Skip to main content
Book cover

Brain Repair pp 101–121Cite as

Lesion-Induced Axonal Sprouting in the Central Nervous System

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 557))

Summary

Injury or neuronal death often come about as a result of brain disorders. Inasmuch as the damaged nerve cells are interconnected via projections to other regions of the brain, such lesions lead to axonal loss in distal target areas. The central nervous system responds to deafferentation by means of plastic remodeling processes, in particular by inducing outgrowth of new axon collaterals from surviving neurons (collateral sprouting). These sprouting processes result in a partial reinnervation, new circuitry, and functional changes within the deafferented brain regions. Lesioning of the entorhinal cortex is an established model system for studying the phenomenon of axonal sprouting. Using this model system, it could be shown that the sprouting process respects the pre-existing lamination pattern of the deafferented fascia dentata, i. e., it is layer-specific. A variety of different molecules are involved in regulating this reorganization process (extracellular matrix molecules, cell adhesion molecules, transcription factors, neurotrophic factors, growth-associated proteins). It is proposed here that molecules of the extracellular matrix define the boundaries of the laminae following entorhinal lesioning and in so doing limit the sprouting process to the deafferented zone. To illustrate the role of axonal sprouting in disease processes, special attention is given to its significance for neurodegenerative disorders, particularly Alzheimer’s disease (AD), and temporal lobe epilepsy. Finally, we discuss both the beneficial as well as disadvantageous functional implications of axonal sprouting for the injured organism in question.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Singer W. Activity-dependent self-organization of synaptic connections as a substrate for learning. In: Changeux JP, Konishi M, eds. The neural and molecular bases of learning. London: John-Wiley, 1987:301–336.

    Google Scholar 

  2. Gage FH, Kempermann G, Palmer TD et al. Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 1998; 36:249–266.

    PubMed  CAS  Google Scholar 

  3. Kempermann G, van Praag H, Gage FH. Activity-dependent regulation of neuronal plasticity and self repair. Prog Brain Res 2000; 127:35–48.

    PubMed  CAS  Google Scholar 

  4. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997; 38:493–495.

    Google Scholar 

  5. Lynch G, Cotman C. The hippocampus as a model for studying anatomical plasticity in the adult brain. In: Isaacson RL, Pribram KH, eds. The Hippocampus. Vol. 1. New York: Plenum Press, 1975:123–154.

    Google Scholar 

  6. Cotman CW, Nadler JV. Reactive synaptogenesis in the hippocampus. In: Cotman CW, ed. Neuronal Plasticity. New York: Raven Press, 1978:227–271.

    Google Scholar 

  7. Cotman CW, Nieto-Sampedro M, Harris EW. Synapse replacement in the nervous system of adult vertebrates. Physiol Rev 1981; 61:684–784.

    PubMed  CAS  Google Scholar 

  8. Liu CN, Chambers WW. Intraspinal sprouting of dorsal root axons. Arch Neurol Psych 1958; 79:46–61.

    CAS  Google Scholar 

  9. Raisman G. Neuronal plasticity in the septal nuclei of the adult rat. Brain Res 1969; 14:25–48.

    PubMed  CAS  Google Scholar 

  10. Raisman G, Field PM. A quantitative investigation of the development of collateral reinnervation after partial deafferentation of the septal nuclei. Brain Res 1973; 50:241–264.

    PubMed  CAS  Google Scholar 

  11. Chen S, Hillman DE. Plasticity of the parallel fiber-purkinje cell synapse by spine takeover and new synapse formation in the adult rat. Brain Res 1982; 240:205–220.

    PubMed  CAS  Google Scholar 

  12. Rubel EW, Smith ZDG, Steward O. Sprouting in the avian brainstem auditory pathway: dependence on dendritic integrity. J Comp Neurol 1981; 20:397–414.

    Google Scholar 

  13. Wells J, Tripp LN. Time course of reactive synaptogenesis in the subcortical somatosensory system. J Comp Neurol 1987; 255:466–475.

