Skip to main content

Spectral and Intensity Coding in the Auditory Midbrain

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkin L (1986) The Auditory Midbrain. Strucure and Function in the Central Auditory Pathway. Humana Press, Clifton.

    Google Scholar 

  • Aitkin L (1991) Rate-level functions of neurons in the inferior colliculus of cats measured with the use of free-field sound stimuli. Journal of Neurophysiology 65:383–392.

    PubMed  CAS  Google Scholar 

  • Aitkin L and Schuck D (1985) Low frequency neurons in the lateral central nucleus of the cat inferior colliculus receive their input predominantly from the medial superior olive. Hearing Research 17:87–93.

    Article  PubMed  CAS  Google Scholar 

  • Aitkin L, Tran L, and Syka J (1994) The response of neurons in subdivisions of the inferior colliculus of cats to tonal, noise and vocal stimuli. Experimental Brain Research 98:53–64.

    Article  CAS  Google Scholar 

  • Aitkin LM, Webster WR, Veale JL, and Crosby DC (1975) Inferior colliculus. I. Comparison of response properties of neurons in central, pericentral, and external nuclei of adult cat. Journal of Neurophysiology 38:1196–1207.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Dickhaus H, Schult W, and Zimmermann M (1978) External nucleus of inferior colliculus: auditory and spinal somatosensory afferents and their interactions. Journal of Neurophysiology 41:837–847.

    PubMed  CAS  Google Scholar 

  • Attias H and Schreiner CE (1998) Coding of naturalistic stimuli by auditory midbrain neurons. In: Jordan MI (ed). Advances in Neural Information Processing Systems 10. MIT Press, Cambridge, pp. 103–109.

    Google Scholar 

  • Bal R, Green GGR, Rees A, and Sanders DJ (2002) Firing patterns of inferior colliculus neurons—histology and mechanism to change firing patterns in rat brain slices. Neuroscience Letters 317:42–46.

    Article  PubMed  CAS  Google Scholar 

  • Binns KE, Grant S Withington DJ, and Keating MJ (1992) A topographic representation of auditory space in the external nucleus of the inferior colliculus of the guinea-pig. Brain Research 589:231–242.

    Article  PubMed  CAS  Google Scholar 

  • Brown M, Webster WR, and Martin RL (1997) The three-dimensional frequency organization of the inferior colliculus of the cat: a 2-deoxyglucose study. Hearing Research 104:57–72.

    Article  PubMed  CAS  Google Scholar 

  • Brückner S and Rübsamen R (1995) Binaural response characteristics in iso-frequency sheets of the gerbil inferior colliculus. Hearing Research 86:1–14.

    Article  PubMed  Google Scholar 

  • Burrows DL and Barry SJ (1990) Electrophysiological evidence for the critical band in humans: middle-latency responses. Journal of the Acoustical Society of America 88:180–184.

    Article  PubMed  CAS  Google Scholar 

  • Calhoun BM and Schreiner CE (1998) Spectral envelope coding in cat primary auditory cortex: linear and non-linear effects of stimulus characteristics. European Journal of Neuroscience 10:926–940.

    Article  PubMed  CAS  Google Scholar 

  • Casseday JH and Covey E (1992) Frequency tuning properties of neurons in the inferior colliculus of an FM bat. Journal of Comparative Neurology 319:34–50.

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee M and Zwislocki JJ (1998) Cochlear mechanisms of frequency and intensity coding. II. Dynamic range and the code for loudness. Hearing Research 124:170–181.

    Article  PubMed  CAS  Google Scholar 

  • Clopton BM and Winfield JA (1973) Tonotopic organization in the inferior colliculus of the rat. Brain Research 56:355–358.

    Article  PubMed  CAS  Google Scholar 

  • Davis KA (2002) Evidence of a functionally segregated pathway from dorsal cochlear nucleus to inferior colliculus. Journal of Neurophysiology 87:1824–1835.

    PubMed  Google Scholar 

  • Delgutte B (1990) Two-tone rate suppression in auditory-nerve fibers: dependence on suppressor frequency and level. Hearing Research 49:225–246.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont JJ, Aertsen AMHJ, and Johannesma PIM (1983) Prediction of the responses of auditory neurons in the midbrain of the grass frog based on the spectro-temporal receptive field. Hearing Research 10:191–202.

    Article  PubMed  CAS  Google Scholar 

  • Egorova MA, Ehret G, Vartanian IA, and Esser K-H (2001) Frequency response areas of neurons in the mouse inferior colliculus I. Threshold and tuning characteristics. Experimental Brain Research 140:145–161.

