Skip to main content

Virus Receptors and Tropism

  • Chapter
Polyomaviruses and Human Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 577))

Abstract

Polyomaviruses are small, tumorigenic, nonenveloped viruses that infect several different species. Interaction of these viruses with cell surface receptors represents the initial step during infection of host cells. This interaction can be a major determinant of viral host and tissue tropism. This chapter reviews what is currently known about the cellular receptors for each of five polyomavirus family members: Mouse polyomavirus (PyV), JC virus (JCV), BK virus (BKV), Lymphotropic papovavirus (LPV) and Simian virus 40 (SV40). These polyomaviruses serve to illustrate the enormous diversity of virus-cell surface interactions and allow us to closely evaluate the role of receptors in their life cycles. The contribution of other factors such as transcriptional regulators and signaling pathways are also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eckhart W. Polyomavirinae and their replication. In: Fields BN, Knipe DM, eds. Virology Raven Press, 1994.

    Google Scholar 

  2. Keller W, Muller U, Eicken I et al. Biochemical and ultrastructural analysis of SV40 chromatin. Cold Spring Harb Symp Quant Biol 1978; 42 (Pt 1):227–44.

    PubMed  CAS  Google Scholar 

  3. Imperiale MJ. The human polyomaviruses, BKV and JCV: Molecular pathogensis of acute disease and potential role in cancer. Virology 2000; 267:1–7.

    Article  PubMed  CAS  Google Scholar 

  4. Frisque RJ, Bream GL, Cannella MT. Human polyomavirus JC virus genome. J Virol 1984; 51(2):458–69.

    PubMed  CAS  Google Scholar 

  5. Pho MT, Ashok A, Atwood WJ. JC Virus enters human glial cells by clathrin dependent receptor mediated endocytosis. J Virol 2000; 74(5):2288–92.

    Article  PubMed  CAS  Google Scholar 

  6. Gilbert JM, Benjamin TL. Early steps of polyomavirus entry into cells. J Virol 2000; 74(18):8582–8.

    Article  PubMed  CAS  Google Scholar 

  7. Richterova Z, Liebl D, Horak M et al. Caveolae are involved in the trafficking of mouse polyomavirus virions and artificial VP1 pseudocapsids toward cell nuclei. J Virol 2001; 75(22):10880–91.

    Article  PubMed  CAS  Google Scholar 

  8. Anderson HA, Chen Y, Norkin LC. Bound simian virus 40 translocates to caveolin enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Molecular Biology of the Cell 1996; 7:1825–34.

    PubMed  CAS  Google Scholar 

  9. Ashok A, Atwood WJ. Contrasting roles of endosomal pH and the cytoskeleton in infection of human glial cells by JC virus and simian virus 40. J Virol 2003; 77(2):1347–56.

    Article  PubMed  CAS  Google Scholar 

  10. Pelkmans L, Kartenbeck J, Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 2001; 3(5):473–83.

    Article  PubMed  CAS  Google Scholar 

  11. Gilbert JM, Goldberg IG, Benjamin TL. Cell penetration and trafficking of polyomavirus. J Virol 2003; 77(4):2615–22.

    Article  PubMed  CAS  Google Scholar 

  12. Kasamatsu H, Lin W, Edens J et al. Visualization of antigens attached to cytoskeletal framework in animal cells: Colocalization of simian virus 40 Vp1 polypeptide and actin in TC7 cells. Proc Natl Acad Sci USA 1983; 80(14):4339–43.

    Article  PubMed  CAS  Google Scholar 

  13. Nakanishi A, Clever J, Yamada M et al. Association with capsid proteins promotes nuclear targeting of simian virus 40 DNA. Proc Natl Acad Sci USA 1996; 93(1):96–100.

    Article  PubMed  CAS  Google Scholar 

  14. Yamada M, Kasamatsu H. Role of nuclear pore complex in simian virus 40 nuclear targeting. J Virol 1993; 67(1):119–30.