    PubMed  CAS  Google Scholar 

  14. Schwegler G, Schwab ME, Kapfhammer JP. Increased collateral sprouting of primary afferents in the myelin-free spinal cord. J Neurosci 1995; 15:2756–2767.

    PubMed  CAS  Google Scholar 

  15. Steward O. Reorganization of neuronal circuitry following central nervous system trauma: naturally occurring processes and opportunities for therapeutic intervention. In: Salzman SK, Faden AI, eds. The Neurobiology of Central Nervous System Trauma. New York: Oxford University Press, 1994:266–287.

    Google Scholar 

  16. Deller T, Frotscher M. Lesion-induced plasticity of central neurons: sprouting of single fibers in the rat hippocampus after unilateral entorhinal lesion. Prog Neurobiol 1997; 53:687–727.

    PubMed  CAS  Google Scholar 

  17. Moore RY, Zigmond MJ. Compensatory mechanisms in central neurodegenerative disease. In: Calne DB, ed. Neurodegenerative Diseases. Philadelphia: Saunders, 1994:355–370.

    Google Scholar 

  18. Chevassus-Au-Louis N, Niquet J, Ben-Ari Y et al. Cellular plasticity. In: Engel J Jr, Pedley TA, eds. Epilepsy: A comprehensive textbook. Philadelphia: Lippincott-Raven, 1997:387–396.

    Google Scholar 

  19. Mathern GW, Babb TL, Armstrong DL. Hippocampal sclerosis. In: Engel J Jr, Pedley TA, eds. Epilepsy: A comprehensive textbook. Philadelphia: Lippincott-Raven, 1997:133–155.

    Google Scholar 

  20. Steward O. Cholinergic sprouting is blocked by repeated induction of electroconvulsive seizures, a manipulation that induces a persistent reactive state in astrocytes. Exp Neurol 1994; 129:103–111.

    PubMed  CAS  Google Scholar 

  21. Gall C, Ivy G, Lynch G. Neuroanatomical plasticity. Its role in organizing and reorganizing the central nervous system. Human Growth 1986; 2:411–436.

    Google Scholar 

  22. Steward O. Synapse replacement on cortical neurons following denervation. Cereb Cortex 1991; 9:81–132.

    Google Scholar 

  23. Savaskan NE, Nitsch R. Molecules involved in reactive sprouting in the hippocampus. Rev Neurosci 2001; 12:195–215.

    PubMed  CAS  Google Scholar 

  24. Lynch G, Matthews DA, Mosko S et al. Induced acetylcholinesterase-rich layer in rat dentate gyrus following entorhinal lesions. Brain Res 1972; 42:311–318.

    PubMed  CAS  Google Scholar 

  25. Cotman CW, Matthews DA, Taylor D et al. Synaptic rearrangement in the dentate gyrus: histochemical evidence of adjustments after lesions in immature and adult rats. Proc Natl Acad Sci U S A 1973; 70:3473–3477.

    PubMed  CAS  Google Scholar 

  26. Lynch G, Stanfield B, Cotman CW. Developmental differences in postlesion axonal growth in the hippocampus. Brain Res 1973; 59:155–168.

    PubMed  CAS  Google Scholar 

  27. Steward O, Cotman CW, Lynch GS. Re-establishment of electrophysiologically functional entorhinal cortical input to the dentate gyrus deafferented by ipsilateral entorhinal lesions: innervation by the contralateral cortex. Exp Brain Res 1973; 18:396–414.

    PubMed  CAS  Google Scholar 

  28. Paranavelas JG, Lynch G, Brecha N et al. Spine loss and regrowth in hippocampus following deafferentation. Nature 1974; 248:71–73.

    Google Scholar 

  29. Zimmer J. Extended commissural and ipsilateral projections in postnatally de-entorhinated hippocampus and fascia dentata demonstrated in rats by silver impregnation. Brain Res 1973; 64:293–311.

    PubMed  CAS  Google Scholar 

  30. Zimmer J. Proximity as a factor in the regulation of aberrant axonal growth in postnatally deafferented fascia dentata. Brain Res 1974; 72:137–142.

