Skip to main content

The Role of Clays in the Origin of Life

  • Chapter
Origins

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  • Akabori, S. (1955) Asymmetric synthesis of amino acids and formation of fore proteins, Kagaku 25, 54–59.

    CAS  Google Scholar 

  • Akabori, S., Okawa, K., and Sato, M. (1956) Introduction of side chains into polyglycine dispersed on solid surface I, Bull. Chem. Soc. Japan 29, 608–611.

    CAS  Google Scholar 

  • Albert, J.T. and Harter, R.D. (1973) Adsorption of lysozyme and ovalbumin by clay. Effect of clay suspension pH, and clay mineral type, Soil Sci. 115, 130–136.

    CAS  Google Scholar 

  • Anderson, D.M. and Banin, A. (1975) Soils and water and its relationship to the origin of life, Origins of Life 6, 23–36.

    Article  CAS  Google Scholar 

  • Bernal, J.D. (1949) The Physical Basis of Life, Proc. Phys. Soc. Conference November 1947, 62, 537–558. (London)

    Google Scholar 

  • Cairns-Smith, A.G. (1966) The Origin of life and the nature of the primitive gene, J. Theor. Biol. 10, 53–88.

    Article  CAS  Google Scholar 

  • Degenes, E.T., Matheja, J., and Jackson, T.A. (1970) Template catalysis: Asymmetric polymerization of amino acids on clay minerals, Nature 227, 492–493.

    Article  Google Scholar 

  • Edelman, C.H. and Favejee, J.C.L. (1940) On the crystal structure of montmorillonite and halloysite, Z. Kris. 102,417–431.

    CAS  Google Scholar 

  • Ertem, G. and Ferns, J.P. (1998) Formation of RNA oligomers on montmorillonite. Site of the reaction, Origins of Life Evol.Biosphere 28, 485–499.

    Article  CAS  Google Scholar 

  • Franchi, M., Bramanti, E., Morassi Bonzi, L., Orioli, P. L., Vettori, C, and Gallori, E. (1999) Clay-nucleic acids complexes: Characteristics and implications for the preservation of genetic material in primeval habitats, Origins Life Evol. Biosphere 29,297–315.

    Article  CAS  Google Scholar 

  • Ferris, J.P., Ertem, G., and Agarwal, V.K. (1989) The adsorption of nucleotides and polynucleotides on montmorillonite clay, Origins Life Evol. Biosphere 19, 153–164.

    Article  CAS  Google Scholar 

  • Ferris, J.P. (1991) Prebiotic synthesis on minerals: RNA oligomer formation, In: J.M. Greenberg, C.X. Mendoza-Gomez, and J. Pirronello (eds.), The Chemistry of Life’s Origins, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp.301–322.

    Google Scholar 

  • Ferris, J.P. and Ertem, G. (1992a) Oligomerization reactions of nucleotides on montmorillonite: Reaction of the 5′-phosphorimidazolide of adenosine, Science, 257, 1387–1389.

    CAS  Google Scholar 

  • Ferris, J.P. and Ertem, G. (1992b) Oligomerization reactions of ribonucleotides: The reaction of the 5′phosphorimidazolides of nucleosides on montmorillonite and other minerals, Origins of Life Evol. Biosphere 22, 369–381.

    Article  CAS  Google Scholar 

  • Friebele, E., Shimoyama, A., and Ponnamperuma, C. (1981) Possible selective adsorption of enantiomers by Na-montmorillonite, In: Y. Wolman (ed.), Origin life, Proceedings of the Third ISSOL Meeting and tfhe Sixth ICOL Meeting, D. Reidel Publishing Company, Dordrecht, The Netherlands, pp. 337–346.

    Google Scholar 

  • Fripiat, J.J., Poncelet, G., van Assche, A.T., and Mayandon, J. (1972) Zeolite as catalysts for the synthesis of amino acids and purines, Clays and Clay Miner 20, 331–339.

    CAS  Google Scholar 

  • Gibbs, D., Lohrmann, R., and Orgel, L.E. (1980) Template-directed synthesis and selective adsorption of oligonucleotides on hydroxyapatite, J. Mol. Evol. 15, 347–354.

    Article  CAS  Google Scholar 

  • Gilbert, W. (1986) The RNA world, Nature 319, 618.

    Article  Google Scholar 

  • Graf, G. and Lagaly, G. (1980) Interaction of clay minerals with adenosine-5-phosphates, Clay and Clays Minerals 28, 12–18.

    CAS  Google Scholar 

  • Greenland, D.J. (1956) The adsorption of sugars by montmorillonite I. X-ray studies, J. Sil Sci. 7, 319–328.

    Google Scholar 

  • Greenland, D.J., Laby, R.H., and Quirk, J.P. (1962) Adsorption of glycine and its di-, tri-and tetrapeptides by montmorillonite, Trans.Faraday Soc. 58, 829–841.