    PubMed  CAS  Google Scholar 

  15. Nakanishi A, Shum D, Morioka H et al. Interaction of the Vp3 nuclear localization signal with the importin alpha 2/beta heterodimer directs nuclear entry of infecting simian virus 40. J Virol 2002; 76(18):9368–77.

    Article  PubMed  CAS  Google Scholar 

  16. Dawe CJ, Freund R, Mandel G et al. Variations in polyoma virus genotype in relation to tumor induction in mice. Characterization of wild type strains with widely differing tumor profiles. Am J Pathol 1987; 127(2):243–61.

    PubMed  CAS  Google Scholar 

  17. Fried H, Cahan LD, Paulson JC. Polyoma virus recognizes specific sialyligosaccharide receptors on host cells. Virology 1981; 109(1):188–92.

    Article  PubMed  CAS  Google Scholar 

  18. Cahan LD, Singh R, Paulson JC. Sialyloligosaccharide receptors of binding variants of polyomavirus. Virology 1983; 130:281–89.

    Article  PubMed  CAS  Google Scholar 

  19. Fried H, Cahan LD, Paulson JC. Polyomavirus recognizes specific sialyligosaccharide receptors. Virology 1981; 109:188–92.

    Article  PubMed  CAS  Google Scholar 

  20. Diamond L, Crawford LV. Some characteristics of large plaque and small plaque lines of polyomavirus. Virology 1964; 22:235–44.

    Article  PubMed  CAS  Google Scholar 

  21. Freund R, Calderone A, Dawe CJ et al. Polyomavirus tumor induction in mice, effects of polymorphisms of VP1 and large T antigen. J Virol 1991; 65:335–41.

    PubMed  CAS  Google Scholar 

  22. Stehle T, Yan Y, Benjamin TL et al. Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 1994; 369(6476):160–3.

    Article  PubMed  CAS  Google Scholar 

  23. Stehle T, Harrison SC. High-resolution structure of a polyomavirus VP1-oligosaccharide complex: Implications for assembly and receptor binding. EMBO J 1997; 16(16):5139–48.

    Article  PubMed  CAS  Google Scholar 

  24. Bauer PH, Cui C, Stehle T et al. Discrimination between sialic acid containing receptors and pseudoreceptors regulates polyomavirus spread in the mouse. J Virol 1999; 73:5826–32.

    PubMed  CAS  Google Scholar 

  25. Chen MH, Benjamin T. Roles of N-glycans with alpha 2,6 as well as alpha 2,3 linked sialic acid in infection by polyoma virus. Virology 1997; 233:440–42.

    Article  PubMed  CAS  Google Scholar 

  26. Griffith GR, Consigli RA. Cross-Linking of a polyoma attachment protein to its mouse kidney cell receptor. J Virol 1986; 58:773–81.

    PubMed  CAS  Google Scholar 

  27. Marriott SJ, Griffith GR, Consigli RA. Octyl-B-D-glucopyranoside extracts polyomavirus receptor moieties from the surfaces of mouse kidney cells. J Virol 1987; 61:375–82.

    PubMed  CAS  Google Scholar 

  28. Marriott SJ, Roeder DJ, Consigli RA. Anti-idiotypic antibodies to a polyomavirus monoclonal antibody recognize. J Virol 1987; 61:2747–53.

    PubMed  CAS  Google Scholar 

  29. Herrmann M, von der Lieth CW, Stehling P et al. Consequences of a subtle sialic acid modification on the murine polyomavirus receptor. J Virol 1997; 71(8):5922–31.

    PubMed  CAS  Google Scholar 

  30. Caruso M, Iacobini C, Passananti C et al. Protein recognition sites in polyomavirus enhancer: Formation of a novel site for NF-1 factor in an enhancer mutant and characterization of a site in the enhancer D domain. Embo J 1990; 9(3):947–55.

    PubMed  CAS  Google Scholar 

  31. Tsai B, Gilbert JM, Stehle T et al. Gangliosides are receptors for murine polyoma virus and SV40. Embo J 2003; 22(17):4346–55.