    PubMed  CAS  Google Scholar 

  31. Zimmer J, Hjorth-Simonsen A. Crossed pathways from the entorhinal area to the fascia dentata.II: Provokable in rats. J Comp Neurol 1975; 161:71–102.

    PubMed  CAS  Google Scholar 

  32. Gerfen CR, Sawchenko PE. An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris-Leucoagglutinin (PHAL). Brain Res 1984; 290:219–238.

    PubMed  CAS  Google Scholar 

  33. Deller T, Frotscher M, Nitsch R. Morphological evidence for the sprouting of inhibitory commissural fibers in response to the lesion of the excitatory entorhinal input to the rat dentate gyrus. J Neurosci 1995; 15:6868–6878.

    PubMed  CAS  Google Scholar 

  34. Deller T, Nitsch R, Frotscher M. Layer-specific sprouting of commissural fibers to the rat fascia dentata after unilateral entorhinal cortex lesion: A Phaseolus vulgaris-Leucoagglutinin tracing study. Neuroscience 1996; 71:651–660.

    PubMed  CAS  Google Scholar 

  35. Deller T, Frotscher M, Nitsch R. Sprouting of crossed entorhinodentate fibers after a unilateral entorhinal lesion: anterograde tracing of fiber reorganization with phaseolus vulgaris-leucoagglutinin (PHAL). J Comp Neurol 1996; 365:42–55.

    PubMed  CAS  Google Scholar 

  36. Frotscher M, Heimrich B, Deller T. Sprouting in the hippocampus is layer-specific. Trends Neurosci 1997; 20:218–223.

    PubMed  CAS  Google Scholar 

  37. Fawcett JW. Intrinsic neuronal determinants of regeneration. Trends Neurosci 1992; 15:5–8.

    PubMed  CAS  Google Scholar 

  38. Caroni P. Intrinsic neuronal determinants that promote axonal sprouting and elongation. Bio Essays 1997; 19:767–775.

    CAS  Google Scholar 

  39. Aigner L, Arber S, Kapfhammer JP et al. Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell 1995; 83:269–278.

    PubMed  CAS  Google Scholar 

  40. Caroni P. Driving the growth cone. Science 1998; 281:1465–1466.

    PubMed  CAS  Google Scholar 

  41. Laux T, Fukami K, Thelen M et al. GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol 2000; 149:1455–1472.

    PubMed  CAS  Google Scholar 

  42. Frey D, Laux T, Xu L et al. Shared and unique roles of CAP23 and GAP43 in actin regulation, neurite outgrowth, and anatomical plasticity. J Cell Biol 2000; 149:1443–1454.

    PubMed  CAS  Google Scholar 

  43. Benowitz LI, Routtenberg A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 1997; 20:84–91.

    PubMed  CAS  Google Scholar 

  44. Oestreicher AB, DeGraan PNE, Gispen WH et al. B-50, the growth associated protein-43: modulation of cell morphology and communication in the nervous system. Prog Neurobiol 1997; 53:627–686.

    PubMed  CAS  Google Scholar 

  45. Goodman CS. Mechanisms and molecules that control growth cone guidance. Annu Rev Neurosci 1996; 19:341–377.

    PubMed  CAS  Google Scholar 

  46. Faissner A, Götz B, Joester A et al. Tenascin-C glycoproteins in neural pattern formation and plasticity. The neurosci 1996; 8:347–356.

    CAS  Google Scholar 

  47. Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science 1996; 274:1123–1133.

    PubMed  CAS  Google Scholar 

  48. Kapfhammer JP. The Axon. In: Ferretti P, Géraudie J, eds. Cellular and molecular basis of regeneration: from invertebrates to humans. Chichester: John Wiley, 1998:355–378.

    Google Scholar 

  49. Bovolenta P, Fernaud-Espinosa I. Nervous system proteoglycans as modulators of neurite outgrowth. Prog Neurobiol 2000; 61:113–132.

