Skip to main content
Book cover

The Prokaryotes pp 1041–1049Cite as

Syntrophomonadaceae

  • Reference work entry

Introduction

The family Syntrophomonadaceae includes a group of anaerobes that commonly grow in syntrophic associations with molecular hydrogen (H2)- and formate-using methanogens. The energy source for these organisms is the oxidation of carboxylic acids of four carbons or more. This oxidation is normally coupled to the production of H2 or formate, which is consumed by methanogens or other organisms. The Syntrophomonadaceae are phylogenetically a part of the phylum of Gram-positive bacteria with low DNA G+C −content. −Although −many −of −the −members of this family have cell walls typical of Gram-positive bacteria, several genera (Syntrophomonas, Thermosyntropha, Pelospora and Syntrophothermus) have cell walls typical of Gram-negative bacteria, with the outer membrane of Syntrophomonas confirmed by electron microscopy. The division between Gram-negative and Gram-positive microbes has historically been considered an indicator of the deepest taxonomic separations (Buchanan and Gibbons,...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature Cited

  • Beaty, P. S., and M. J. McInerney. 1987 Growth of Syntrophomonas wolfei in pure culture on crotonate Arch. Microbiol. 147 389–393

    Article  CAS  Google Scholar 

  • Beaty, P. S., and M. J. McInerney. 1990 Nutritional features of Syntrophomonas wolfei Appl. Environ. Microbiol. 50 3223–3224

    Google Scholar 

  • Boone, D. R., and M. P. Bryant. 1980 Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems Appl. Environ. Microbiol. 40 626–632

    PubMed  CAS  Google Scholar 

  • Boone, D. R. 1995 Short-and long-term maintenance of methanogen stock cultures In: K. R. Sowers and H. J. Schreier (Eds.) Archaea: Methanogens: A Laboratory Manual Cold Spring Harbor Laboratory Press New York NY 79–83

    Google Scholar 

  • Bott, M., and R. K. Thauer. 1989 Proton translocation coupled to the oxidation of CO to CO2 and H2 in Methanosarcina barkeri Eur. J. Biochem. 179 4697–472

    Article  Google Scholar 

  • Buchanan, R. E., and N. E. Gibbons (Eds.). 1974 Bergey’s Manual of Determinative Bacteriology Williams and Wilkins Baltimore MD

    Google Scholar 

  • Gibbons, N. E., and R. G. E. Murray. 1978 Proposals concerning the higher taxa of bacteria Int. J. Syst. Bacteriol. 28 1–6

    Article  Google Scholar 

  • Hippe, H. 1984 Maintenance of methanogenic bacteria In: B. E. Kirsop and J. J. S. Snell (Eds.) Maintenance of Microorganisms Academic Press London, UK 69–81

    Google Scholar 

  • Hungate, R. E. 1969 A roll tube method for cultivation of strict anaerobes In: R. Norris and D. W. Ribbons (Eds.) Methods in Microbiology Academic Press New York NY 117–132

    Google Scholar 

  • Jukes, T. H., and C. R. Cantor. 1969 Evolution of protein molecules In: H. N. Munro (Ed.) Mammilian Protein Metabolism Academic Press New York NY 21–132

    Google Scholar 

  • Liu, Y., D. L. Balkwill, H. C. Aldrich, G. R. Drake, and D. R. Boone. 1999 Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii Int. J. Syst. Bacteriol. 49 545–556

    Article  PubMed  CAS  Google Scholar 

  • Lorowitz, W. H., H. Zhao, and M. P. Bryant. 1989 Syntrophomonas wolfei subsp. saponavida subsp. nov., a long-chain fatty-acid-degrading, anaerobic, syntrophic bacterium; Syntrophomonas wolfei subsp. wolfei subsp. nov.; and emended descriptions of the genus and species Int. J. Syst. Bacteriol. 39 122–126

    Article  CAS  Google Scholar 

  • Matthies, C., N. Springer, W. Ludwig, and B. Schink. 2000 Pelospora glutarica gen. nov., sp. nov., a glutarate-fermenting, strictly anaerobic, spore-forming bacterium Int. J. Syst. Evol. Microbiol. 50 645–648

    Article  PubMed  Google Scholar 

  • McInerney, M. J., M. P. Bryant, and N. Pfennig. 1979 Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens Arch. Microbiol. 122 129–135

    Article  CAS  Google Scholar 

  • McInerney, M. J., M. P. Bryant, R. B. Hespell, and J. W. Costerton. 1981 Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium Appl. Environ. Microbiol. 41 1029–1039

