Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Longerich, S., Basu, U., Alt, F. & Storb, U. AID in somatic hypermutation and class switch recombination. Curr Opin Immunol 18, 164–74 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. Rogerson, B. Mapping the upstream boundary of somatic mutations in rearranged immunoglobulin transgenes and endogenous genes. Mol. Immunol. 31, 83–98 (1994).

    Article  PubMed  CAS  Google Scholar 

  3. Wu, P. & Claflin, L. Promoter-associated displacement of hypermutations. Internatl. Immunol. 10, 1131–1138 (1998).

    Article  CAS  Google Scholar 

  4. Motoyama, N., Miwa, T., Suzuki, Y., Okada, H. & Azuma, T. Comparison of somatic mutation frequency among immunoglobulin genes. J. Exp. Med. 179, 395–403 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. Lebecque, S. & Gearhart, P. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5’ boundary is near the promoter, and 3’ boundary is ~ 1kb from V(D)J gene. J. Exp. Med. 172, 1717–1727 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. Rada, C., Gonzalez-Fernandez, A., Jarvis, J. M. & Milstein, C. The 5’ boundary of somatic hypermutation in a Vk gene is in the leader intron. Eur. J. immunol. 24, 1453–1457 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. Longerich, S., Tanaka, A., Bozek, G. & Storb, U. The very 5’ end and the constant region of Ig genes are spared from somatic mutation because AID does not access these regions. J. Exp. Med. 202, 1443–1454 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. Chaudhuri, J., Khuong, C. & Alt, F. W. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 430, 992–998 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. Peters, A. & Storb, U. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity 4, 57–65 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. Rada, C. & Milstein, C. The intrinsic hypermutability of antibody heavy and light chain genes decays exponentially. EMBO J. 20, 4570–4576 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. Motoyama, N., Okada, H. & Azuma, T. Somatic mutation in constant region of mouse 1 light chains. Proc. Natl. Acad. Sci. USA 88, 7933–7937 (1991).

    Article  PubMed  CAS  Google Scholar 

  12. Storb, U. et al. Physical linkage of mouse λ genes by pulsed -field gel electrophoresis suggests that the rearrangement process favors proximate target sequences. Mol.Cell.Biol. 9, 711–718 (1989).

    PubMed  CAS  Google Scholar 

  13. Bransteitter, R., Pham, P., Scharff, M. & Goodman, M. Activation-induced cytidine deminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. USA 100, 4102–4107 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. Dickerson, S., Market, E., Besmer, E. & Papavasiliou, F. N. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med. 197, 1291–1296 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. Pham, P., Bransteitter, R., Petruska, J. & Goodman, M. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424, 103–107 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. Bransteitter, R., Pham, P., Calabrese, P. & Goodman, M. F. Biochemical analysis of hypermutational targeting by wild type and mutant activation-induced cytidine deaminase. J. Biol. Chem. 279, 51612–51621 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 421, 726–730 (2003).

    Article  Google Scholar 

  18. Sohail, A., Klapacz, J., Samaranayake, M., Ullah, A. & Bhagwat, A. Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. Nuc. Acids Res. 31, 2990–2994 (2003).

    Article  CAS  Google Scholar 

  19. Shen, H. & Storb, U. Activation-induced cytidine deaminase (AID) can target both DNA strands when the DNA is supercoiled. Proc. Natl. Acad. Sci. 101, 12997–13002 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. Shen, H., S., R. & U., S. Targeting of the activation-induced cytosine deaminase is strongly influenced by the sequence and structure of the targeted DNA. Mol. Cell. Biol. 25, 10815–10821 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Storb, U. et al. (2007). Targeting of AID to Immunoglobulin Genes. In: Gupta, S., Alt, F., Cooper, M., Melchers, F., Rajewsky, K. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation XI. Advances in Experimental Medicine and Biology, vol 596. Springer, Boston, MA. https://doi.org/10.1007/0-387-46530-8_8

Download citation

Publish with us

Policies and ethics