    Article  PubMed  CAS  Google Scholar 

  32. Dubensky TW, Freund R, Dawe CJ et al. Polyomavirus replication in mice: Influences of VP1 type and route of innoculation. J Virol 1991; 65:342–49.

    PubMed  CAS  Google Scholar 

  33. Amati P. Polyoma regulatory region: A potential probe for mouse cell differentiation. Cell 1985; 43(3 Pt 2):561–2.

    Article  PubMed  CAS  Google Scholar 

  34. Katinka M, Yaniv M, Vasseur M et al. Expression of polyoma early functions in mouse embryonal carcinoma cells depends on sequence rearrangements in the beginning of the late region. Cell 1980; 20(2):393–9.

    Article  PubMed  CAS  Google Scholar 

  35. De Simone V, La Mantia G, Lania L et al. Polyomavirus mutation that confers a cell-specific cis advantage for viral DNA replication. Mol Cell Biol 1985; 5(8):2142–6.

    PubMed  Google Scholar 

  36. Maione R, Passananti C, De Simone V et al. Selection of mouse neuroblastoma cell-specific polyoma virus mutants with stage differentiative advantages of replication. Embo J 1985; 4(12):3215–21.

    PubMed  CAS  Google Scholar 

  37. Padgett B, ZuRhein G, Walker D et al. Cultivation of papova-like virus from human brain with progressive multifocal leukoencephalopathy. Lancet 1971; I:1257–60.

    Article  Google Scholar 

  38. Monaco MGC, Atwood WJ, Gravell M et al. JCV infection of hematopoetic progenitor cells, primary B lymphocytes, and tonsillar stromal cells: Implication for viral latency. J Virol 1996; 70:7004–12.

    PubMed  CAS  Google Scholar 

  39. Houff SA, Major EO, Katz DA et al. Involvement of JC virus-infected mononuclear cells from the bone marrow and spleen in the pathogenesis of progressive multifocal leukoencephalopathy. N Engl J Med 1988; 318(5):301–5.

    PubMed  CAS  Google Scholar 

  40. Schweighardt B, Atwood WJ. Glial cells as targets of viral infection in the human central nervous system. In: Nieto-Sampedro M, Castellano Lopez B, eds. Glial Cell Function in Health and Disease. Amsterdam: Elsevier Press, 2001:731–45.

    Google Scholar 

  41. Chen BJ, Atwood WJ. Construction of a novel JCV/SV40 hybrid virus (JCSV) reveals a role for the JCV capsid in viral tropism. Virology 2002; 300(2):282–90.

    Article  PubMed  CAS  Google Scholar 

  42. Padgett BL, Walker DL. Virologic and serologic studies of progressive multifocal leukoencephalopathy. Prog Clin Biol Res 1983; 105:107–17.

    PubMed  CAS  Google Scholar 

  43. Liu CK, Hope AP, Atwood WJ. The human polyomavirus, JCV, does not share receptor specificity with SV40 on human glial cells. J Neurovirol 1998; 4:49–58.

    Article  PubMed  CAS  Google Scholar 

  44. Liu CK, Wei G, Atwood WJ. Infection of glial cells by the human polyomavirus JC is mediated by an N-linked glycoprotein containing terminal alpha 2-6 linked sialic acids. J Virol 1998; 72:4643–49.

    PubMed  CAS  Google Scholar 

  45. Eash S, Tavares R, Stopa EG et al. Differential distribution of the JC virus receptor-type sialic acid in normal human tissues. American Journal of Pathology (In Press).

    Google Scholar 

  46. Komagome R, Sawa H, Suzuki T et al. Oligosaccharides as receptors for JC virus. J Virol 2002; 76(24):12992–3000.

    Article  PubMed  CAS  Google Scholar 

  47. Feigenbaum L, Khalili K, Major E et al. Regulation of the host range of human papovavirus JCV. Proc Natl Acad Sci USA 1987; 84(11):3695–8.

    Article  PubMed  CAS  Google Scholar 

  48. Suzuki S, Sawa H, Komagome R et al. Broad distribution of the JC virus receptor contrasts with a marked cellular restriction of virus replication. Virology 2001; 286(1):100–12.