    PubMed  CAS  Google Scholar 

  50. Van Vactor D, Lorenz LJ. Introduction: invertebrate axons find their way. Cell Mol Life Sci 1999; 55:1355–1357.

    PubMed  Google Scholar 

  51. Pires Neto MA, Braga-de-Souza S, Lent R. Extracellular matrix molecules play diverse roles in the growth and guidance of central nervous system axons. Braz J Med Biol Res 1999; 32:633–638.

    PubMed  CAS  Google Scholar 

  52. Van Vactor DV, Lorenz LJ. Neural development: The semantics of axon guidance. Curr Biol 1999; 9:201–204.

    Google Scholar 

  53. Förster E, Naumann T, Deller T et al. Cholinergic sprouting in the rat fascia dentata after entorhinal lesion is not linked to early changes in neurotrophin mRNA expression. Neuroscience 1997; 80:731–739.

    PubMed  Google Scholar 

  54. Lee MY, Deller T, Kirsch M et al. Differential regulation of CNTF and CNTF receptor alpha expression in astrocytes and neurons of the fascia dentata following entorhinal cortex lesion. J Neurosci 1997; 17:1137–1146.

    PubMed  CAS  Google Scholar 

  55. Haas CA, Deller T, Frotscher M. Basal expression, subcellular distribution, and upregulation of the proto-oncogene c-jun in the rat dentate gyrus after unilateral entorhinal cortex lesion. Neuroscience 1997; 81:33–45.

    PubMed  CAS  Google Scholar 

  56. Haas CA, Frotscher M, Deller T. Differential induction of c-Fos, c-Jun and Jun B in the rat central nervous system following unilateral entorhinal cortex lesion. Neuroscience 1999; 90:41–51.

    PubMed  CAS  Google Scholar 

  57. Xia XG, Hofmann HD, Deller T et al. Induction of STAT3 signaling in activated astrocytes and sprouting septal neurons following entorhinal cortex lesion in adult rats. Mol Cell Neurosci 2002; 21:379–39.

    PubMed  CAS  Google Scholar 

  58. Jucker M, Mondadori C, Mohajeri H et al. Transient upregulation of NCAM mRNA in astrocytes in response to entorhinal cortex lesions and ischemia. Mol Brain Res 1995; 28:149–156.

    PubMed  CAS  Google Scholar 

  59. Jucker M, D’Amato F, Mondadori C et al. Expression of the neural adhesion molecule L1 in the deafferented dentate gyrus. Neuroscience 1996; 75:703–715.

    PubMed  CAS  Google Scholar 

  60. Deller T, Haas CA, Naumann T et al. Upregulation of astrocyte-derived tenascin-c correlates with neurite outgrowth in the rat dentate gyrus after unilateral entorhinal cortex lesion. Neuroscience 1997; 81:829–846.

    PubMed  CAS  Google Scholar 

  61. Haas CA, Rauch U, Thon N et al. Entorhinal cortex lesion in adult rats induce the expression of the neuronal chondroitin sulfate proteoglycan neurocan in reactive astrocytes. J Neurosci 1999; 19:9953–9963.

    PubMed  CAS  Google Scholar 

  62. Thon N, Haas CA, Rauch U et al. The chondroitin sulphate proteoglycan brevican is upregulated by astrocytes after entorhinal cortex lesions in adult rats. Eur J Neurosci 2000; 12:2547–2558.

    PubMed  CAS  Google Scholar 

  63. Haas CA, Deller T, Krsnik Z et al. Entorhinal cortex lesion does not alter reelin mRNA expression in the dentate gyrus of young and adult rats. Neuroscience 2000; 97:25–31.

    PubMed  CAS  Google Scholar 

  64. Collazos-Castro JE, Nieto-Sampedro M. Developmental and reactive growth of dentate gyrus afferents: Cellular and molecular interactions. Restor Neurol Neurosci 2001; 19:169–187.

