Skip to main content

Fractals as Pre-Processing Tool for Computational Intelligence Application

  • Chapter
Computational Intelligence

Preprocessing is the process of adapting the input of our Computational Intelligence (CI) problem to the CI technique applied. Images are inputs of many problems, and Fractal processing of the images to extract relevant geometry characteristics is a very important tool. This chapter is dedicated to Fractal Preprocessing. In Pedology, fractal models were fitted to match the structure of soils and techniques of multifractal analysis of soil images were developed as is described in a state-of-the-art panorama. A box-counting method and a gliding box method are presented, both obtaining from images sets of dimension parameters, and are evaluated in a discussed case study from images of samples, and the second seems preferable. Finally, a comprehensive list of references is given

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharony, A., 1990, Multifractals in physics – successes, dangers and challenges, Physica A. 168:479–489.

    Article  MathSciNet  Google Scholar 

  • Ahammer, H., De Vaney, T.T.J. and Tritthart, H.A., 2003, How much resolution is enough? Influence of downscaling the pixel resolution of digital images on the generalised dimensions, Physica D. 181 (3–4):147–156.

    Article  MATH  MathSciNet  Google Scholar 

  • Allain, C. and Cloitre, M., 1991, Characterizing the lacunarity of random and deterministic fractal sets, Physical Review A. 44:3552–3558.

    Article  MathSciNet  Google Scholar 

  • Anderson, A.N., McBratney, A.B. and FitzPatrick, E.A., 1996, Soil Mass, Surface, and Spectral Fractal Dimensions Estimated from Thin Section Photographs, Soil Sci. Soc. Am. J. 60:962–969.

    Article  Google Scholar 

  • Anderson, A.N., McBratney, A.B. and Crawford, J.W., Applications of fractals to soil studies. Adv. Agron., 63:1, 1998.

    Article  Google Scholar 

  • Barnsley, M.F., Devaney, R.L., Mandelbrot, B.B., Peitgen, H.O., Saupe, D. and Voss, R.F., 1988, The Science of Fractal Images. Edited by H.O. Peitgen and D. Saupe, Springer-Verlag, New York.

    Google Scholar 

  • Bartoli, F., Philippy, R., Doirisse, S., Niquet, S. and Dubuit, M., 1991, Structure and self-similarity in silty and sandy soils; the fractal approach, J. Soil Sci. 42:167–185.

    Article  Google Scholar 

  • Bartoli, F., Bird, N.R., Gomendy, V., Vivier, H. and Niquet, S., 1999, The relation between silty soil structures and their mercury porosimetry curve counterparts: fractals and percolation, Eur. J. Soil Sci., 50(9).

    Google Scholar 

  • Bartoli, F., Dutartre, P., Gomendy, V., Niquet, S. and Vivier, H., 1998. Fractal and soil structures. In: Fractals in Soil Science, Baveye, Parlange and Stewart, Eds., CRC Press, Boca Raton, 203–232.

    Google Scholar 

  • Baveye, P. and Boast, C.W. Fractal Geometry, Fragmentation Processes and the Physics of Scale-Invariance: An Introduction. In Fractals in Soil Science, Baveye, Parlange and Stewart, Eds., CRC Press, Boca Raton, 1998, 1.

    Google Scholar 

  • Baveye, P., Boast, C.W., Ogawa, S., Parlange, J.Y. and Steenhuis, T., 1998. Influence of image resolution and thresholding on the apparent mass fractal characteristics of preferential flow patterns in field soils, Water Resour. Res. 34, 2783–2796.

    Google Scholar 

  • Bird, N., Dìaz, M.C., Saa, A. and Tarquis, A.M., 2006. Fractal and Multifractal Analysis of Pore-Scale Images of Soil. J. Hydrol, 322, 211–219.

    Article  Google Scholar 

  • Bird, N.R.A., Perrier, E. and Rieu, M., 2000. The water retention function for a model of soil structure with pore and solid fractal distributions. Eur. J. Soil Sci. 51, 55–63.

    Article  Google Scholar 

  • Bird, N.R.A. and Perrier, E.M.A., 2003. The pore-solid fractal model of soil density scaling. Eur. J. Soil Sci. 54, 467–476.

