Skip to main content

JC Virus Can Infect Human Immune and Nervous System Progenitor Cells

Implications for Pathogenesis

  • Chapter
Polyomaviruses and Human Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 577))

Abstract

Recent advances in stem cell biology have called attention to the role these cells may play in the pathogenesis of systemic and nervous system diseases. Although not capable of indefinite self renewal and pluripotentiality as stem cells are, progenitor cells can give rise to cells of different lineages. It is infection of these differentiated cells that has traditionally been associated with the pathology and symptoms of viral-induced disease. However, neural progenitor cells have been shown, in vitro, to be susceptible to infection by neurotropic viruses such as the human polyomavirus, JCV, and the lentivirus, HIV-1. These progenitor cells, which exist during development as well as in the fully developed adult brain, could therefore be involved in neuropathogenesis. Morever, JCV can also infect progenitor cells of the hematopoietic system, derivatives of which have been implicated in the trafficking of virus from the periphery to the brain. Interestingly, susceptibility to and molecular regulation of JCV infection in hematopoietic cells closely parallels what has been observed in glial cells. The biological interaction between the immune and nervous systems that exists in the dissemination of virus from periphery to nervous system and the susceptibility of both systems to JCV infection provide potential for hematopoietic and neural progenitor cell involvement in JCV pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Padgett BL, Walker DL, ZuRhein GM et al. Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet 1971; 1(7712):1257–60.

    Article  PubMed  CAS  Google Scholar 

  2. Walker DL, Padgett BL. The epidemiology of human polyomaviruses. Prog Clin Biol Res 1983; 105:99–106.

    PubMed  CAS  Google Scholar 

  3. Astrom KE, Mancall EL, Richardson EP. Progressive multifocal leukoencephalopathy. Brain 1958; 81:93–127.

    Article  PubMed  CAS  Google Scholar 

  4. Stoner GL, Ryschkewitsch CF, Walker DL et al. JC papovavirus large tumor (T)-antigen expression in brain tissue of acquired immune deficiency syndrome (AIDS) and nonAIDS patients with progressive multifocal leukoencephalopathy. Proc Natl Acad Sci USA 1986; 83(7):2271–5.

    Article  PubMed  CAS  Google Scholar 

  5. Sabath BF, Major EO. Traffic of JC virus from sites of initial infection to the brain: The path to progressive multifocal leukoencephalopathy. J Infect Dis 2002; 186(Suppl 2):S180–6.

    Article  PubMed  Google Scholar 

  6. Houff SA, Major EO, Katz DA et al. Involvement of JC virus-infected mononuclear cells from the bone marrow and spleen in the pathogenesis of progressive multifocal leukoencephalopathy. N Engl J Med 1988; 318(5):301–5.

    PubMed  CAS  Google Scholar 

  7. Tornatore C, Berger JR, Houff SA et al. Detection of JC virus DNA in peripheral lymphocytes from patients with and without progressive multifocal leukoencephalopathy. Ann Neurol 1992; 31(4):454–62.

    Article  PubMed  CAS  Google Scholar 

  8. Monaco MC, Atwood WJ, Gravell M et al. JC virus infection of hematopoietic progenitor cells, primary B lymphocytes, and tonsillar stromal cells: Implications for viral latency. J Virol 1996; 70(10):7004–12.

    PubMed  CAS  Google Scholar 

  9. Messam CA, Hou J, Gronostajski RM et al. Lineage pathway of human brain progenitor cells identified by JC virus susceptibility. Ann Neurol 2003; 53(5):636–46.

    Article  PubMed  CAS  Google Scholar 

  10. Major EO, Vacante DA. Human fetal astrocytes in culture support the growth of the neurotropic human polyomavirus, JCV. J Neuropathol Exp Neurol 1989; 48(4):425–36.

    Article  PubMed  CAS  Google Scholar 

  11. Aksamit Jr AJ. Nonradioactive in situ hybridization in progressive multifocal leukoencephalopathy. Mayo Clin Proc 1993; 68(9):899–910.

    PubMed  Google Scholar 

  12. Seth P, Diaz F, Major EO. Advances in the biology of JC virus and induction of progressive multifocal leukoencephalopathy. J Neurovirol 2003; 9(2):236–46.

    Article  PubMed  CAS  Google Scholar 

  13. Monaco MC, Jensen PN, Hou J et al. Detection of JC virus DNA in human tonsil tissue: Evidence for site of initial viral infection. J Virol 1998; 72(12):9918–23.