    PubMed  CAS  Google Scholar 

  65. Pearlman AL, Sheppard AM. Extracellular matrix in early cortical development. Prog Brain Res 1996; 108:117–134.

    PubMed  CAS  Google Scholar 

  66. Höke A, Silver J. Proteoglycans and other repulsive molecules in glial boundaries during development and regeneration of the nervous system. Prog Brain Res 1996; 108:149–163.

    PubMed  Google Scholar 

  67. Yamada H, Fredette B, Shitara K et al. The brain chondroitin sulfate proteoglycan brevican associates with astrocytes ensheathing cerebellar glomeruli and inhibits neurite outgrowth from granule neurons. J Neurosci 1997; 17:7784–7795.

    PubMed  CAS  Google Scholar 

  68. Margolis RU, Margolis RK. Chondroitin sulfate proteoglycans as mediators of axon growth and pathfinding. Cell Tiss Res 1997; 290:343–348.

    CAS  Google Scholar 

  69. Rauch U. Modeling an extracellular environment for axonal pathfinding and fasciculation in the central nervous system. Cell Tiss Res 1997; 290:349–356.

    CAS  Google Scholar 

  70. Faissner A. The tenascin gene family in axon growth and guidance. Cell Tiss Res 1997; 290:331–341.

    CAS  Google Scholar 

  71. Stichel CC, Müller HW. The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tiss Res 1998; 294:1–9.

    CAS  Google Scholar 

  72. Davies SJA, Goucher DA, Doller C et al. Robust regenerating of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci 1999; 19:5810–5822.

    PubMed  CAS  Google Scholar 

  73. Moon LD, Asher RA, Rhodes K et al. Regeneration of CNS axons back to their target following treatment of adult brain with chondroitinase ABC. Nature Neurosci 2001; 4:465–466.

    PubMed  CAS  Google Scholar 

  74. Asher RA, Morgenstern DA, Moon LD et al. Chondroitin sulphate proteoglycans: inhibitory components of the glial scar. Prog Brain Res 2001; 132:611–619.

    PubMed  CAS  Google Scholar 

  75. Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull 1999; 49:377–391.

    PubMed  CAS  Google Scholar 

  76. Powell EM, Fawcett JW, Geller HM. Proteoglycans provide neurite guidance at an astrocyte boundary. Mol Cell Neurosci 1997; 10:27–42.

    PubMed  CAS  Google Scholar 

  77. Deller T, Haas CA, Frotscher M. Reorganization of the rat fascia dentata after a unilateral entorhinal cortex lesion: Role of the extracellular matrix. Ann NY Acad Sci 2000; 911:207–220.

    PubMed  CAS  Google Scholar 

  78. Deller T, Haas CA, Frotscher M. Sprouting in the hippocampus after entorhinal cortex lesion is layer-specific but not translaminar: Which molecules may be involved? Restor Neurol Neurosci 2001; 19:159–167.

    PubMed  CAS  Google Scholar 

  79. Geddes JW, Monaghan DT, Cotman CW et al. Plasticity of hippocampal circuitry in alzheimer’s disease. Science 1985; 230:1179–1181.

    PubMed  CAS  Google Scholar 

  80. Geddes JW, Anderson KJ, Cotman CW. Senile plaques as aberrant sprout-stimulating structures. Exp Neurol 1986; 94:767–776.

    PubMed  CAS  Google Scholar 

  81. Masliah E, Fagan AM, Terry RD et al. Reactive synaptogenesis assessed by synaptophysin immunoreactivity is associated with GAP-43 in the denate gyrus of the adult rat. Exp Neurol 1991; 113:131–142.

    PubMed  CAS  Google Scholar 

  82. Sturchler-Pierrat C, Abramowski D, Duke M et al. Two amyloid precursor protein transgenic mouse models with alzheimer disease-like pathology. Proc Natl Acad Sci U S A 1997; 94:13287–13292.