    Article  CAS  Google Scholar 

  • Guzmán, A., Ramos-Bernal, S., and Negrón-Mendoza, A. (2000) Irradiation of adenine adsorbed in Namontmorillonite. Implication to chemical evolution studies, In: J. Chela-Flores, G A. Lemarchand, and J. Oró (eds.), Astrobiology: Origins from the Big Bang to Civilization, Kluwer Academic Publisher, Dordrecht, The Netherlands, pp.271–273.

    Google Scholar 

  • Hatanaka, H., Egami, F. (1977) The formation of amino acids and related oligomers from formaldehyde and hydroxylamine in modified sea mediums related to prebiotic conditions, Bull. Chem. Soc. Japon 50, 1147–1156.

    CAS  Google Scholar 

  • Hill, A.R., Bohler, C, and Orgel, L. (1998) Polymerization on the rocks: Negatively charged α-amino acids, Origins of Life Evol. Biosphere 28, 235–243.

    Article  CAS  Google Scholar 

  • Hsu, Shuei-Chi, (1977) Ph.D. The adsorption of peptides on montmorillonite, Dissertation, Polytechnic Institute of New York, Brooklyn, N.Y.

    Google Scholar 

  • Ibañez, J.D., Kimball, A.P., and Oró, J. (1971) Possible prebiotic condensation of mononucleotides by cyanamide, Science 173, 444–446.

    Google Scholar 

  • Inoue, T., Orgel. L.E. (1982a) Oligomerization of (guanosine 5′-phosphor)-2 methylimidazolide on Poly(C). A RNApolymerase model, J. Mol. Evol. 162,201–217.

    CAS  Google Scholar 

  • Inoue, T., Orgel. L.E. (1982b) A non-enzymatic RNA polymerase model. Science 219, 859–862.

    Google Scholar 

  • Jepson, W.B., Williams, J.F. (1972) Adsorption of water by clays, Clay Miner. 9, 275–279.

    CAS  Google Scholar 

  • Lahav, N. and Chang, S. (1976) The possible role of solid surface area in condensation reactions during chemical evolution: Re-evaluation, J. Mol. Evol. 8, 357–380.

    Article  CAS  Google Scholar 

  • Lahav, N., and Chang, S (1982) The possible role of soluble salts in chemical evolution, J. Mol. Evol. 19, 36–46.

    Google Scholar 

  • Lahav, N (1999) Biogenesis, Oxford University Press, Oxford.

    Google Scholar 

  • Lailach, G.E., Thompson, T.D., and Brindley, G.W. (1968a) Absorption of pyrimidines, purines, and nucleosides by Li-, Na-, Mg-, and Ca-montmorillonite (clay-organic studies XII), Clays and Clay Mineral 16, 285–293.

    Google Scholar 

  • Lailach, G.E., Thompson, T.D., and Brindley, G.W. (1968b) Absorption of pyrimidines, purines, and nucleosides by Co-, Ni-, Cu-, and Fe(III)-montmorillonite (clay-organic studies XIII), Clays and Clay Mineral 16, 295–301.

    Google Scholar 

  • Laszlo, P. (1987) Chemical reactions on clays, Science 235, 1473–1477.

    CAS  Google Scholar 

  • Liu, R. and Orgel, L. (1998) Polymerization on the rocks: β-amino acids and arginine, Origins of Life Evol. Biosphere 28, 245–257.

    Article  CAS  Google Scholar 

  • Miyakawa, S. and Ferris, J. (2002) Sequence selectivity in the trimers formed in the montmorillonite clay catalyzed reactions of RNA dimers (pNpN) with the 5′phosphorimidazolides of nucleosides (ImpN), In: A. Negron-Mendoza, L. Delaye, E. Chacón, and A. Becerra (eds), Abstracts of the 10 th ISSOL Meeting, Oaxaca, Mexico, pp. 78.

    Google Scholar 

  • Mitra, S.P., Misra, S.G, and Panda, N. (1957) Adsorption of glucose by calcium bentonite, Proc. Natl.Acad Sci. India 26A, Pt 1, 72–74.

    CAS  Google Scholar 

  • Moonrbath, S. (1995) Private communication.

    Google Scholar 

  • Mortland, M. M.. (1970) Clay-organic complexes and interactions, Adv. Agron. 22, 75–117.

    Article  CAS  Google Scholar 

  • Mosqueira, F.G, Albarrán, G., and Negrón-Mendoza, A. (1996) A review of conditions effecting the radiolysis due to 40K for nucleic acid bases and their derivatives adsorbed on clay minerals, Origins Life Evol. Biosphere 26, 75–94.

    Article  CAS  Google Scholar 

  • Negrón-Mendoza, A., Albárran, G., and Ramos-Bernal S. (1993) Transformation of malonic acid on a clay mineral by gamma radiation, Radiat. Phys. Chem. 42, 4–6.

