Skip to main content

Is Cycloxygenase-2 (COX-2) a Major Component of the Mechanism Responsible for Microvascular Remodeling in the Brain?

  • Conference paper
Oxygen Transport to Tissue XXVII

Part of the book series: Advances in Experimental Medicine and Biology ((volume 578))

5. Conclusion

We have used a relatively simple model of hypoxia that triggers adaptive structural changes in the cerebral microvasculature to study the process of physiological angiogenesis. This model can be used to obtain mechanistic data for the processes that probably underlie the dynamic structural changes that occur in learning and the control of oxygen availability to the neurovascular unit. These mechanisms are broadly involved in a wide variety of pathophysiological processes. This is the vascular component to CNS functional plasticity, supporting learning and adaptation. The angiogenic process may wane with age, contributing to the decreasing ability to survive metabolic stress and the diminution of neuronal plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. J. C. LaManna, L.M. Vendel, and R.M. Farrell: Brain adaptation to chronic hypobaric hypoxia in rats. J.Appl.Physiol. 72:2238–2243 (1992).

    Google Scholar 

  2. N.-T. Kuo, D. Benhayon, R.J. Przybylski, R.J. Martin, and J.C. LaManna: Prolonged hypoxia increases vascular endothelial growth factor mRNA and protein in adult mouse brain. J.Appl.Physiol. 86:260–264 (1999).

    Google Scholar 

  3. J. C. Chávez, F. Agani, P. Pichiule, and J.C. LaManna: Expression of hypoxic inducible factor 1α in the brain of rats during chronic hypoxia. J.Appl.Physiol. 89:1937–1942 (2000).

    Google Scholar 

  4. P. Pichiule and J.C. LaManna: Angiopoietin-2 and rat brain capillary remodeling during adaptation and deadaptation to prolonged mild hypoxia. J.Appl.Physiol. 93:1131–1139 (2002).

    Google Scholar 

  5. M. Gassmann and R.H. Wenger: HIF-1, a mediator of the molecular response to hypoxia. News Physiol Sci 12:214–218 (1997).

    Google Scholar 

  6. J. A. Forsythe, B.-H. Jiang, N.V. Iyer, F. Agani, S.W. Leung, R.D. Koos, and G.L. Semenza: Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol.Cell.Biol. 16:4604–4613 (1996).

    Google Scholar 

  7. H. F. Bunn and R.O. Poyton: Oxygen sensing and molecular adaptation to hypoxia. Physiol.Rev. 76:839–885 (1996).

    Google Scholar 

  8. P. Pichiule, J.C. Chavez, and J.C. LaManna: Hypoxic regulation of angiopoietin-2 expression in endothelial cells. J Biol.Chem. 279:12171–12180 (2004).

    Article  Google Scholar 

  9. J. C. LaManna, J.C. Chavez, and P. Pichiule: Structural and functional adaptation to hypoxia in the rat brain. J.Exp.Biol. 207:3163–3169 (2004).

    Article  Google Scholar 

  10. S. I. Harik, R.N. Kalaria, L. Andersson, P. Lundahl, and G. Perry: Immunocytochemical localization of the erythroid glucose transporter: Abundance in tissues with barrier functions. J.Neurosci. 10:3862–3872 (1990).

    Google Scholar 

  11. S. I. Harik, W.D. Lust, S.C. Jones, K.L. Lauro, S. Pundik, and J.C. LaManna: Brain glucose metabolism in hypobaric hypoxia. J.Appl.Physiol. 79:136–140 (1995).

    Google Scholar 

  12. P. Pichiule, J.C. Chavez, and J.C. LaManna: Hypoxic regulation of angiopoietin-2 expression in endothelial cells. J.Biol.Chem. (in press) (2004).

    Google Scholar 

  13. C. D. Funk: Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875 (2001).

    Article  ADS  Google Scholar 

  14. L. Parente and M. Perretti: Advances in the pathophysiology of constitutive and inducible cyclooxygenases: two enzymes in the spotlight. Biochem.Pharmacol. 65:153–159 (2003).

    Article  Google Scholar 

  15. C. D. Breder, D. Dewitt, and R.P. Kraig: Characterization of inducible cyclooxygenase in rat brain. J Comp Neurol. 355:296–315 (1995).

    Article  Google Scholar 

  16. N. G. Bazan: Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J Lipid Res. 44:2221–2233 (2003).

    Article  Google Scholar 

  17. T. Wyss-Coray and L. Mucke: Inflammation in neurodegenerative disease—a double-edged sword. Neuron 35:419–432 (2002).

    Article  Google Scholar 

  18. P. Teismann, M. Vila, D.K. Choi, K. Tieu, D.C. Wu, V. Jackson-Lewis, and S. Przedborski: COX-2 and neurodegeneration in Parkinson’s disease. Ann.N.Y.Acad.Sci. 991:272–277 (2003).