    PubMed  CAS  Google Scholar 

  83. Calhoun ME, Wiederhold KH, Abramowski D et al. Neuron loss in APP transgenic mice. Nature 1998; 395:755–756.

    PubMed  CAS  Google Scholar 

  84. Phinney AL, Deller T, Stalder M et al. Cerebral amyloid induces aberrant axonal sprouting and ectopic terminal formation in amyloid precursor protein transgenic mice. J Neurosci 1999; 19:8552–8559.

    PubMed  CAS  Google Scholar 

  85. Hyman BT, Kromer LJ, VanHoesen GW. Reinnervation of the hippocampal perforant pathway zone in alzheimer’s disease. Ann Neurol 1987; 21:259–267.

    PubMed  CAS  Google Scholar 

  86. Hyman BT, VanHoesen GW, Kromer LJ et al. Perforant pathway changes and the memory impairment of alzheimer,s disease. Ann Neurol 1986; 20:472–481.

    PubMed  CAS  Google Scholar 

  87. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82:239–259.

    PubMed  CAS  Google Scholar 

  88. Calhoun ME, Burgermeister P, Phinney AL et al. Neuronal overexpression of mutant APP results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci U S A 1999; 96:14088–14093.

    PubMed  CAS  Google Scholar 

  89. Stalder M, Phinney AL, Probst A et al. Association of microglia with amyloid plaques in brains of APP23 transgenic mice. Am J Pathol 1999; 154:1673–1684.

    PubMed  CAS  Google Scholar 

  90. Stalder M, Deller T, Staufenbiel M et al. 3D-reconstruction of microglia and amyloid in APP23 transgenic mice: no evidence of intracellular amyloid. Neurobiol Aging 2001; 22:427–434.

    PubMed  CAS  Google Scholar 

  91. Sloviter RS. The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Ann Neurol 1994; 35:640–654.

    PubMed  CAS  Google Scholar 

  92. Sloviter RS. A simplified Timm stain procedure compatible with formaldehyde fixation and routine paraffin embedding of rat brain. Brain Res Bull 1982; 8:771–774.

    PubMed  CAS  Google Scholar 

  93. Sutula T, Cascino G, Cavazos J et al. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 1989; 26:321–330.

    PubMed  CAS  Google Scholar 

  94. Babb TL, Pretorius JK, Mello LE et al. Synaptic reorganizations in epileptic human and rat kainate hippocampus may contribute to feedback and feedforward excitation. Epilepsy Res Suppl 203; 9:193–202.

    Google Scholar 

  95. Babb TL, Kupfer WR, Pretorius JK et al. Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience 1991; 42:351–363.

    PubMed  CAS  Google Scholar 

  96. de Lanerolle NC, Kim JH, Robbins RJ et al. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 1989; 495:387–395.

    PubMed  Google Scholar 

  97. Mathern GW, Babb TL, Pretorius JK et al. Reactive synaptogenesis and neuron densities for neuropeptide Y, somatostatin, and glutamate decarboxylase immunoreactivity in the epileptogenic human fascia dentata. J Neurosci 1995; 15:3990–4004.

    PubMed  CAS  Google Scholar 

  98. Lehmann TN, Gabriel S, Kovacs R et al. Alterations of neuronal connectivity in area CA1 of hippocampal slices from temporal lobe epilepsy patients and from pilocarpine-treated epileptic rats. Epilepsia 2000; 41:190–194.

    Google Scholar 

  99. Isokawa M, Levesque MF, Babb TL et al. Single mossy fiber axonal systems of human dentate granule cells studied in hippocampal slices from patients with temporal lobe epilepsy. J Neurosci 1993; 13:1511–1522.

    PubMed  CAS  Google Scholar 

  100. Franck JE, Pokorny J, Kunkel DD et al. Physiologic and morphologic characteristics of granule cell circuitry in human epileptic hippocampus. Epilepsia 1995; 36:543–558.

    PubMed  CAS  Google Scholar 

  101. van Haeften T, Wouterlood FG. Neuroanatomical tracing at high resolution. J Neurosci Meth 2000; 103:107–116.