    Article  PubMed  CAS  Google Scholar 

  49. Gee GV, Manley K, Atwood WJ. Derivation of a JC virus-resistant human glial cell line: Implications for the identification of host cell factors that determine viral tropism. Virology 2003; 314(1):101–9.

    Article  PubMed  CAS  Google Scholar 

  50. Amemiya K, Traub R, Durham L et al. Adjacent nuclear factor-1 and activator protein binding sites in the enhancer of the neurotropic JC virus. A common characteristic of many brain-specific genes. J Biol Chem 1992; 267:14204–11.

    PubMed  CAS  Google Scholar 

  51. Chen N, Khalili K. Transcriptional regulation of human JC polyomavirus promoters by cellular proteins YB-1 and Pur alpha in glial cells. J Virol 1995; 69:5843–48.

    PubMed  CAS  Google Scholar 

  52. Henson JW. Regulation of the glial-specific JC virus early promoter by the transcription factor Sp 1. J Biol Chem 1994; 269:1046–50.

    PubMed  CAS  Google Scholar 

  53. Raj GV, Khalili K. Identification and characterization of a novel GGA/C-binding protein, GBP-i, that is rapidly inducible by cytokines. Mol Cell Biol 1994; 14(12):7770–81.

    PubMed  CAS  Google Scholar 

  54. Kerr D, Chang C, Chen N et al. Transcription of a human neurotropic virus promoter in glial cells: Effect of YB-1 on expression of the JC virus late gene. J Virol 1994; 68:7637–43.

    PubMed  CAS  Google Scholar 

  55. Ranganathan PN, Khalili K. The transcriptional enhancer element, kappa B, regulates promoter activity of the human neurotropic virus, JCV, in cells derived from the CNS. Nucleic Acids Res 1993; 21(8):1959–64.

    Article  PubMed  CAS  Google Scholar 

  56. Wegner M, Drolet DW, Rosenfeld MG. Regulation of JC virus by the POU-domain transcription factor Tst-1: Implications for progressive multifocal leukoencephalopathy. Proc Nat Acad Sci 1993; 90:4743–47.

    Article  PubMed  CAS  Google Scholar 

  57. Monaco MC, Sabath BF, Durham LC et al. JC virus multiplication in human hematopoietic progenitor cells requires the NF-1 class D transcription factor. J Virol 2001; 75(20):9687–95.

    Article  PubMed  CAS  Google Scholar 

  58. Elsner C, Dorries K. Human polyomavirus JC control region variants in persistently infected CNS and kidney tissue. J Gen Virol 1998; 79 (Pt 4):789–99.

    PubMed  CAS  Google Scholar 

  59. Shinohara T, Matsuda M, Yasui K et al. Host range bias of the JC virus mutant enhancer with DNA rearrangement. Virology 1989; 170(1):261–3.

    Article  PubMed  CAS  Google Scholar 

  60. Pfister LA, Letvin NL, Koralnik IJ. JC virus regulatory region tandem repeats in plasma and central nervous system isolates correlate with poor clinical outcome in patients with progressive multifocal leukoencephalopathy. J Virol 2001; 75(12):5672–6.

    Article  PubMed  CAS  Google Scholar 

  61. Wei G, Liu CK, Atwood WJ. JC Virus binds to primary human glial cells, tonsillar stromal cells, and B-lymphocytes, but not to T-lymphocytes. J Neurovirol 2000; 6(2):127–36.

    Article  PubMed  CAS  Google Scholar 

  62. Andreoletti L, Dubois V, Lescieux A et al. Human polyomavirus JC latency and reactivation status in blood of HIV-1-positive immunocompromised patients with and without progressive multifocal leukoencephalopathy. Aids 1999; 13(12):1469–75.

    Article  PubMed  CAS  Google Scholar 

  63. Atwood WJ, Amemiya K, Traub R et al. Interaction of the human polyomavirus, JCV, with human B-lymphocytes. Virology 1992; 190:716–23.