    Article  CAS  Google Scholar 

  • Egorova MA, Vartanyan IA, and Ehret G (2002) Neural critical bands and inhibition in the auditory midbrain of house mouse (Mus domesticus). Dokladi Biological Sciences 382:5–7 (in Russian).

    Article  CAS  Google Scholar 

  • Egorova MA, Ehret G, and Vartanyan I (2003) Critical bandwidths and inhibition in auditory midbrain neurons of house mice. In: Elsner N and Zimmermann H (eds). The Neurosciences from Basic Research to Therapy. Thieme, Stuttgart, pp. 1080–1081.

    Google Scholar 

  • Ehret G (1976) Critical bands and filter characteristics in the ear of the house mouse (Mus musculus). Biological Cybernetics 24:35–42.

    Article  PubMed  CAS  Google Scholar 

  • Ehret G (1983) Psychophysics. In: Willott JF (ed). The Auditory Psychobiology of the Mouse. Charles C Thomas, Springfield, pp. 13–56.

    Google Scholar 

  • Ehret G (1988) Frequency resolution, spectral filtering and integration on the neuronal level. In: Edelman GM, Gall WE, and Cowan WM (eds). Auditory Function. Neurobiological Bases of Hearing. John Wiley & Sons, New York, pp. 363–384.

    Google Scholar 

  • Ehret G (1989) Hearing in the mouse. In: Dooling RJ and Hulse SH (eds). The Comparative Psychology of Audition: Perceiving Complex Sounds. Lawrence Erlbaum, Hillsdale, pp. 3–32.

    Google Scholar 

  • Ehret G (1995) Auditory frequency resolution in mammals: from neuronal representation to perception. In: Manley GA, Klump GM, Köppl C, Fastl H, and Oeckinghaus H (eds). Advances in Hearing Research. World Scientific, Singapore, pp. 387–397.

    Google Scholar 

  • Ehret G (1996) Auditorische Systeme. In: Dudel J, Menzel R, and Schmidt RF (eds). Neurowissenschaft. Springer-Verlag, Berlin, pp. 353–381.

    Google Scholar 

  • Ehret G (1997) The auditory midbrain, a ‘shunting yard’ of acoustical information processing. In: Ehret G and Romand R (eds). The Central Auditory System. Oxford University Press, New York, pp. 259–316.

    Google Scholar 

  • Ehret G and Fischer R (1991) Neuronal activity and tonotopy in the auditory system visualized by c-fos gene expression. Brain Research 567:350–354.

    Article  PubMed  CAS  Google Scholar 

  • Ehret G and Frankenreiter M (1977) Quantitative analysis of cochlear structures in the house mouse in relation to mechanisms of acoustical information processing. Journal of Comparative Physiology A 122:65–85.

    Article  Google Scholar 

  • Ehret G and Haack B (1982) Ultrasound recognition in house mice: key-stimulus configuration and recognition mechanisms. Journal of Comparative Physiology A 148:245–251.

    Article  Google Scholar 

  • Ehret G and Merzenich MM (1985) Auditory midbrain responses parallel spectral integration phenomena. Science 227:1245–1247.

    PubMed  CAS  Google Scholar 

  • Ehret G and Merzenich MM (1988a) Complex sound analysis (frequency resolution, filtering and spectral integration) by single units of the inferior colliculus of the cat. Brain Research Reviews 13:139–163.

    Article  Google Scholar 

  • Ehret G and Merzenich MM (1988b) Neuronal discharge rate is unsuitable for encoding sound intensity at the inferior colliculus level. Hearing Research 35:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Ehret G and Moffat AJM (1985a) Inferior colliculus of the house mouse. II. Single unit responses to tones, noise and tone-noise combinations as a function of sound intensity. Journal of Comparative Physiology A 156:619–635.

    Article  Google Scholar 

  • Ehret G and Moffat AJM (1985b) Inferior colliculus of the house mouse. III. Response probabilities and thresholds of single units to synthesized mouse calls compared to tone and noise bursts. Journal of Comparative Physiology A 156:637–644.

    Article  Google Scholar 

  • Ehret G and Romand R (1994) Development of tonotopy in the inferior colliculus. II. 2-DG measurements in kitten. European Journal of Neuroscience 6:1589–1595.

    Article  PubMed  CAS  Google Scholar 

  • Ehret G, Egorova MA, Hage SR, and Müller BA (2003) Spatial map of frequency tuningcurve shapes in the mouse inferior colliculus. NeuroReport 14:1365–1369.

    Article  PubMed  Google Scholar 

  • Escabí MA and Schreiner CE (2002) Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain. Journal of Neuroscience 22:4114–4131.

