Skip to main content

Liposome Techniques for Synthesis of Biomimetic Lipid Membranes

  • Chapter
Nanobiotechnology of Biomimetic Membranes

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 1))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965;13(1):238–52.

    Article  Google Scholar 

  2. Ulrich AS. Biophysical aspects of using liposomes as delivery vehicles. Bioscience Reports 2002;22(2):129–50.

    Article  Google Scholar 

  3. Felnerova D, Viret JF, Gluck R, Moser C. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Current Opinion in Biotechnology 2004;15(6):518–29.

    Article  Google Scholar 

  4. Ropert C. Liposomes as a gene delivery system. Brazilian Journal of Medical & Biological Research 1999;32(2):163–9.

    Google Scholar 

  5. Pohorille A, Deamer D. Artificial cells: prospects for biotechnology. Trends Biotechnol 2002;20(3):123–8.

    Article  Google Scholar 

  6. Nasseau M, Boublik Y, Meier W, Winterhalter M, Fournier D. Substrate-permeable encapsulation of enzymes maintains effective activity, stabilizes against denaturation, and protects against proteolytic degradation. Biotechnology & Bioengineering 2001;75(5):615–8.

    Article  Google Scholar 

  7. Ruysschaert T, Germain M, Gomes JF, Fournier D, Sukhorukov GB, Meier W, et al. Liposome-based nanocapsules. IEEE Transactions on Nanobioscience 2004;3(1):49–55.

    Article  Google Scholar 

  8. Roux A, Cappello G, Cartaud J, Prost J, Goud B, Bassereau P. A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc Natl Acad Sci U S A 2002;99(8):5394–9.

    Article  ADS  Google Scholar 

  9. Arshady R. Microcapsules for food. J Microencapsul 1993;10(4):413–35.

    Article  Google Scholar 

  10. Fresta M, Wehrli E, Puglisi G. Neutrase entrapment in stable multilamellar and large unilamellar vesicles for the acceleration of cheese ripening. Journal of Microencapsulation 1995;12(3):307–25.

    Article  Google Scholar 

  11. Gregoriadis G. Immunological adjuvants: a role for liposomes. Immunol Today 1990;11(3):89–97.

    Article  Google Scholar 

  12. Alving CR. Liposomes as carriers of antigens and adjuvants. J Immunol Methods 1991;140(1):1–13.

    Article  Google Scholar 

  13. Frezard F. Liposomes: from biophysics to the design of peptide vaccines. Braz J Med Biol Res 1999;32(2):181–9.

    Article  Google Scholar 

  14. Rongen HA, Bult A, van Bennekom WP. Liposomes and immunoassays. J Immunol Methods 1997;204(2):105–33.

    Article  Google Scholar 

  15. van den Bergh BA, Wertz PW, Junginger HE, Bouwstra JA. Elasticity of vesicles assessed by electron spin resonance, electron microscopy and extrusion measurements. International Journal of Pharmaceutics 2001;217(1-2):13–24.

    Article  Google Scholar 

  16. Oldfield E, Chapman D. Dynamics of lipids in membranes: Heterogeneity and the role of cholesterol. FEBS Lett 1972;23(3):285–297.

    Article  Google Scholar 

  17. New RRC. Liposomes - A Practical Approach. Oxford: IRL Press at Oxford University Press; 1994.

    Google Scholar 

  18. Chesnoy S, Huang L. Structure and function of lipid-DNA complexes for gene delivery. Annu Rev Biophys Biomol Struct 2000;29:27–47.

    Article  Google Scholar 

  19. Akashi K, Miyata H, Itoh H, Kinosita K, Jr. Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys J 1996;71(6):3242–50.

    Article  Google Scholar 

  20. Kirby C, Gregoriadis G. Dehydration-rehydration vesicles: a simple method for high yield drug entrapment in liposomes. Biotechnology 1984;2:979–984.

    Article  Google Scholar 

  21. Hope MJ, Bally MB, Mayer LD, Janoff AS, Cullis PR. Generation of Multilamellar and Unilamellar Phospholipid Vesicles. Chemistry and Physics of Lipids 1986;40:89–107.

    Article  Google Scholar 

  22. Moscho A, Orwar O, Chiu DT, Modi BP, Zare RN. Rapid preparation of giant unilamellar vesicles. Proceedings of the National Academy of Sciences of the United States of America 1996;93(21):11443–7.

    Article  ADS  Google Scholar 

  23. Szoka F, Jr., Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 1980;9:467–508.

    Article  Google Scholar 

  24. Gregoriadis G. Liposome Technology. 2nd Edition ed. Boca Raton, FL.: CRC Press Inc.; 1993.

    Google Scholar 

  25. Holopainen JM, Angelova MI, Soderlund T, Kinnunen PK. Macroscopic consequences of the action of phospholipase C on giant unilamellar liposomes. Biophys J 2002;83(2):932–43.

