Skip to main content

Josephson junction Materials Research Using Phase Qubits

  • Chapter
Quantum Computing in Solid State Systems

Abstract

At present, the performance of superconducting qubits is limited by decoherence. Strong decoherence of phase qubits is associated with spurious microwave resonators residing within the Josephson junction tunnel barrier.1 In this Chapter three different fabrication techniques for producing tunnel junctions that vary the properties of the superconductor-insulator interface are investigated. Through experimental measurements, the junction and corresponding qubit quality is characterized. A strong correlation between the morphology of oxidized base electrodes and the lowering of subgap currents in the junction I–V characteristics is found, while there is no noticeable improvement in the performance of fabricated phase qubits. Thus, “traditional” indicators of junction performance may not be enough to determine qubit performance. However, truly crystalline insulating barriers may be the key to improving Josephson junction based qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. W. Simmonds, K. M. Lang, D. A. Hite, D. P. Pappas, John M. Martinis, Decoherence in josephson phase qubits from junction resonators, Phys. Rev. Lett. 93, 077003 (2004).

    Article  ADS  Google Scholar 

  2. John Clarke, Hans Mooji, Michel Devoret (private communication).

    Google Scholar 

  3. J. M. Martinis, M. H. Devoret, J. Clarke, Energy-level quantization in the zero-voltage state of a currentbiased Josephson junction, Phys. Rev. Lett. 55, 1543 (1985).

    Article  ADS  Google Scholar 

  4. K. B. Cooper, Matthias Steffen, R. McDermott, R. W. Simmonds, Seongshik Oh, D. A. Hite, D. P. Pappas, John M. Martinis, Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout, cond-mat/0405710 accepted by Phys. Rev. Lett. (2004).

    Google Scholar 

  5. A. I. Braginski, J. Talvacchio, M. A. Janocko, and J. R. Gavaler, Crystalline oxide tunnel barriers formed by thermal oxidation of aluminum overlayers on superconductor surfaces J. Appl. Phys. 60, 2058 (1986).

    Article  ADS  Google Scholar 

  6. K. M. Lang, S. Nam, J. Aumentando, C. Urbina, and John M. Martinis, Banishing quasiparticles from Josephson-junction qubits: Why and how to do it, IEEE Trans. Appl. Supercond. 13, 989 (2003).

    Article  Google Scholar 

  7. B. S. Swartzentruber, Y.-W. Mo, M. B. Webb, and M. G. Lagally, Scanning tunneling microscopy studies of structural disorder and steps on Si surfaces, J. Vac. Sci. Technol. A 7, 2901 (1989).

    Article  ADS  Google Scholar 

  8. H. J. Wen, M. Dhne-Prietsch, A. Bauer, M. T. Cuberes, I. Manke, and G. Kaindl, Thermal annealing of the epitaxial Al/Si(111)7 × 7 interface: Al clustering, interfacial reaction, and Al-induced p+ doping, J. Vac. Sci. Technol. A 13, 2399 (1995).

    Article  ADS  Google Scholar 

  9. L. Aballe, C. Rogero, P. Kratzer, S. Gokhale, and K. Horn, Probing interface electronic structure with overlayer quantum-well resonances: Al/Si(111), Phys. Rev. Lett. 87, 156801 (2001).

    Article  ADS  Google Scholar 

  10. L. Aballe, C. Rogero, S. Gokhale, S. Kulkarni, and K. Horn, Quantum-well states in ultrathin aluminium films on Si(111), Surf. Sci. 482–485, 488 (2001).

    Article  Google Scholar 

  11. L. Floreano, D. Cvetko, F. Bruno, G. Bavdek, A. Cossaro, R. Gotter, A. Verdini, and A. Morgante, Quantum size effects in the low temperature layer-by-layer growth of Pb on Ge(001), Prog. Surf. Sci. 72, 135 (2003).

    Article  ADS  Google Scholar 

  12. E. N. Bratus, V. S. Shumeiko, G. Wendin, Theory of subharmonic gap structure in superconducting mesoscopic tunnel contacts, Phys. Rev. Lett. 74, 2110 (1995)

    Article  ADS  Google Scholar 

  13. D. Averin, A. Bardas, AC Josephson effect in a single quantum channel, Phys. Rev. Lett. 75, 1831 (1995)

    Article  ADS  Google Scholar 

  14. Theodore Van Duzer and Charles W. Turner Principles of Superconductive Devices and Circuits (Prentice Hall, New Jersey, 1999) pp. 194–195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Simmonds, R.W. et al. (2006). Josephson junction Materials Research Using Phase Qubits. In: Ruggiero, B., Delsing, P., Granata, C., Pashkin, Y., Silvestrini, P. (eds) Quantum Computing in Solid State Systems. Springer, New York, NY. https://doi.org/10.1007/0-387-31143-2_11

Download citation

Publish with us

Policies and ethics