    Article  PubMed  CAS  Google Scholar 

  64. Hashida Y, Gaffney PC, Yunis EJ. Acute hemorrhagic cystitis of childhood and papovavirus-like particles. J Pediatr 1976; 89(1):85–7.

    Article  PubMed  CAS  Google Scholar 

  65. Binet I, Nickeleit V, Hirsch HH et al. Polyomavirus disease under new immunosuppressive drugs: A cause of renal graft dysfunction and graft loss. Transplantation 1999; 67(6):918–22.

    Article  PubMed  CAS  Google Scholar 

  66. Nickeleit V, Singh HK, Mihatsch MJ. Polyomavirus nephropathy: Morphology, pathophysiology, and clinical management. Curr Opin Nephrol Hypertens 2003; 12(6):599–605.

    Article  PubMed  Google Scholar 

  67. Takemoto KK, Mullarkey MF. Human papovavirus, BK strain: Biological studies including antigenic relationship to simian virus 40. J Virol 1973; 12(3):625–31.

    PubMed  CAS  Google Scholar 

  68. Yoshiike K, Takemoto KK. Studies with BK virus and monkey lymphotropic papovavirus. In: Salzman NP, ed. The Papovaviridae. New York and London: Plenum Press, 1986:295–326.

    Google Scholar 

  69. Lecatsas G, Schoub BD, Rabson AR et al. Papovavirus in human lymphocyte cultures. Lancet 1976; 2(7991):907–8.

    Article  PubMed  CAS  Google Scholar 

  70. Possati L, Rubini C, Portolani M et al. Receptors for the human papovavirus BK on human lymphocytes. Arch Virol 1983; 75(1–2):131–6.

    Article  PubMed  CAS  Google Scholar 

  71. Seganti L, Mastromarino P, Superti F et al. Receptors for BK virus on human erythrocytes. Acta Virol 1981; 25(4):177–81.

    PubMed  CAS  Google Scholar 

  72. Sinibaldi L, Viti D, Goldoni P et al. Inhibition of BK virus haemagglutination by gangliosides. J Gen Virol 1987; 68(Pt 3):879–83.

    Article  PubMed  CAS  Google Scholar 

  73. Sinibaldi L, Goldoni P, Pietropaolo V et al. Involvement of gangliosides in the interaction between BK virus and Vero cells. Arch Virol 1990; 113(3–4):291–6.

    Article  PubMed  CAS  Google Scholar 

  74. Sinibaldi L, Goldoni P, Pietropaolo V et al. Role of phospholipids in BK virus infection and haemagglutination. Microbiologica 1992; 15(4):337–44.

    PubMed  CAS  Google Scholar 

  75. Johnsen JI, Seternes OM, Johansen T et al. Subpopulations of noncoding control region variants within a cell culturepassaged stock of BK virus: Sequence comparisons and biological characteristics. J Gen Virol 1995; 76(Pt 7):1571–81.

    Article  PubMed  CAS  Google Scholar 

  76. Moens U, Johansen T, Johnsen JI et al. Noncoding control region of naturally occurring BK virus variants: Sequence comparison and functional analysis. Virus Genes 1995; 10(3):261–75.

    Article  PubMed  CAS  Google Scholar 

  77. Chakraborty T, Das GC. Identification of HeLa cell nuclear factors that bind to and activate the early promoter of human polyomavirus BK in vitro. Mol Cell Biol 1989; 9(9):3821–8.

    PubMed  CAS  Google Scholar 

  78. zur Hausen H, Gissmann L. Lymphotropic papovavirus isolated from African green monkey and human cells. Microbio Immunol 1979; 167:137–53.

    Article  Google Scholar 

  79. Takemoto KK, Furuno A, Kato K et al. Biological and biochemical studies of African green monkey lymphotropic papovavirus. J Virol 1982; 42(2):502–9.

    PubMed  CAS  Google Scholar 

  80. Mosthaf Luitgard, Pawlita Michael, Gruss Peter. A viral enhancer element specifically active in human haematopoietic cells. Science 1985; 315:587–600.

