy RR, Kanim P, Bello MA, Edgerton VR. (1984) Predictability of skeletal muscle tension from architectural determinations in guinea pig hindlimbs. J Appl Physiol. 57:1715–1721.

    PubMed  Google Scholar 

  49. Bottinelli R, Canepari M, Pellegrino MA, Reggiani C. (1996) Force-velocity properties of human skeletal muscle fibres: myosin heavy chain and temperature dependence. J Physiol. 495:573–586.

    PubMed  Google Scholar 

  50. Lieber RL, Leonard ME, Brown CC, Trestik CL. (1991) Frog semitendinosus tendon load-strain and stress-strain properties during passive loading. Am J Physiol. 30:C86–C92.

    Google Scholar 

  51. Trestik CL, Lieber RL. (1993) Relationship between Achilles tendon mechanical properties and gastrocnemius muscle function. J Biomech Eng. 115:225–230.

    PubMed  Google Scholar 

  52. Zuurbier CJ, Everard AJ, van der Wees P, Huijing PA. (1994) Length-force characteristics of the aponeurosis in the passive and active muscle condition and in the isolated condition. J Biomech. 27:445–453.

    Article  PubMed  Google Scholar 

  53. Scott SH, Loeb GE. (1995) Mechanical properties of aponeurosis and tendon of the cat soleus muscle during whole-muscle isometric contractions. J Morphol. 224:73–86.

    Article  PubMed  Google Scholar 

  54. Maganaris CN, Paul JP. (1999) In vivo human tendon mechanical properties. J Physiol. 521:307–313.

    Article  PubMed  Google Scholar 

  55. Maganaris CN, Paul JP. (2000a) Load-elongation characteristics of in vivo human tendon and aponeurosis. J Exp Biol. 203:751–756.

    PubMed  Google Scholar 

  56. Maganaris CN, Paul JP. (2000c) Hysteresis measurements in intact human tendon. J Biomech. 33:1723–1727.

    Article  PubMed  Google Scholar 

  57. Maganaris CN, Paul JP. (2000b) In vivo human tendinous tissue stretch upon maximal muscle force generation. J Biomech. 33:1453–1459.

    Article  PubMed  Google Scholar 

  58. Ito M, Kawakami Y, Ichinose Y, Fukashiro S, Fukunaga T. (1998) Nonisometric behaviour of fascicles during isometric contractions of a human muscle. J Appl Physiol. 85:1230–1235.

    PubMed  Google Scholar 

  59. Kubo K, Kanehisa H, Kawakami Y, Fukanaga T. (2001) Growth changes in the elastic properties of human tendon structures. Int J Sports Med. 22:138–143.

    Article  PubMed  Google Scholar 

  60. Kubo K, Kanehisa H, Kawakami Y, Fukunaga T. (2001) Influence of static stretching on viscoelastic properties of human tendon structures in vivo. J Appl Physiol. 90:520–527.

    PubMed  Google Scholar 

  61. Magnusson SP, Aagaard P, Rosager S, Dyhre-Poulen P, Kjaer M. (2001) Load displacement properties of the human triceps surae aponeurosis in vivo. J Physiol. 531:277–288.

    Article  PubMed  Google Scholar 

  62. Muramatsu T, Muraoka T, Takeshita D, Kawakami Y, Hirano Y, Fukunaga T. (2001) Mechanical properties of tendon and aponeurosis of human gastrocnemius muscle in vivo. J Appl Physiol. 90:1671–1678.

    PubMed  Google Scholar 

  63. Maganaris CN, Kawakami Y, Fukunaga T. (2001) Changes in aponeurotic dimensions upon muscle shortening: In vivo observations in man. J Anat. 199:449–456.

    Article  PubMed  Google Scholar 

  64. van Donkelaar CC, Willems PJB, Muijtjens AMM, Drost MR. (1999) Skeletal muscle transverse strain during isometric contraction at different lengths. J Biomech. 32:755–762.

    Article  PubMed  Google Scholar 

  65. Kawakami Y, Abe T, Fukunaga T. (1993) Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol. 74:2740–2744.

    PubMed  Google Scholar 

  66. Narici MV, Binzoni T, Hiltbrand E, Fasel J, Terrier F, Cerretelli P. (1996) In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol. 496:287–297.

    PubMed  Google Scholar 

  67. Rack PMH, Ross HF. (1984) The tendon of flexor pollicis longus: its effects on the muscular control of force and position at the human thumb. J Physiol. 351:99–110.

    PubMed  Google Scholar 

  68. Huxley AF. (1957) Muscle structure and theories of contraction. Prog Biophys Chem. 7:255–318.

    Google Scholar 

  69. Zajac FE. (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. CRC Crit Rev Biomed Eng. 17:359–411.

    Google Scholar 

  70. Cavagna GA. (1977) Storage and utilization of elastic energy in skeletal muscle. Exerc Sports Sci Rev. 5:89–129.

    Google Scholar 

  71. Alexander RMcN. (1988) Elastic Mechanisms in Animal Movement. Cambridge, England: Cambridge University Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Maganaris, C.N., Narici, M.V. (2005). Mechanical Properties of Tendons. In: Maffulli, N., Renström, P., Leadbetter, W.B. (eds) Tendon Injuries. Springer, London. https://doi.org/10.1007/1-84628-050-8_2

Download citation

  • DOI: https://doi.org/10.1007/1-84628-050-8_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-503-8

  • Online ISBN: 978-1-84628-050-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics