Skip to main content

Alterations of T Lymphocytes in Inflammatory Bowel Diseases

  • Chapter
Immune Mechanisms in Inflammatory Bowel Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 579))

  • 1366 Accesses

Conclusion

Data from multiple experimental models to date provide strong support for the immunologic hypothesis that a dysregulated mucosal CD4+ T cell response to antigens of the enteric bacteria in a genetically susceptible host results in chronic intestinal inflammation. The host interaction with the flora is complex, but there are a select number of cells and molecules that are critical to this effort. When these key pathways are impaired, the host response to the bacterial flora results in IBD. The key effector cell responsible for disease in most instances is the CD4+ T cell. Although there is data in some systems that Th1 and Th2 subsets can reciprocally regulate one another, each of these CD4 T cell effector CD4 T cell subsets has been found to mediate colitis in various mouse models. There is no data at present that demonstrates that Th2 cells regulate Th1 cells in the intestine or vice versa, and thus experimental colitis is not explained as an imbalance between Th1 and Th2 subsets. At present the data are compatible with the concept that excessive responses of either the Th1 or Th2 effector subsets are detrimental and can result in inflammatory bowel disease, and that this is prevented in the normal host by the presence and function of regulatory cells, particularly CD4+ Tregs. It is unclear how many distinct subsets of regulatory cells are present in the intestine, or the role that each may play in regulating the mucosal immune response to commensal bacterial antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. James SP. Mucosal T-cell function. Gastroenterol Clin N Am 1992; 20:597–612.

    Google Scholar 

  2. Lefrancois L. Basic aspects of intraepithelial lymphocyte immunobiology. In: Ogra PL, Mestecky J, Lamm ME et al, eds. Handbook of Mucosal Immunology. San Diego: Academic Press, 1994:287–298.

    Google Scholar 

  3. James SPaK H. Gastrointestinal lamona propria T cells. In: Ogra PL, Mestecky J, Lamm ME et al, eds. Mucosal Immunology. San Diego: Academic Press, 1999:381–396.

    Google Scholar 

  4. Targan SR, Deem RL, Liu M et al. Definition of a lamina propria T cell responsive state. Enhanced cytokine responsiveness of T cells stimulated through the CD2 pathway. J Immunol 1995; 154(2):664–75.

    PubMed  CAS  Google Scholar 

  5. Saparov A, Elson CO, DevoreCarter D et al. Single-cell analyses of CD4+ T cells from alpha beta T cell receptor-transgenic mice: A distinct mucosal cytokine phenotype in the absence of transgene-specific antigen. Eur J Immunol 1997; 27(7):1774–81.

    PubMed  CAS  Google Scholar 

  6. Bucy RP, Panoskaltsis-Mortari A, Huang GQ et al. Heterogeneity of single cell cytokine gene expression in clonal T cell populations. J Exp Med 1994; 180(4):1251–62.

    PubMed  CAS  Google Scholar 

  7. Lefrancois L, Puddington L. Basic aspects of intraepithelial lymphocyte immunology. In: Ogra PL, Mestecky J, Lamm ME et al, eds. Mucosal Immunology. San Diego: Academic Press, 1999:413–428.

    Google Scholar 

  8. Elson CO, Sartor RB, Tennyson GS et al. Experimental models of inflammatory bowel disease. Gastroenterology 1995; 109(4):1344–67.

    PubMed  CAS  Google Scholar 

  9. Simpson SJ, Mizoguchi E, Allen D et al. Evidence that CD4+, but not CD8+ T cells are responsible for murine interleukin-2-deficient colitis. Eur J Immunol 1995; 25(9):2618–25.

    PubMed  CAS  Google Scholar 

  10. Okamoto S, Watanabe M, Yamazaki M et al. A synthetic mimetic of CD4 is able to suppress disease in a rodent model of immune colitis. Eur J Immunol 1999; 29(1):355–66.

    PubMed  CAS  Google Scholar 

  11. Powrie F, Leach MW, Mauze S et al. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1994; 1(7):553–62.

    PubMed  CAS  Google Scholar 

  12. Cong Y, Brandwein SL, McCabe RP et al. CD4+ T cells reactive to enteric bacterial antigens in spontaneously colitic C3H/HeJBir mice: Increased T helper cell type 1 response and ability to transfer disease. J Exp Med 1998; 187(6):855–64.

    PubMed  CAS  Google Scholar 

  13. Simpson SJ, Shah S, Comiskey M et al. T cell-mediated pathology in two models of experimental colitis depends predominantly on the interleukin 12/Signal transducer and activator of transcription (Stat)-4 pathway, but is not conditional on interferon gamma expression by T cells. J Exp Med 1998; 187(8):1225–34.

    PubMed  CAS  Google Scholar 

  14. Boirivant M, Fuss IJ, Chu A et al. Oxazolone colitis: A murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med 1998; 188(10):1929–39.

    PubMed  CAS  Google Scholar 

  15. Mizoguchi A, Mizoguchi E, Bhan AK. The critical role of interleukin 4 but not interferon gamma in the pathogenesis of colitis in T-cell receptor alpha mutant mice. Gastroenterology 1999; 116(2):320–6.

    PubMed  CAS  Google Scholar 

  16. Iqbal N, Oliver JR, Wagner FH et al. T helper 1 and T helper 2 cells are pathogenic in an antigen-specific model of colitis. J Exp Med 2002; 195(1):71–84.

    PubMed  CAS  Google Scholar 

  17. Mullin G, Maycon ZR, Sampat A et al. Intestinal mucosal lymphokine production in Crohn’s disease has a Th1 profile. Gastroenterology 1993; 104:A750.

    Google Scholar 

  18. Sundberg JP, Elson CO, Bedigian H et al. Spontaneous, heritable colitis in a new substrain of C3H/HeJ mice. Gastroenterology 1994; 107(6):1726–35.

    PubMed  CAS  Google Scholar 

  19. Fuss IJ, Neurath M, Boirivant M et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 1996; 157(3):1261–70.

    PubMed  CAS  Google Scholar 

  20. Monteleone G, Biancone L, Marasco R et al. Interleukin 12 is expressed and actively released by Crohn’s disease intestinal lamina propria mononuclear cells. Gastroenterology 1997; 112(4):1169–78.

    PubMed  CAS  Google Scholar 

  21. Strober W, Fuss IJ, Ehrhardt RO et al. Mucosal immunoregulation and inflammatory bowel disease: New insights from murine models of inflammation. Scand J Immunol 1998; 48(5):453–8.

    PubMed  CAS  Google Scholar 

  22. Kontoyiannis D, Pasparakis M, Pizarro TT et al. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: Implications for joint and gut-associated immunopathologies. Immunity 1999; 10(3):387–98.

    PubMed  CAS  Google Scholar 

  23. Kosiewicz MM, Nast CC, Krishnan A et al. Th1-type responses mediate spontaneous ileitis in a novel murine model of Crohn’s disease. J Clin Invest 2001; 107(6):695–702.

    PubMed  CAS  Google Scholar 

  24. Mizoguchi A, Mizoguchi E, Chiba C et al. Role of appendix in the development of inflammatory bowel disease in TCR-alpha mutant mice. J Exp Med 1996; 184(2):707–15.

    PubMed  CAS  Google Scholar 

  25. Bhan AK, Mizoguchi E, Smith RN et al. Spontaneous chronic colitis in TCR alpha-mutant mice; an experimental model of human ulcerative colitis. Int Rev Immunol 2000; 19(1):123–38.

    PubMed  CAS  Google Scholar 

  26. Bluestone JA. New perspectives of CD28-B7-mediated T cell costimulation. Immunity 1995; 2(6):555–9.

    PubMed  CAS  Google Scholar 

  27. Boussiotis VA, Freeman GJ, Gribben JG et al. The role of B7-1/B7-2: CD28/CLTA-4 pathways in the prevention of anergy, induction of productive immunity and down-regulation of the immune response. Immunol Rev 1996; 153:5–26.

    PubMed  CAS  Google Scholar 

  28. Cella M, Scheidegger D, Palmer-Lehmann K et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 1996; 184(2):747–52.

    PubMed  CAS  Google Scholar 

  29. Chen AI, McAdam AJ, Buhlmann JE et al. Ox40-ligand has a critical costimulatory role in dendritic cell: T cell interactions. Immunity 1999; 11(6):689–98.

    PubMed  CAS  Google Scholar 

  30. McAdam AJ, Chang TT, Lumelsky AE et al. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 2000; 165(9):5035–40.

    PubMed  CAS  Google Scholar 

  31. Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 1989; 170(6):2081–95.

    PubMed  CAS  Google Scholar 

  32. Glimcher LH, Murphy KM. Lineage commitment in the immune system: The T helper lymphocyte grows up. Genes Dev 2000; 14(14):1693–711.

    PubMed  CAS  Google Scholar 

  33. Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat Rev Immunol 2002; 2(12):933–44.

    PubMed  CAS  Google Scholar 

  34. Robinson DS, O’Garra A. Further checkpoints in Th1 development. Immunity 2002; 16(6):755–8.

    PubMed  CAS  Google Scholar 

  35. Farrar JD, Asnagli H, Murphy KM. T helper subset development: Roles of instruction, selection, and transcription. J Clin Invest 2002; 109(4):431–5.

    PubMed  CAS  Google Scholar 

  36. Groux H, O’Garra A, Bigler M et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997; 389(6652):737–42.

    PubMed  CAS  Google Scholar 

  37. O’Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 1998; 8(3):275–83.

    PubMed  Google Scholar 

  38. Barrat FJ, Cua DJ, Boonstra A et al. In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)-and Th2-inducing cytokines. J Exp Med 2002; 195(5):603–16.

    PubMed  CAS  Google Scholar 

  39. Magram J, Connaughton SE, Warrier RR et al. IL-12-deficient mice are defective in IFN gamma production and type 1 cytokine responses. Immunity 1996; 4(5):471–81.

    PubMed  CAS  Google Scholar 

  40. Wu C, Ferrante J, Gately MK et al. Characterization of IL-12 receptor beta1 chain (IL-12Rbeta1)-deficient mice: IL-12Rbeta1 is an essential component of the functional mouse IL-12 receptor. J Immunol 1997; 159(4):1658–65.

    PubMed  CAS  Google Scholar 

  41. Kuhn R, Rajewsky K, Muller W. Generation and analysis of interleukin-4 deficient mice. Science 1991; 254(5032):707–10.

    PubMed  CAS  Google Scholar 

  42. Kopf M, Le Gros G, Coyle AJ et al. Immune responses of IL-4, IL-5, IL-6 deficient mice. Immunol Rev 1995; 148:45–69.

    PubMed  CAS  Google Scholar 

  43. Mohrs M, Ledermann B, Kohler G et al. Differences between IL-4-and IL-4 receptor alpha-deficient mice in chronic leishmaniasis reveal a protective role for IL-13 receptor signaling. J Immunol 1999; 162(12):7302–8.

    PubMed  CAS  Google Scholar 

  44. Kuhn R, Lohler J, Rennick D et al. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75(2):263–74.

    PubMed  CAS  Google Scholar 

  45. Shull MM, Ormsby I, Kier AB et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992; 359(6397):693–9.

    PubMed  CAS  Google Scholar 

  46. Kulkarni AB, Huh CG, Becker D et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 1993; 90(2):770–4.

    PubMed  CAS  Google Scholar 

  47. Wang ZE, Reiner SL, Zheng S et al. CD4+ effector cells default to the Th2 pathway in interferon gamma-deficient mice infected with Leishmania major. J Exp Med 1994; 179(4):1367–71.

    PubMed  CAS  Google Scholar 

  48. Barbulescu K, Becker C, Schlaak JF et al. IL-12 and IL-18 differentially regulate the transcriptional activity of the human IFN-gamma promoter in primary CD4+ T lymphocytes. J Immunol 1998; 160(8):3642–7.

    PubMed  CAS  Google Scholar 

  49. Akira S. The role of IL-18 in innate immunity. Curr Opin Immunol 2000; 12(1):59–63.

    PubMed  CAS  Google Scholar 

  50. Pien GC, Satoskar AR, Takeda K et al. Cutting edge: Selective IL-18 requirements for induction of compartmental IFN-gamma responses during viral infection. J Immunol 2000; 165(9):4787–91.

    PubMed  CAS  Google Scholar 

  51. Grunig G, Warnock M, Wakil AE et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 1998; 282(5397):2261–3.

    PubMed  CAS  Google Scholar 

  52. Foster PS, Martinez-Moczygemba M, Huston DP et al. Interleukins-4,-5, and-13: Emerging therapeutic targets in allergic disease. Pharmacol Ther 2002; 94(3):253–64.

    PubMed  CAS  Google Scholar 

  53. Wills-Karp M, Chiaramonte M. Interleukin-13 in asthma. Curr Opin Pulm Med 2003; 9(1):21–7.

    PubMed  CAS  Google Scholar 

  54. O’Garra A. Commitment factors for T helper cells. Curr Biol 2000; 10(13):R492–4.

    PubMed  Google Scholar 

  55. Rengarajan J, Szabo SJ, Glimcher LH. Transcriptional regulation of Th1/Th2 polarization. Immunol Today 2000; 21(10):479–83.

    PubMed  CAS  Google Scholar 

  56. Thierfelder WE, van Deursen JM, Yamamoto K et al. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 1996; 382(6587):171–4.

    PubMed  CAS  Google Scholar 

  57. Heath VL, Kurata H, Lee HJ et al. Checkpoints in the regulation of T helper 1 responses. Curr Top Microbiol Immunol 2002; 266:23–39.

    PubMed  CAS  Google Scholar 

  58. Takeda K, Tanaka T, Shi W et al. Essential role of Stat6 in IL-4 signalling. Nature 1996; 380(6575):627–30.

    PubMed  CAS  Google Scholar 

  59. Ouyang W, Lohning M, Gao Z et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 2000; 12(1):27–37.

    PubMed  CAS  Google Scholar 

  60. Kurata H, Lee HJ, O’Garra A et al. Ectopic expression of activated Stat6 induces the expression of Th2-specific cytokines and transcription factors in developing Th1 cells. Immunity 1999; 11(6):677–88.

    PubMed  CAS  Google Scholar 

  61. Zhu J, Guo L, Watson CJ et al. Stat6 is necessary and sufficient for IL-4’s role in Th2 differentiation and cell expansion. J Immunol 2001; 166(12):7276–81.

    PubMed  CAS  Google Scholar 

  62. Szabo SJ, Kim ST, Costa GL et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000; 100(6):655–69.

    PubMed  CAS  Google Scholar 

  63. Das J, Chen CH, Yang L et al. A critical role for NF-kappa B in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat Immunol 2001; 2(1):45–50.

    PubMed  CAS  Google Scholar 

  64. Szabo SJ, Sullivan BM, Stemmann C et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 2002; 295(5553):338–42.

    PubMed  CAS  Google Scholar 

  65. Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997; 89(4):587–96.

    PubMed  CAS  Google Scholar 

  66. Lee HJ, Takemoto N, Kurata H et al. GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med 2000; 192(1):105–15.

    PubMed  CAS  Google Scholar 

  67. Miaw SC, Choi A, Yu E et al. ROG, repressor of GATA, regulates the expression of cytokine genes. Immunity 2000; 12(3):323–33.

    PubMed  CAS  Google Scholar 

  68. Usui T, Nishikomori R, Kitani A et al. GATA-3 suppresses Th1 development by downregulation of Stat4 and not through effects on IL-12Rbeta2 chain or T-bet. Immunity 2003; 18(3):415–28.

    PubMed  CAS  Google Scholar 

  69. Ranger AM, Hodge MR, Gravallese EM et al. Delayed lymphoid repopulation with defects in IL-4-driven responses produced by inactivation of NF-ATc. Immunity 1998; 8(1):125–34.

    PubMed  CAS  Google Scholar 

  70. Ho IC, Lo D, Glimcher LH. c-maf promotes T helper cell type 2 (Th2) and attenuates Th1 differentiation by both interleukin 4-dependent and-independent mechanisms. J Exp Med 1998; 188(10):1859–66.

    PubMed  CAS  Google Scholar 

  71. Rengarajan J, Tang B, Glimcher LH. NFATc2 and NFATc3 regulate T(H)2 differentiation and modulate TCR-responsiveness of naive T(H)cells. Nat Immunol 2002; 3(1):48–54.

    PubMed  CAS  Google Scholar 

  72. Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 2000; 192(2):295–302.

    PubMed  CAS  Google Scholar 

  73. Takahashi T, Tagami T, Yamazaki S et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192(2):303–10.

    PubMed  CAS  Google Scholar 

  74. Shimizu J, Yamazaki S, Takahashi T et al. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002; 3(2):135–42.

    PubMed  CAS  Google Scholar 

  75. Groux H. Type 1 T-regulatory cells: Their role in the control of immune responses. Transplantation 2003; 75(9 Suppl):8S–12S.

    PubMed  CAS  Google Scholar 

  76. O’Garra A, Vieira P. Twenty-first century Foxp3. Nat Immunol 2003; 4(4):304–6.

    PubMed  Google Scholar 

  77. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4(4):330–6.

    PubMed  CAS  Google Scholar 

  78. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299(5609):1057–61.

    PubMed  CAS  Google Scholar 

  79. Khattri R, Cox T, Yasayko SA et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4(4):337–42.

    PubMed  CAS  Google Scholar 

  80. Parronchi P, Romagnani P, Annunziato F et al. Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn’s disease. Am J Pathol 1997; 150(3):823–32.

    PubMed  CAS  Google Scholar 

  81. Powrie F, Leach MW, Mauze S et al. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol 1993; 5(11):1461–71.

    PubMed  CAS  Google Scholar 

  82. Brimnes J, Reimann J, Mogens MH et al. Enteric bacterial antigens activate CD4+ T cells from scid mice with inflammatory bowel disease. Eur J Immunol 2001; 31:23–31.

    PubMed  CAS  Google Scholar 

  83. Leach MW, Bean AG, Mauze S et al. Inflammatory bowel disease in C.B-17 scid mice reconstituted with the CD45RBhigh subset of CD4+ T cells. Am J Pathol 1996; 148(5):1503–15.

    PubMed  CAS  Google Scholar 

  84. Mackay F, Browning JL, Lawton P et al. Both the lymphotoxin and tumor necrosis factor pathways are involved in experimental murine models of colitis. Gastroenterology 1998; 115(6):1464–75.

    PubMed  CAS  Google Scholar 

  85. Aranda R, Sydora BC, McAllister PL et al. Analysis of intestinal lymphocytes in mouse colitis mediated by transfer of CD4+, CD45RBhigh T cells to SCID recipients. J Immunol 1997; 158(7):3464–73.

    PubMed  CAS  Google Scholar 

  86. Matsuda JL, Gapin L, Sydora BC et al. Systemic activation and antigen-driven oligoclonal expansion of T cells in a mouse model of colitis. J Immunol 2000; 164(5):2797–806.

    PubMed  CAS  Google Scholar 

  87. Wirtz S, Finotto S, Kanzler S et al. Cutting edge: Chronic intestinal inflammation in STAT-4 transgenic mice: Characterization of disease and adoptive transfer by TNF-plus IFN-gamma-producing CD4(+) T cells that respond to bacterial antigens. J Immunol 1999; 162(4):1884–1888.

    PubMed  CAS  Google Scholar 

  88. Heller F, Fuss IJ, Nieuwenhuis EE et al. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 2002; 17(5):629–38.

    PubMed  CAS  Google Scholar 

  89. Mombaerts P, Mizoguchi E, Grusby MJ et al. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell 1993; 75(2):1–20.

    Google Scholar 

  90. Mizoguchi E, Mizoguchi A, Bhan AK. Role of cytokines in the early stages of chronic colitis in TCR alpha-mutant mice. Lab Invest 1997; 76(3):385–97.