    Google Scholar 

  81. Pawlita M, Clad A, Hausen H. Complete DNA sequence of lymphotropic papovavirus: Prototype of a new. Virology 1985; 143:196–211.

    Article  PubMed  CAS  Google Scholar 

  82. Pawlita M, Mosthaf L, Clad A et al. Genome structure and host range restriction of the lymphotropic papovavirus (LPV): Identification of a viral lymphocyte specific enhancer element. Curr Top Microbiol Immunol 1984; 113:26–30.

    PubMed  CAS  Google Scholar 

  83. Pawlita M, Lenoir G, zur Hausen H. Host range restriction of the lymphotropic papova virus (LPV) in cells of human hematopoietic origin. Haematologica 1987; 72(6 Suppl):71.

    PubMed  CAS  Google Scholar 

  84. Haun G, Keppler OT, Bock CT et al. The cell surface receptor is a major determinant restricting the host range of the B-lymphotropic papovavirus. J Virol 1993; 67:7482–92.

    PubMed  CAS  Google Scholar 

  85. Kanda T, Furuno A, Yoshiike K. Mutation in the VP-1 gene is responsible for the extended host range of a monkey B-lymphotropic papovavirus mutant capable of growing in T-lymphoblastoid cells. J Virol 1986; 59(2):531–4.

    PubMed  CAS  Google Scholar 

  86. Kanda T, Takemoto KK. Monkey B-lymphotropic papovavirus mutant capable of replicating in T-lymphoblastoid cells. J Virol 1985; 55(1):96–100.

    PubMed  CAS  Google Scholar 

  87. Herrmann M, Oppenlander M, Pawlita M. Fast and high affinity binding of B-lymphotropic papovavirus to human B-lymphoma cell lines. J Virol 1995; 69:6797–804.

    PubMed  CAS  Google Scholar 

  88. Keppler OT, Herrmann M, Oppenlander M et al. Regulation of susceptibility and cell surface receptor for the B-lymphotropic papovavirus by N glycosylation. J Virol 1994; 68:6933–39.

    PubMed  CAS  Google Scholar 

  89. Erselius JR, Jostes B, Hatzopoulos AK et al. Cell-type-specific control elements of the lymphotropic papovavirus enhancer. J Virol 1990; 64(4):1657–66.

    PubMed  CAS  Google Scholar 

  90. Petterson M, Schaffner W. A purine-rich DNA sequence motif present in SV40 and lymphotropic papovavirus binds a lymphoid-specific factor and contributes to enhancer activity in lymphoid cells. Genes Dev 1987; 1(9):962–72.

    Article  PubMed  CAS  Google Scholar 

  91. Sweet B, Hilleman M. The vacuolating virus, SV40. Proc Soc Exp Biol Med 1960; 105:420.

    PubMed  CAS  Google Scholar 

  92. Barbanti-Brodano G, Trabanelli C, Lazzarin L et al. [SV40 as a possible cofactor in the etiopathogenesis of mesothelioma and other human tumors]. G Ital Med Lav Ergon 1998; 20(4):218–24.

    PubMed  CAS  Google Scholar 

  93. Carbone M, Rizzo P, Procopio A et al. SV40-like sequences in human bone tumors. Oncogene 1996; 13(3):527–35.

    PubMed  CAS  Google Scholar 

  94. Ilyinskii PO, Daniel MD, Horvath CJ et al. Genetic analysis of simian virus 40 from brains and kidneys of macaque monkeys. J Virol 1992; 66(11):6353–60.

    PubMed  CAS  Google Scholar 

  95. Horvath CJ, Simon MA, Bergsagel DJ et al. Simian virus 40-induced disease in rhesus monkeys with simian acquired immunodeficiency syndrome. Am J Pathol 1992; 140(6):1431–40.

    PubMed  CAS  Google Scholar 

  96. Lednicky JA, Arrington AS, Stewart AR et al. Natural isolates of simian virus 40 from immunocompromised monkeys display extensive genetic heterogeneity: New implications for polyomavirus disease. J Virol 1998; 72(5):3980–90.