    Google Scholar 

  102. Boulton CL, Haebler DV, Heinemann U. Tracing of axonal connections by rhodamine-dextran amine in the rat hippocampal-entorhinal cortex slice preparation. Hippocampus 1992; 2:99–106.

    PubMed  CAS  Google Scholar 

  103. Freiman TM, Gimbel K, Honegger J et al. Anterograde tracing of human hippocampus in vitro — a neuroanatomical tract tracing technique for the analysis of local fiber tracts in human brain. J Neurosci Meth 2002; 120:95–103.

    Google Scholar 

  104. Gall CM, Isackson PJ. Limbic seizures increase neuronal production of messenger RNA for nerve growth factor. Science 1989; 245:758–761.

    PubMed  CAS  Google Scholar 

  105. Niquet J, Jorquera J, Ben-Ari Y et al. N-CAM immunoreactivity on mossy fibers and reactive astrocytes in the hippocampus of epileptic rats. Brain Res 1993; 626:106–116.

    PubMed  CAS  Google Scholar 

  106. Niquet J, Jorquera J, Faissner A et al. Gliosis and axonal sprouting in the hippocampus of epileptic rats are associated with an increase of tenascin-C immunoreactivity. J Neurocytol 1995; 24:611–624.

    PubMed  CAS  Google Scholar 

  107. Nakic M, Mitrovic N, Sperk G et al. Kainic acid activates transient expression of tenascin-C in the adult rat hippocampus. J Neurosci Res 1996; 44:355–362.

    PubMed  CAS  Google Scholar 

  108. Mathern GW, Babb TL, Micevych PE et al. Granule cell mRNA levels for BDNF, NGF, and NT-3 correlate with neuron losses or supragranular mossy fiber sprouting in the chronically damaged and epileptic human hippocampus. Mol Chem Neuropathol 1997; 30:53–76.

    PubMed  CAS  Google Scholar 

  109. Scheffler B, Faissner A, Beck H et al. Hippocampal loss of tenascin boundaries in ammon’s horn sclerosis. Glia 1997; 19:35–46.

    PubMed  CAS  Google Scholar 

  110. Bender R, Heimrich B, Meyer M et al. Hippocampal mossy fiber sprouting is not impaired in brain-derived neurotrophic factor-deficient mice. Exp Brain Res 1998; 120:399–402.

    PubMed  CAS  Google Scholar 

  111. Schneider GE. Is it really better to have your brain lesion early? A revision of the “kennard principle.” Neuropyschol 1979; 17:557–583.

    CAS  Google Scholar 

  112. Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev 1996; 76:319–370.

    PubMed  CAS  Google Scholar 

  113. Ramirez JJ. The functional significance of lesion-induced plasticity of the hippocampal formation. Brain Plas Adv Neurology 1997; 73:61–82.

    CAS  Google Scholar 

  114. Ramirez JJ. The role of axonal sprouting in functional reorganization after CNS injury: Lessons from the hippocampal formation. Restor Neurol Neurosci 2001; 19:237–262.

    PubMed  CAS  Google Scholar 

  115. Cao Y, Vikingstad EM, Huttenlocher PR et al. Functional magnetic resonance studies of the reorganization of the human hand sensorimotor area after unilateral brain injury in the perinatal period. Proc Natl Acad Sci USA 1994; 91:9612–9616.

    PubMed  CAS  Google Scholar 

  116. Carr LJ, Harrison LM, Evans AL et al. Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain 1993; 116:1223–1247.

    PubMed  Google Scholar 

  117. Woolf CJ, Shortland P, Coggeshall RE. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 1992; 355:75–78.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Deller, T., Haas, C.A., Freiman, T.M., Phinney, A., Jucker, M., Frotscher, M. (2006). Lesion-Induced Axonal Sprouting in the Central Nervous System. In: Bähr, M. (eds) Brain Repair. Advances in Experimental Medicine and Biology, vol 557. Springer, Boston, MA. https://doi.org/10.1007/0-387-30128-3_6

Download citation

Publish with us

Policies and ethics