    PubMed  CAS  Google Scholar 

  91. Mizoguchi A, Mizoguchi E, Chiba C et al. Cytokine imbalance and autoantibody production in T cell receptor-alpha mutant mice with inflammatory bowel disease. J Exp Med 1996; 183(3):847–56.

    PubMed  CAS  Google Scholar 

  92. Mizoguchi A, Mizoguchi E, Saubermann LJ et al. Limited CD4 T-cell diversity associated with colitis in T-cell receptor alpha mutant mice requires a T helper 2 environment. Gastroenterology 2000; 119(4):983–95.

    PubMed  CAS  Google Scholar 

  93. Mizoguchi A, Mizoguchi E, Tonegawa S et al. Alteration of a polyclonal to an oligoclonal immune response to cecal aerobic bacterial antigens in TCRa mutant mice with inflammatory bowel disease. Int Immunol 1996; 8(9):1387–1394.

    PubMed  CAS  Google Scholar 

  94. Mizoguchi A, Mizoguchi E, Takedatsu H et al. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 2002; 16(2):219–30.

    PubMed  CAS  Google Scholar 

  95. Sakaguchi S. Regulatory T cells: Key controllers of immunologic self-tolerance. Cell 2000; 101(5):455–8.

    PubMed  CAS  Google Scholar 

  96. Roncarolo MG, Levings MK, Traversari C. Differentiation of T regulatory cells by immature dendritic cells. J Exp Med 2001; 193(2):F5–9.

    PubMed  CAS  Google Scholar 

  97. Shevach EM. Certified professionals: CD4(+)CD25(+) suppressor T cells. J Exp Med 2001; 193(11):F41–6.

    PubMed  CAS  Google Scholar 

  98. Cong Y, Weaver CT, Lazenby A et al. Bacterial-reactive T regulatory cells inhibit pathogenic immune responses to the enteric flora. J Immunol 2002; 169(11):6112–9.

    PubMed  CAS  Google Scholar 

  99. Powrie F, Correa-Oliveira R, Mauze S et al. Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J Exp Med 1994; 179(2):589–600.

    PubMed  CAS  Google Scholar 

  100. Powrie F, Carlino J, Leach MW et al. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med 1996; 183(6):2669–74.

    PubMed  CAS  Google Scholar 

  101. Asseman C, Mauze S, Leach MW et al. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999; 190(7):995–1004.

    PubMed  CAS  Google Scholar 

  102. Annacker O, Pimenta-Araujo R, Burlen-Defranoux O et al. CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol 2001; 166(5):3008–18.

    PubMed  CAS  Google Scholar 

  103. Bacchetta R, Sartirana C, Levings MK et al. Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. Eur J Immunol 2002; 32(8):2237–45.

    PubMed  CAS  Google Scholar 

  104. Kitani A, Chua K, Nakamura K et al. Activated self-MHC-reactive T cells have the cytokine phenotype of Th3/T regulatory cell 1 T cells. J Immunol 2000; 165(2):691–702.

    PubMed  CAS  Google Scholar 

  105. Cottrez F, Hurst SD, Coffman RL et al. T regulatory cells 1 inhibit a Th2-specific response in vivo. J Immunol 2000; 165(9):4848–53.

    PubMed  CAS  Google Scholar 

  106. Khoo UY, Proctor IE, Macpherson AJ. CD4+ T cell down-regulation in human intestinal mucosa: Evidence for intestinal tolerance to luminal bacterial antigens. J Immunol 1997; 158(8):3626–34.

    PubMed  CAS  Google Scholar 

  107. Fuss IJ, Boirivant M, Lacy B et al. The interrelated roles of TGF-beta and IL-10 in the regulation of experimental colitis. J Immunol 2002; 168(2):900–8.