    PubMed  CAS  Google Scholar 

  97. Shein HM, Enders JF. Multiplication and cytopathogenicity of Simian vacuolating virus 40 in cultures of human tissues. Proc Soc Exp Biol Med 1962; 109:495–500.

    PubMed  CAS  Google Scholar 

  98. O’Neill FJ, Carroll D. Amplification of papovavirus defectives during serial low multiplicity infections. Virology 1981; 112(2):800–3.

    Article  PubMed  CAS  Google Scholar 

  99. O’Neill FJ, Xu XL, Miller TH. Host range determinant in the late region of SV40 and RF virus affecting growth in human cells. Intervirology 1990; 31(2–4):175–87.

    PubMed  CAS  Google Scholar 

  100. Clayson ET, Compans RW. Characterization of simian virus 40 receptor moieties on the surfaces of Vero C1008 cells. J Virol 1989; 63:1095–100.

    PubMed  CAS  Google Scholar 

  101. Atwood WJ, Norkin LC. Class I major histocompatibility proteins as cell surface receptors for simian virus 40. J Virol 1989; 63:4474–77.

    PubMed  CAS  Google Scholar 

  102. Wong GH, Bartlett PF, Clark-Lewis I et al. Inducible expression of H-2 and Ia on brain cells. Nature 1984; 310:688–91.

    Article  PubMed  CAS  Google Scholar 

  103. Breau WC, Atwood WJ, Norkin LC. Class I major histocompatibility proteins are an essential component of the simian virus 40 receptor. J Virol 1992; 66:2037–45.

    PubMed  CAS  Google Scholar 

  104. Basak S, Turner H, Compans RW. Expression of SV40 receptors on apical surfaces of polarized epithelial cells. Virology 1992; 190:393–402.

    Article  PubMed  CAS  Google Scholar 

  105. Laimins LA, Khoury G, Gorman C et al. Host-specific activation of transcription by tandem repeats from simian virus 40 and Moloney murine sarcoma virus. Proc Natl Acad Sci USA 1982; 79(21):6453–7.

    Article  PubMed  CAS  Google Scholar 

  106. Farrell ML, Mertz JE. Cell type-specific replication of simian virus 40 conferred by hormone response elements in the late promoter. J Virol 2002; 76(13):6762–70.

    Article  PubMed  CAS  Google Scholar 

  107. Zullo J, Stiles CD, Garcea RL. Regulation of c-myc and c-fos mRNA levels by polymavirus: Distinct roles for the capsid protein VP1 and the viral early proteins. Proc Natl Acad Sci USA 1987; 84:1210–14.

    Article  PubMed  CAS  Google Scholar 

  108. Dangoria NS, Breau WC, Anderson HA et al. Extracellular simian virus 40 induces an ERK/MAP kinase-independent signalling pathway that activates primary response genes and promotes virus entry. J Gen Virol 1996; 77(Pt 9):2173–82.

    Article  PubMed  CAS  Google Scholar 

  109. Querbes W, Benmerah A, Tosoni D et al. A JC virus induced signal is required for infection of glial cells by a clathrin and eps15 dependent pathway. J Virol 2004; 78(1):250–256.

    Article  PubMed  CAS  Google Scholar 

  110. Chen Y, Norkin LC. Extracellular Simian Virus 40 transmits a signal that promotes virus enclosure within caveolae. Exp Cell Res 1999; 246(1):83–90.

    Article  PubMed  CAS  Google Scholar 

  111. Pelkmans L, Puntener D, Helenius A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 2002; 296(5567):535–9.

    Article  PubMed  CAS  Google Scholar 

  112. Spence SL, Pipas JM. Simian virus 40 large T antigen host range domain functions in virion assembly. J Virol 1994; 68(7):4227–40.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Ashok, A., Atwood, W.J. (2006). Virus Receptors and Tropism. In: Ahsan, N. (eds) Polyomaviruses and Human Diseases. Advances in Experimental Medicine and Biology, vol 577. Springer, New York, NY. https://doi.org/10.1007/0-387-32957-9_4

Download citation

Publish with us

Policies and ethics