    Article  Google Scholar 

  • Booltink, H.W.G., Hatano, R. and Bouma, J., 1993. Measurement and simulation of bypass flow in a structured clay soil; a physico-morphological approach. J. Hydrol. 148, 149–168.

    Article  Google Scholar 

  • Brakensiek, D.L., W.J. Rawls, S.D. Logsdon and Edwards, W.M., 1992. Fractal description of macroporosity. Soil Sci. Soc. Am. J. 56, 1721–1723.

    Article  Google Scholar 

  • Buczhowski, S., Hildgen, P. and Cartilier, L. 1998. Measurements of fractal dimension by box-counting: a critical analysis of data scatter. Physica A 252, 23–34.

    Article  Google Scholar 

  • Cheng, Q. and Agerberg, F.P. (1996). Comparison between two types of multifractal modeling. Mathematical Geology, 28(8), 1001–1015.

    Article  MATH  MathSciNet  Google Scholar 

  • Cheng, Q. (1997a). Discrete multifractals. Mathematical Geology, 29(2), 245–266.

    Google Scholar 

  • Cheng, Q. (1997b). Multifractal modeling and lacunarity analysis. Mathematical Geology, 29(7), 919–932.

    Article  Google Scholar 

  • Crawford, J.W., Baveye, P., Grindrod, P. and Rappoldt, C. Application of Fractals to Soil Properties, Landscape Patterns, and Solute Transport in Porous Media, in Assessment of Non-Point Source Pollution in the Vadose Zone. Geophysical Monograph 108, Corwin, Loague and Ellsworth, Eds., American Geophysical Union, Wahington, DC, 1999, 151.

    Google Scholar 

  • Crawford, J.W., Ritz, K. and Young, I.M. Quantification of fungal morphology, gaseous transport and microbial dynamics in soil: an integrated framework utilising fractal geometry. Geoderma, 56, 1578, 1993.

    Article  Google Scholar 

  • Crawford, J.W., Matsui, N. and Young, I.M. 1995., The relation between the moisture-release curve and the structure of soil. Eur. J. Soil Sci. 46, 369–375.

    Article  Google Scholar 

  • Dathe, A., Eins, S., Niemeyer, J. and Gerold, G. The surface fractal dimension of the soil-pore interface as measured by image analysis. Geoderma, 103, 203, 2001.

    Article  Google Scholar 

  • Dathe, A., Tarquis, A.M. and Perrier, E., 2006. Multifractal analysis of the pore- and solid-phases in binary two-dimensional images of natural porous structures. Geoderma, doi:10.1016/j.geoderma.2006.03.024, in press.

    Google Scholar 

  • Dathe, A. and Thullner, M., 2005. The relationship between fractal properties of solid matrix and pore space in porous media. Geoderma, 129, 279–290.

    Article  Google Scholar 

  • Feder, J., 1989. Fractals. Plenum Press, New York. 283pp

    MATH  Google Scholar 

  • Flury, M. and Fluhler, H., 1994. Brilliant blue FCF as a dye tracer for solute transport studies – A toxicological overview. J.Environ. Qual. 23, 1108–1112.

    Article  Google Scholar 

  • Flury, M. and Fluhler, H., 1995. Tracer characteristics of brilliant blue. Soil Sci. Soc. Am. J. 59, 22–27.

    Article  Google Scholar 

  • Flury, M., Fluhler, H., Jury, W.A. and Leuenberger, J., 1994. Susceptibility of soils to preferential flow of water: A field study, Water Resour. Res. 30, 1945–1954.

    Google Scholar 

  • Gimènez, D., R.R. Allmaras, E.A. Nater and Huggins, D.R., 1997a. Fractal dimensions for volume and surface of interaggregate pores – scale effects. Geoderma 77, 19–38.

    Article  Google Scholar 

  • Gimènez D., Perfect E., Rawls W.J. and Pachepsky, Y., 1997b. Fractal models for predicting soil hydraulic properties: a review. Eng. Geol. 48, 161–183.

    Article  Google Scholar 

  • Gouyet, J.G. Physics and Fractal Structures. Masson, Paris, 1996.