    Article  ADS  Google Scholar 

  19. J. J. Hoozemans, R. Veerhuis, A.J. Rozemuller, and P. Eikelenboom: Non-steroidal anti-inflammatory drugs and cyclooxygenase in Alzheimer’s disease. Curr.Drug Targets. 4:461–468 (2003).

    Article  Google Scholar 

  20. P. L. McGeer and E.G. McGeer: Inflammation, autotoxicity and Alzheimer disease. Neurobiol.Aging 22:799–809 (2001).

    Article  Google Scholar 

  21. Z. Xiang, L. Ho, J. Valdellon, D. Borchelt, K. Kelley, L. Spielman, P.S. Aisen, and G.M. Pasinetti: Cyclooxygenase (COX)-2 and cell cycle activity in a transgenic mouse model of Alzheimer’s disease neuropathology. Neurobiol.Aging 23:327–334 (2002).

    Article  Google Scholar 

  22. M. Nagayama, K. Niwa, T. Nagayama, M.E. Ross, and C. Iadecola: The cyclooxygenase-2 inhibitor NS-398 ameliorates ischemic brain injury in wild-type mice but not in mice with deletion of the inducible nitric oxide synthase gene. J Cereb.Blood Flow Metab 19:1213–1219 (1999).

    Article  Google Scholar 

  23. S. Nogawa, F. Zhang, M.E. Ross, and C. Iadecola: Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J Neurosci. 17:2746–2755 (1997).

    Google Scholar 

  24. K. Hara, D.L. Kong, F.R. Sharp, and P.R. Weinstein: Effect of selective inhibition of cyclooxygenase 2 on temporary focal cerebral ischemia in rats. Neurosci.Lett. 256:53–56 (1998).

    Article  Google Scholar 

  25. T. Kuwano, S. Nakao, H. Yamamoto, M. Tsuneyoshi, T. Yamamoto, M. Kuwano, and M. Ono: Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. FASEB J. 18:300–310 (2004).

    Article  Google Scholar 

  26. M. A. Iniguez, A. Rodriguez, O.V. Volpert, M. Fresno, and J.M. Redondo: Cyclooxygenase-2: a therapeutic target in angiogenesis. Trends Mol.Med. 9:73–78 (2003).

    Article  Google Scholar 

  27. J. J. Hoozemans, R. Veerhuis, I. Janssen, A.J. Rozemuller, and P. Eikelenboom: Interleukin-1beta induced cyclooxygenase 2 expression and prostaglandin E2 secretion by human neuroblastoma cells: implications for Alzheimer’s disease. Exp.Gerontol. 36:559–570 (2001).

    Article  Google Scholar 

  28. N. G. Kim, H. Lee, E. Son, O.Y. Kwon, J.Y. Park, J.H. Park, G.J. Cho, W.S. Choi, and K. Suk: Hypoxic induction of caspase-11/caspase-1/interleukin-1beta in brain microglia. Brain Res.Mol.Brain Res. 114:107–114 (2003).

    Article  Google Scholar 

  29. L. Ho, H. Osaka, P.S. Aisen, and G.M. Pasinetti: Induction of cyclooxygenase (COX)-2 but not COX-1 gene expression in apoptotic cell death. J Neuroimmunol. 89:142–149 (1998).

    Article  Google Scholar 

  30. C. Iadecola, K. Niwa, S. Nogawa, X. Zhao, M. Nagayama, E. Araki, S. Morham, and M.E. Ross: Reduced susceptibility to ischemic brain injury and N-methyl-D-aspartate-mediated neurotoxicity in cyclooxygenase-2-deficient mice. Proc.Natl.Acad.Sci.U.S.A 98:1294–1299 (2001).

    Article  ADS  Google Scholar 

  31. S. J. Hewett, T.F. Uliasz, A.S. Vidwans, and J.A. Hewett: Cyclooxygenase-2 contributes to N-methyl-D-aspartate-mediated neuronal cell death in primary cortical cell culture. J Pharmacol.Exp.Ther. 293:417–425 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

LaManna, J.C., Sun, X., Ivy, A.D., Ward, N.L. (2006). Is Cycloxygenase-2 (COX-2) a Major Component of the Mechanism Responsible for Microvascular Remodeling in the Brain?. In: Cicco, G., Bruley, D.F., Ferrari, M., Harrison, D.K. (eds) Oxygen Transport to Tissue XXVII. Advances in Experimental Medicine and Biology, vol 578. Springer, Boston, MA . https://doi.org/10.1007/0-387-29540-2_47

Download citation

Publish with us

Policies and ethics