    PubMed  CAS  Google Scholar 

  14. Schneider EM, Dorries K. High frequency of polyomavirus infection in lymphoid cell preparations after allogeneic bone marrow transplantation. Transplant Proc 1993; 25(1 Pt 2):1271–3.

    PubMed  CAS  Google Scholar 

  15. Monaco MC, Sabath BF, Durham LC et al. JC virus multiplication in human hematopoietic progenitor cells requires the NF-1 class D transcription factor. J Virol 2001; 75(20):9687–95.

    Article  PubMed  CAS  Google Scholar 

  16. Frisque RJ. Regulatory sequences and virus-cell interactions of JC virus. Prog Clin Biol Res 1983; 105:41–59.

    PubMed  CAS  Google Scholar 

  17. Amemiya K, Traub R, Durham L et al. Interaction of a nuclear factor-1-like protein with the regulatory region of the human polyomavirus JC virus. J Biol Chem 1989; 264(12):7025–32.

    PubMed  CAS  Google Scholar 

  18. Amemiya K, Traub R, Durham L et al. Adjacent nuclear factor-1 and activator protein binding sites in the enhancer of the neurotropic JC virus. A common characteristic of many brain-specific genes. J Biol Chem 1992; 267(20):14204–11.

    PubMed  CAS  Google Scholar 

  19. Gronostajski RM. Roles of the NFI/CTF gene family in transcription and development. Gene 2000; 249(1–2):31–45.

    Article  PubMed  CAS  Google Scholar 

  20. Sumner C, Shinohara T, Durham L et al. Expression of multiple classes of the nuclear factor-1 family in the developing human brain: Differential expression of two classes of NF-1 genes. J Neurovirol 1996; 2(2):87–100.

    Article  PubMed  CAS  Google Scholar 

  21. Itoyama Y, Webster HD, Sternberger NH et al. Distribution of papovavirus, myelin-associated glycoprotein, and myelin basic protein in progressive multifocal leukoencephalopathy lesions. Ann Neurol 1982; 11(4):396–407.

    Article  PubMed  CAS  Google Scholar 

  22. Assouline JG, Major EO. Human fetal schwann cells support JC virus multiplication. J Virol 1991; 65(2):1002–6.

    PubMed  CAS  Google Scholar 

  23. Aksamit Jr AJ. Progressive multifocal leukoencephalopathy: A review of the pathology and pathogenesis. Microsc Res Tech 1995; 32(4):302–11.

    Article  PubMed  Google Scholar 

  24. Lie DC, Song H, Colamarino SA et al. Neurogenesis in the adult brain: New strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 2004; 44:399–421.

    Article  PubMed  CAS  Google Scholar 

  25. Ensoli F, Ensoli B, Thiele CJ. HIV-1 gene expression and replication in neuronal and glial cell lines with immature phenotype: Effects of nerve growth factor. Virology 1994; 200(2):668–76.

    Article  PubMed  CAS  Google Scholar 

  26. Feuer R, Mena I, Pagarigan RR et al. Coxsackievirus B3 and the neonatal CNS: The roles of stem cells, developing neurons, and apoptosis in infection, viral dissemination, and disease. Am J Pathol 2003; 163(4):1379–93.

    PubMed  CAS  Google Scholar 

  27. Gruber A, Chen I, Kuhen KL et al. Generation of dendritic cells from lentiviral vector-transduced CD34+ cells from HIV+ donors. J Med Virol 2003; 70(2):183–6.

    Article  PubMed  CAS  Google Scholar 

  28. Lawrence DM, Durham LC, Schwartz L et al. HIV-1 infection of human brain-derived progenitor cells, in press.

    Google Scholar 

  29. Sharpless NE, DePinho RA. Telomeres, stem cells, senescence, and cancer. J Clin Invest 2004; 113(2):160–8.

    PubMed  CAS  Google Scholar 

  30. Kawabata Y, Hirokawa M, Komatsuda A et al. Clinical applications of CD34+ cell-selected peripheral blood stem cells. Therap Apher Dial 2003; 7(3):298–304.

    Article  CAS  Google Scholar 

  31. Jakel RJ, Schneider BL, Svendsen CN. Using human neural stem cells to model neurological disease. Nat Rev Genet 2004; 5(2):136–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Hou, J., Seth, P., Major, E.O. (2006). JC Virus Can Infect Human Immune and Nervous System Progenitor Cells. In: Ahsan, N. (eds) Polyomaviruses and Human Diseases. Advances in Experimental Medicine and Biology, vol 577. Springer, New York, NY. https://doi.org/10.1007/0-387-32957-9_19

Download citation

Publish with us

Policies and ethics