    PubMed  CAS  Google Scholar 

  • McInerney, M. J. 1986 Transient and persistent associations among prokaryotes In: J. S. Poindexter and E. R. Leadbetter (Eds.) Bacteria in Nature Plenum Press New York NY 2 293–338

    Google Scholar 

  • McInerney, M. J., and N. Q. Wofford. 1992 Enzymes involved in crotonate metabolism in Syntrophomonas wolfei Arch. Microbiol. 158 344–349

    Article  CAS  Google Scholar 

  • Olsen, G. J., H. Matsuda, R. Hagstrom, and R. Overbeek. 1994 fastDNAml: A tool for construction of phylogenetic trees of DNA sequences using maximum likelihood Comput. Appl. Biosci. 10 41–48

    PubMed  CAS  Google Scholar 

  • Page, R. D. M., and E. C. Holmes (Eds.). 1998 Molecular Evolution: A Phylogenetic Approach Blackwell Science London, UK

    Google Scholar 

  • Pankhania, I. P., A. M. Spormann, W. A. Hamilton, and R. K. Thauer. 1988 Lactate conversion to acetate, CO2, and H2 in cell suspensions of Desulfovibrio vulgaris (Marburg): Interactions for the involvement of an energy driven reaction Arch. Microbiol. 150 26–31

    Article  CAS  Google Scholar 

  • Roy, F. E., Samain, H. C. Dubourguier, and G. Albagnac. 1986 Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids Arch. Microbiol. 145 142–147

    Article  CAS  Google Scholar 

  • Schink, B. 1997 Energetics of syntrophic cooperation in methanogenic degradation Microbiol. Molec. Biol. Rev. 61 262–280

    CAS  Google Scholar 

  • Sekiguchi, Y., Y. Kamagata, K. Nakamura, A. Ohashi, and H. Harada. 2000 Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate Int. J. Syst. Evol. Microbiol. 50 771–779

    Article  PubMed  CAS  Google Scholar 

  • Sowers, K. R., and K. M. Noll. 1995 Techniques for anaerobic growth In: F. T. Robb, K. R. Sowers, H. J. Schreier, S. DasSarma, and E. M. Fleischmann (Eds.) Archaea: A Laboratory Manual Cold Spring Harbor Laboratory Press New York NY 15–47

    Google Scholar 

  • Stieb, M., and B. Schink. 1985 Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium Arch. Microbiol. 140 387–390

    Article  CAS  Google Scholar 

  • Svetlitshnyi, V., F. Rainey, and J. Wiegel. 1996 Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short-and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum Int. J. Syst. Bacteriol. 46 1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Thauer, R. K., K. Jungermann, and K. Decker. 1977 Energy conservation in chemotrophic anaerobic bacteria Bacteriol. Rev. 41 100–180

    PubMed  CAS  Google Scholar 

  • Thauer, R. K., and J. G. Morris. 1984 Metabolism of chemotrophic anaerobes: old views and new aspects Symp. Soc. Gen. Microbiol. 36 123–374

    Google Scholar 

  • Tschech, A., and B. Schink. 1985a Fermentative degradation of resorcinol and resorcylic acids Arch. Microbiol. 143 52–59

    Article  CAS  Google Scholar 

  • Tschech, A., and B. Schink. 1985b Fermentative metabolism of monohydroxybenzoates by defined syntrophic cocultures Arch. Microbiol. 145 396–402

    Article  Google Scholar 

  • Wallrabenstein, C., and B. Schink. 1994 Evidence of reversed electron transport in syntrophic butyrate or benzoate oxidation by Syntrophomonas wolfei and Syntrophus buswellii Arch. Microbiol. 162 136–142

    Article  CAS  Google Scholar 

  • Wofford, N. Q., P. S. Beaty, and M. J. McInerney. 1986 Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei J. Bacteriol. 167 179–185

    PubMed  CAS  Google Scholar 

  • Zhao, H., D. Yeng, C. R. Woese, and M. P. Bryant. 1990 Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov. comb., based on 16S rRNA sequence analysis of its crotonate-grown pure culture Int. J. Syst. Bacteriol. 40 40–44

    Article  PubMed  CAS  Google Scholar 

  • Zhao, H., D. Yang, C. R. Woese, and M. P. Bryant. 1993 Assignment of fatty acid-b-oxidizing syntrophic bacteria to Syntrophomonadaceae fam. nov. on the basis of 16S rRNA sequence analyses Int. J. Syst. Bacteriol. 43 278–286

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Sobieraj, M., Boone, D.R. (2006). Syntrophomonadaceae. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30744-3_37

Download citation

Publish with us

Policies and ethics