    PubMed  CAS  Google Scholar 

  108. Asano M, Toda M, Sakaguchi N et al. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 1996; 184(2):387–96.

    PubMed  CAS  Google Scholar 

  109. Kuniyasu Y, Takahashi T, Itoh M et al. Naturally anergic and suppressive CD25(+)CD4(+) T cells as a functionally and phenotypically distinct immunoregulatory T cell subpopulation. Int Immunol 2000; 12(8):1145–55.

    PubMed  CAS  Google Scholar 

  110. Suri-Payer E, Amar AZ, Thornton AM et al. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol 1998; 160(3):1212–8.

    PubMed  CAS  Google Scholar 

  111. McHugh RS, Whitters MJ, Piccirillo CA et al. CD4(+)CD25(+) immunoregulatory T cells: Gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 2002; 16(2):311–23.

    PubMed  CAS  Google Scholar 

  112. Sakaguchi S. Policing the regulators. Nat Immunol 2001; 2(4):283–4.

    PubMed  CAS  Google Scholar 

  113. Shevach EM. CD4+ CD25+ suppressor T cells: More questions than answers. Nat Rev Immunol 2002; 2(6):389–400.

    PubMed  CAS  Google Scholar 

  114. Piccirillo CA, Shevach EM. Cutting edge: Control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J Immunol 2001; 167(3):1137–40.

    PubMed  CAS  Google Scholar 

  115. Chai JG, Tsang JY, Lechler R et al. CD4+CD25+ T cells as immunoregulatory T cells in vitro. Eur J Immunol 2002; 32(8):2365–75.

    PubMed  CAS  Google Scholar 

  116. Seo SJ, Fields ML, Buckler JL et al. The impact of T helper and T regulatory cells on the regulation of anti-double-stranded DNA B cells. Immunity 2002; 16(4):535–46.

    PubMed  CAS  Google Scholar 

  117. Xu D, Liu H, Komai-Koma M et al. CD4+CD25+ regulatory T cells suppress differentiation and functions of Th1 and Th2 cells, Leishmania major infection, and colitis in mice. J Immunol 2003; 170(1):394–9.

    PubMed  CAS  Google Scholar 

  118. Sakaguchi S, Sakaguchi N, Shimizu J et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: Their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 2001; 182:18–32.

    PubMed  CAS  Google Scholar 

  119. Maloy KJ, Salaun L, Cahill R et al. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med 2003; 197(1):111–9.

    PubMed  CAS  Google Scholar 

  120. Lehmann J, Huehn J, de la Rosa M et al. Expression of the integrin alpha Ebeta 7 identifies unique subsets of CD25+ as well as CD25-regulatory T cells. Proc Natl Acad Sci USA 2002; 99(20):13031–6.

    PubMed  CAS  Google Scholar 

  121. Liu Z, Tugulea S, Cortesini R et al. Specific suppression of T helper alloreactivity by allo-MHC class I-restricted CD8+CD28-T cells. Int Immunol 1998; 10(6):775–83.

    PubMed  CAS  Google Scholar 

  122. Chang CC, Ciubotariu R, Manavalan JS et al. Tolerization of dendritic cells by T(S) cells: The crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 2002; 3(3):237–43.

    PubMed  CAS  Google Scholar 

  123. Campbell NA, Kim HS, Blumberg RS et al. The nonclassical class I molecule CD1d associates with the novel CD8 ligand gp180 on intestinal epithelial cells. J Biol Chem 1999; 274(37):26259–65.

    PubMed  CAS  Google Scholar 

  124. Allez M, Brimnes J, Dotan I et al. Expansion of CD8+ T cells with regulatory function after interaction with intestinal epithelial cells. Gastroenterology 2002; 123(5):1516–26.

    PubMed  Google Scholar 

  125. Cong Y, Weaver CT, Nguyen H et al. CD8+ T cells, but not B cells inhibit enteric bacterial antigen-specific CD4+ T cell-induced colitis. Gastroenterology 1999; 116:A690.

    Google Scholar 

  126. Saubermann LJ, Beck P, De Jong YP et al. Activation of natural killer T cells by alpha-galactosylceramide in the presence of CD1d provides protection against colitis in mice. Gastroenterology 2000; 119(1):119–28.