    Google Scholar 

  • Negrón-Mendoza, A., Ramos-Bernal, S., and Albarrán, G. (1995) Enhance decarboxylation reaction of carboxylic acids in clay minerals, Radiat. Phys. Chem. 46, 565–568.

    Article  Google Scholar 

  • Negrón-Mendoza, A. and Ramos-Bernal, S. (1998) Radiolysis of carboxylic acids adsorbed in clay minerals, Radiat. Phys. Chem. 52, 395–399.

    Article  Google Scholar 

  • Nicol, S.K. and Hunter, R.J. (1970) Rheological and electrokinetic properties of kaolinite suspensions, Aust J. Chem. 23, 2177–2186.

    Article  CAS  Google Scholar 

  • Odom, D., Lahav, N., and Chang, S. (1979) Association of nucleotides with homoionic clays, J. Mol. Evol. 12, 365–367.

    Article  CAS  Google Scholar 

  • Odin, G.S. (1988) The origin of clays on Earth, In: A.G. Cairns-Smith and H. Hartman (eds.), Clay Minerals and the Origin of Life, Cambridge University Press, Cambridge, Great Britain, pp. 81–89.

    Google Scholar 

  • Oparin, I. A., (1965) The pathways of primary development of metabolism and artificial model of this development, In: S. Fox (ed.) The Origin of Prebiological Systems and Their Molecular Matrix, Academic Press, New York. U.S.A. pp. 331.

    Google Scholar 

  • Otroschenko, V. and Vasilyeva, N.V. (2000) The oligonucleotide synthesis mononucleotides, directed by polynucleotide template adsorbed on the minerals Evol. Biosphere 30, 256.

    Google Scholar 

  • Paecht-Horowitz, M., Berger, J., and Katchalsky, A. (1970) Prebiotic synthesis heterogeneous condensation of amino-acid adenylates, Nature 228, 636–639.

    Article  CAS  Google Scholar 

  • Perezgaga, L. Negrón-Mendoza, A., Mosqueira, G., Serratos, A., and De Pablo, L. (2003) Site of adsorption of purines, pyrimidines and its corresponding derivatives on sodium montmorillonite. To be published.

    Google Scholar 

  • Pinnavaia, T.J., Raythatha, R., Lee, J.G., Halloran, L.J., and Hoffman, J.F. (1979) Intercalation of catalytically active metal complexes in mica-type silicates: rhodium hydrogenation catalysis, J. Am. Chem. Soc. 101, 6891–6897.

    Article  CAS  Google Scholar 

  • Ponnamperuma, C, Shimoyama, A., and Friebele, E. (1982) Clay and the origin of life, Origins of life 12, 9–39.

    Article  CAS  Google Scholar 

  • Shimoyama, A and Ponnamperuma, C. (1980) In: P.E. Hare, T.C. Hoering and K. King, Jr. (eds.), Biogeochemistry ofAmino Acids, Wiley, New York, U.S.A. pp. 145–151.

    Google Scholar 

  • Solomon, D.H. (1968) Clay minerals as electron acceptors and or electron donors in organic reactions, Clays and Clay Miner. 16, 31–39.

    Google Scholar 

  • Sposito, G. (1984) The Surface Chemistry of Soils, Clarendon Press, Oxford.

    Google Scholar 

  • Schwartz, A. and Orgel L. (1991) Biology and theory: RNA and the origin of life, In: J.M. Greenberg, C.X. Mendoza-Gomez, and V. Pirronello (eds.), The Chemistry of Life’s Origins, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 323–344.

    Google Scholar 

  • Swartzen-Allen, S.L., and Matijevic, E. (1974) Surface and colloid chemistry, Chem. Rev 74, 385–400.

    CAS  Google Scholar 

  • Rao, M., Odom, D.G. and Oro, J. (1980) Clays in Prebiological Chemistry, J. Mol. Evol. 15, 317–331.

    Article  CAS  Google Scholar 

  • Theng, B.K.G. (1974) The Chemistry of clay-organic reactions, John Wiley & Sons, New York.

    Google Scholar 

  • Weiss, A. (1969) Organic derivatives of clay minerals, zeolites and related minerals, In: G. Eglinton and M. T.J. Murphy, (eds.), Organic Geochemistry, Springer-Verlag, New York, pp. 737–781.

    Google Scholar 

  • Weiss, A. (1981) Replication and evolution in inorganic systems, Angew. Chem. Int. Ed. Engl, 20, 850–860.

    Article  Google Scholar 

  • Yoshino, D., Hayatsu, R., and Anders, E. (1971) Origin of organic matter in early solar system III. Amino acids: Catalytic synthesis, Geochim. Cosmochim. Acta 35, 927–938.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Negron-Mendoza, A., Ramos-Bernal, S. (2004). The Role of Clays in the Origin of Life. In: Seckbach, J. (eds) Origins. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2522-X_12

Download citation

Publish with us

Policies and ethics