    Google Scholar 

  • Grau, J., Mèndez, V., Tarquis, A.M., Dìaz, M.C. and A. Saa, 2006. Comparison of gliding box and box-counting methods in soil image analysis. Geoderma, doi:10.1016/j.geoderma.2006.03.009, in press.

    Google Scholar 

  • Griffith, D.A.. Advanced Spatial Statistics. Kluwer Academic Publishers, Boston, 1988.

    Google Scholar 

  • Hallett, P.D., Bird, N.R.A., Dexter, A.R. and Seville, P.K., 1998. Investigation into the fractal scaling of the structure and strength of soil aggregates. Eur. J. Soil Sci. 49, 203–211.

    Google Scholar 

  • Hatano, R. and Booltink, H.W.G., 1992. Using Fractal Dimensions of Stained Flow Patterns in a Clay Soil to Predict Bypass Flow. J. Hydrol. 135, 121–131.

    Article  Google Scholar 

  • Hatano, R., Kawamura, N., Ikeda, J. and Sakuma, T. Evaluation of the effect of morphological features of flow paths on solute transport by using fractal dimensions of methylene blue staining patterns. Geoderma 53, 31, 1992.

    Article  Google Scholar 

  • Hentschel, H.G.R. and Procaccia, I. (1983). The infinite number of generalized dimensions of fractals and strange attractors. Physica D, 8, 435, 1983.

    Google Scholar 

  • Kaye, B.G. A Random Walk through Fractal Dimensions. VCH Verlagsgesellschaft, Weinheim, Germany, 1989, 297.

    Google Scholar 

  • Mandelbrot, B.B. The Fractal Geometry of Nature. W.H. Freeman, San Francisco, CA, 1982.

    MATH  Google Scholar 

  • McCauley, J.L. 1992. Models of permeability and conductivity of porous media. Physica A 187, 18–54.

    Article  Google Scholar 

  • Moran, C.J., McBratney, A.B. and Koppi, A.J.,1989. A rapid method for analysis of soil macropore structure. I. Specimen preparation and digital binary production. Soil Sci. Soc. Am. J. 53, 921–928.

    Article  Google Scholar 

  • Muller, J., 1996. Characterization of pore space in chalk by multifractal analysis. J. Hydrology, 187, 215–222.

    Article  Google Scholar 

  • Muller, J., Huseby, O.K. and Saucier, A. Influence of Multifractal Scaling of Pore Geometry on Permeabilities of Sedimentary Rocks. Chaos, Solitons & Fractals, 5, 1485, 1995.

    Article  Google Scholar 

  • Muller, J. and McCauley, J.L., 1992. Implication of Fractal Geometry for Fluid Flow Properties of Sedimentary Rocks. Transp. Porous Media 8, 133–147.

    Article  Google Scholar 

  • Muller, J., Huseby, O.K. and Saucier, A., 1995. Influence of Multifractal Scaling of Pore Geometry on Permeabilities of Sedimentary Rocks. Chaos, Solitons & Fractals 5, 1485–1492.

    Article  Google Scholar 

  • Ogawa, S., Baveye, P., Boast, C.W., Parlange, J.Y. and Steenhuis, T. Surface fractal characteristics of preferential flow patterns in field soils: evaluation and effect of image processing. Geoderma, 88, 109, 1999.

    Article  Google Scholar 

  • Oleschko, K., Fuentes, C., Brambila, F. and Alvarez, R. Linear fractal analysis of three Mexican soils in different management systems. Soil Technol., 10, 185, 1997.

    Article  Google Scholar 

  • Oleschko, K. Delesse principle and statistical fractal sets: 1. Dimensional equivalents. Soil&Tillage Research, 49, 255, 1998a.

    Google Scholar 

  • Oleschko, K., Brambila, F., Aceff, F. and Mora, L.P. From fractal analysis along a line to fractals on the plane. Soil&Tillage Research, 45, 389, 1998b.

    Google Scholar 

  • Orbach, R. Dynamics of fractal networks. Science (Washington, DC) 231, 814, 1986.

    Google Scholar 

  • Pachepsky, Y.A.,Yakovchenko, V., Rabenhorst, M.C., Pooley, C. and Sikora, L.J. . Fractal parameters of pore surfaces as derived from micromorphological data: effect of long term management practices. Geoderma, 74, 305, 1996.