    PubMed  CAS  Google Scholar 

  127. Morrissey PJ, Charrier K, Braddy S et al. CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J Exp Med 1993; 178:237–244.

    PubMed  CAS  Google Scholar 

  128. Sadlack B, Merz H, Schorle H et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 1993; 75(2):253–61.

    PubMed  CAS  Google Scholar 

  129. Contractor NV, Bassiri H, Reya T et al. Lymphoid hyperplasia, autoimmunity, and compromised intestinal intraepithelial lymphocyte development in colitis-free gnotobiotic IL-2-deficient mice. J Immunol 1998; 160(1):385–94.

    PubMed  CAS  Google Scholar 

  130. Bamias G, Marini M, Moskaluk CA et al. Down-regulation of intestinal lymphocyte activation and Th1 cytokine production by antibiotic therapy in a murine model of Crohn’s disease. J Immunol 2002; 169(9):5308–14.

    PubMed  Google Scholar 

  131. McCracken VJ, Lorenz RG. The gastrointestinal ecosystem: A precarious alliance among epithelium, immunity and microbiota. Cell Microbiol 2001; 3(1):1–11.

    PubMed  CAS  Google Scholar 

  132. Panwala CM, Jones JC, Viney JL. A novel model of inflammatory bowel disease: Mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J Immunol 1998; 161(10):5733–44.

    PubMed  CAS  Google Scholar 

  133. Becker C, Wirtz S, Blessing M et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J Clin Invest 2003; 112(5):693–706.

    PubMed  CAS  Google Scholar 

  134. Bristol IJ, Farmer MA, Cong Y et al. Heritable susceptibility for colitis in mice induced by IL-10 deficiency. Inflammatory Bowel Disease 2000; 6(4):290–302.

    CAS  Google Scholar 

  135. McGuirk P, McCann C, Mills KH. Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: A novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J Exp Med 2002; 195(2):221–31.

    PubMed  CAS  Google Scholar 

  136. Cong Y, Konrad A, Iqbal N et al. Probiotics and immune regulation of inflammatory bowel diseases. Curr Drug Targets Inflamm Allergy 2003; 2(2):145–154.

    PubMed  CAS  Google Scholar 

  137. Rath HC, Herfarth HH, Ikeda JS et al. Normal luminal bacteria, especially bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Invest 1996; 98(4):945–53.

    PubMed  CAS  Google Scholar 

  138. Schultz M, Veltkamp C, Dieleman LA et al. Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm Bowel Dis 2002; 8(2):71–80.

    PubMed  Google Scholar 

  139. Aattour N, Bouras M, Tome D et al. Oral ingestion of lactic-acid bacteria by rats increases lymphocyte proliferation and interferon-gamma production. Br J Nutr 2002; 87(4):367–73.

    PubMed  Google Scholar 

  140. Shida K, Makino K, Morishita A et al. Lactobacillus casei inhibits antigen-induced IgE secretion through regulation of cytokine production in murine splenocyte cultures. Int Arch Allergy Immunol 1998; 115(4):278–87.

    PubMed  CAS  Google Scholar 

  141. von der Weid T, Bulliard C, Schiffrin EJ. Induction by a lactic acid bacterium of a population of CD4(+) T cells with low proliferative capacity that produce transforming growth factor beta and interleukin-10. Clin Diagn Lab Immunol 2001; 8(4):695–701.

    PubMed  Google Scholar 

  142. Chen Y, Kuchroo VK, Inobe J et al. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994; 265(5176):1237–40.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Elson, C.O., Cong, Y., Weaver, C.T. (2006). Alterations of T Lymphocytes in Inflammatory Bowel Diseases. In: Blumberg, R.S., Neurath, M.F. (eds) Immune Mechanisms in Inflammatory Bowel Disease. Advances in Experimental Medicine and Biology, vol 579. Springer, New York, NY. https://doi.org/10.1007/0-387-33778-4_9

Download citation

Publish with us

Policies and ethics