    Article  Google Scholar 

  26. Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry 1969;8(1):344–52.

    Article  Google Scholar 

  27. Hope MJ, Bally MB, Webb G, Cullis PR. Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochimica et Biophysica Acta (BBA) – Biomembranes 1985;812(1):55–65.

    Article  Google Scholar 

  28. Jin AJ, Huster D, Gawrisch K, Nossal R. Light scattering characterization of extruded lipid vesicles. European Biophysics Journal 1999;28(3):187–99.

    Article  Google Scholar 

  29. Singh Y, Gulyani A, Bhattacharya S. A new ratiometric fluorescence probe as strong sensor of surface charge of lipid vesicles and micelles. FEBS Lett 2003;541(1–3):132–6.

    Article  Google Scholar 

  30. Kagawa Y, Racker E. Partial Resolution of the Enzymes Catalysing Oxidative Phosphorylation. The Jouranl of Biological Chemistry 1971;246(17):5477–5487.

    Google Scholar 

  31. Le Dain AC, Saint N, Kloda A, Ghazi A, Martinac B. Mechanosensitive ion channels of the archaeon Haloferax volcanii. Journal of Biological Chemistry 1998;273(20):12116–9.

    Article  Google Scholar 

  32. Kloda A, Martinac B. Molecular identification of a mechanosensitive channel in archaea. Biophysical Journal 2001;80(1):229–40.

    Article  ADS  Google Scholar 

  33. Park KH, Berrier C, Martinac B, Ghazi A. Purification and functional reconstitution of N- and C-halves of the MscL channel. Biophysical Journal 2004;86(4):2129–36.

    Article  ADS  Google Scholar 

  34. Rigaud JL, Levy D. Reconstitution of membrane proteins into liposomes. Methods in Enzymology 2003;372:65–86.

    Article  Google Scholar 

  35. Li C, Deng Y. A novel method for the preparation of liposomes: freeze drying of monophase solutions. J Pharm Sci 2004;93(6):1403–14.

    Article  Google Scholar 

  36. Needham D, Evans E. Structure and mechanical properties of giant lipid (DMPC) vesicle bilayers from 20 degrees C below to 10 degrees C above the liquid crystal-crystalline phase transition at 24 degrees C. Biochemistry 1988;27(21):8261–9.

    Article  Google Scholar 

  37. Angelova MI, Dimitrov DS. Liposome Electroformation. Faraday Discuss. Chem. Soc., 1986;81:303–311.

    Google Scholar 

  38. Hill WG, Zeidel ML. Reconstituting the barrier properties of a water-tight epithelial membrane by design of leaflet-specific liposomes. Journal of Biological Chemistry 2000;275(39):30176–85.

    Article  Google Scholar 

  39. Spector AA, Yorek MA. Membrane lipid composition and cellular function. Journal of Lipid Research 1985;26(9):1015–35.

    Google Scholar 

  40. Viallat A, Dalous J, Abkarian M. Giant lipid vesicles filled with a gel: shape instability induced by osmotic shrinkage. Biophys J 2004;86(4):2179–87.

    Article  Google Scholar 

  41. Peker B, Wuu JJ, Swartz JR. Affinity purification of lipid vesicles. Biotechnology Progress 2004;20(1):262–8.

    Article  Google Scholar 

  42. Tortorella D, Ulbrandt ND, London E. Simple centrifugation method for efficient pelleting of both small and large unilamellar vesicles that allows convenient measurement of protein binding. Biochemistry 1993;32(35):9181–8.

    Article  Google Scholar 

  43. Noppl-Simson DA, Needham D. Avidin-biotin interactions at vesicle surfaces: adsorption and binding, cross-bridge formation, and lateral interactions. Biophysical Journal 1996;70(3):1391–401.

    Article  ADS  Google Scholar 

  44. Pignataro B, Steinem C, Galla HJ, Fuchs H, Janshoff A. Specific adhesion of vesicles monitored by scanning force microscopy and quartz crystal microbalance. Biophysical Journal 2000;78(1):487–98.

    Article  ADS  Google Scholar 

  45. Lee RJ, Huang L. Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. Journal of Biological Chemistry 1996;271(14):8481–7.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Valenzuela, S.M. (2007). Liposome Techniques for Synthesis of Biomimetic Lipid Membranes. In: Martin, D.K. (eds) Nanobiotechnology of Biomimetic Membranes. Fundamental Biomedical Technologies, vol 1. Springer, Boston, MA. https://doi.org/10.1007/0-387-37740-9_3

Download citation

Publish with us

Policies and ethics