    Article  Google Scholar 

  • Pachepsky, Y.A., Gimènez, D., Crawford, J.W. and Rawls, W.J. Conventional and fractal geometry in soil science. In Fractals in Soil Science, Pachepsky, Crawford and Rawls, Eds., Elsevier Science, Amsterdam, 2000, 7.

    Google Scholar 

  • Persson, M., Yasuda, H., Albergel, J., Berndtsson, R., Zante, P., Nasri, S. and Öhrström, P., 2001. Modeling plot scale dye penetration by a diffusion limited aggregation (DLA) model. J. Hydrol. 250, 98–105.

    Article  Google Scholar 

  • Peyton, R.L., Gantzer, C.J., Anderson, S.H., Haeffner, B.A. and Pfeifer, P. . Fractal dimension to describe soil macropore structure using X ray computed tomography. Water Resource Research, 30, 691, 1994.

    Article  Google Scholar 

  • Posadas, A.N.D., Gimènez, D., Quiroz, R. and Protz, R., 2003. Multifractal Characterization of Soil Pore Spatial Distributions. Soil Sci. Soc. Am. J. 67, 1361–1369

    Article  Google Scholar 

  • Protz , R. and VandenBygaart, A.J. 1998. Towards systematic iage analysis in the study of soil micromorphology. Science Soils, 3. (available online at http://link.springer.de/link/service/journals/).

    Google Scholar 

  • Ripley, B.D. Statistical Inference for Spatial Processes, Cambridge Univ. Press, Cambridge, 1988.

    Google Scholar 

  • Saucier, A. Effective permeability of multifractal porous media. Physica A, 183, 381, 1992.

    Article  Google Scholar 

  • Saucier, A. and Muller, J. Remarks on some properties of multifractals. Physica A, 199, 350, 1993.

    Article  Google Scholar 

  • Saucier, A. and Muller, J. Textural analysis of disordered materials with multifractals. Physica A, 267, 221, 1999.

    Article  Google Scholar 

  • Saucier, A., Richer, J. and Muller, J., 2002. Statistical mechanics and its applications. Physica A, 311 (1–2): 231–259.

    Article  MATH  Google Scholar 

  • Takayasu, H. Fractals in the Physical Sciences. Manchester University Press, Manchester, 1990.

    MATH  Google Scholar 

  • Tarquis, A.M., Gimènez, D., Saa, A., Dìaz, M.C. and Gascò, J.M., 2003. Scaling and Multiscaling of Soil Pore Systems Determined by Image Analysis. In: Scaling Methods in Soil Physics, Pachepsky, Radcliffe and Selim Eds., CRC Press, 434 pp.

    Google Scholar 

  • Tarquis, A.M., McInnes, K.J., Keys, J., Saa, A., Garcìa, M.R. and Dìaz, M.C., 2006. Multiscaling Analysis In A Structured Clay Soil Using 2D Images. J. Hydrol, 322, 236–246.

    Article  Google Scholar 

  • Tel, T. and Vicsek, T., 1987. Geometrical multifractality of growing structures, J. Physics A. General, 20, L835–L840.

    Article  MathSciNet  Google Scholar 

  • VandenBygaart, A.J. and Protz, R., 1999. The representative elementary area (REA) in studies of quantitative soil micromorphology. Geoderma 89, 333–346.

    Article  Google Scholar 

  • Vicsek, T. 1990. Mass multifractals. Physica A, 168, 490–497.

    Article  MathSciNet  Google Scholar 

  • Vogel, H.J. and Kretzschmar, A., 1996. Topological characterization of pore space in soil-sample preparation and digital image-processing. Geoderma 73, 23–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Tarquis, A.M., Mèndez, V., Grau, J.B., Antòn, J.M., Andina, D. (2007). Fractals as Pre-Processing Tool for Computational Intelligence Application. In: Andina, D., Pham, D.T. (eds) Computational Intelligence. Springer, Boston, MA. https://doi.org/10.1007/0-387-37452-3_8

Download citation

Publish with us

Policies and ethics