    PubMed  Google Scholar 

  • Escabí MA, Miller LM, Read HL, and Schreiner CE (2003) Naturalistic auditory contrast improves spectrotemporal coding in the cat inferior colliculus. Journal of Neuroscience 23:11489–11504.

    PubMed  Google Scholar 

  • Evans EF and Palmer AR (1980) Relationship between the dynamic range of cochlear nerve fibres and their spontaneous activity. Experimental Brain Research 40:115–118.

    Article  CAS  Google Scholar 

  • Faingold CL, Gehlbach G, and Caspary DM (1991) Functional pharmacology of inferior colliculus neurons. In: Altschuler RA, Bobbin RP, Clopton BM, and Hoffman DW (eds). Neurobiology of Hearing: The Central Auditory System. Raven Press, New York, pp. 223–251.

    Google Scholar 

  • Fitzpatrick KA (1975) Cellular architecture and topographic organization of the inferior colliculus of the squirrel monkey. Journal of Comparative Neurology 164:185–208.

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JL (1972) Speech Analysis, Synthesis and Perception. Springer-Verlag, Berlin.

    Google Scholar 

  • Fletcher H (1940) Auditory patterns. Reviews of Modern Physics 12:47–65.

    Article  Google Scholar 

  • Friauf E (1992) Tonotopic order in the adult and developing auditory system of the rat as shown by c-fos immunocytochemistry. European Journal of Neuroscience 4:798–812.

    Article  PubMed  Google Scholar 

  • Fuzessery ZM (1994) Response selectivity for multiple dimensions of frequency sweeps in the pallid bat inferior colliculus. Journal of Neurophysiology 72:1061–1079.

    PubMed  CAS  Google Scholar 

  • Fuzessery ZM and Feng AS (1983) Mating call selectivity in the thalamus and midbrain of the leopard frog (Rana pipiens): single and multiunit analyses. Journal of Comparative Physiology A 150:333–344.

    Article  Google Scholar 

  • Fuzessery ZM and Hall JC (1996) Role of GABA in shaping frequency tuning and creating FM sweep selectivity in the inferior colliculus. Journal of Neurophysiology 76:1059–1073.

    PubMed  CAS  Google Scholar 

  • Galazyuk AV, Llano D, and Feng AS (2000) Temporal dynamics of acoustic stimuli enhance amplitude tuning of inferior colliculus neurons. Journal of Neurophysiology 83:128–138.

    PubMed  CAS  Google Scholar 

  • Gersuni GV, Altman JA, Maruseva EA, Radionova EA, Ratnikova GI, and Vartanian IA (1971) Functional classification of neurons in the inferior colliculus of the cat according their temporal characteristics. In: Gersuni GF (ed). Sensory Processes at the Neuronal and Behavioral Level. Academic Press, New York, pp. 157–179.

    Google Scholar 

  • Goldberg JM and Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. Journal of Neurophysiology 32:613–636.

    PubMed  CAS  Google Scholar 

  • Graham N (1989) Visual Pattern Analyzers. Oxford University Press, Oxford.

    Google Scholar 

  • Greenwood DD (1961) Auditory masking and the critical band. Journal of the Acoustical Society of America 33:484–502.

    Article  Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. Journal of the Acoustical Society of America 87:2592–2605.

    Article  PubMed  CAS  Google Scholar 

  • Guinan JJ Jr, Guinan SS, and Norris BE (1972) Single auditory units in the superior olivary complex. I: responses to sounds and classifications based on physiological properties. International Journal of Neuroscience 4:101–120.

    Article  Google Scholar 

  • Hage SR and Ehret G (2003) Mapping responses to frequency sweeps and tones in the inferior colliculus of house mice. European Journal of Neuroscience 18:2301–2312.

    Article  PubMed  Google Scholar 

  • Hall JW, Haggard MP, and Fernandes MA (1984) Detection in noise by spectro-temporal pattern analysis. Journal of the Acoustical Society of America 76:50–56.

    Article  PubMed  CAS  Google Scholar 

  • Heil P (1997) Aspects of temporal processing of FM stimuli in primary auditory cortex. Acta Otolaryngologica (Stockholm) Supplement 532:99–102.

    CAS  Google Scholar 

  • Heil P and Neubauer H (2001) Temporal integration of sound pressure determines thresholds of auditory-nerve fibers. Journal of Neuroscience 21:7404–7415.

    PubMed  CAS  Google Scholar 

  • Heil P and Neubauer H (2003) A unifying basis of auditory thresholds based on temporal summation. Proceedings of the National Academy of Sciences of the United States of America 100:6151–6156.

    Article  PubMed  CAS  Google Scholar 

  • Heil P, Rajan R, and Irvine DRF (1994) Topographic representation of tone intensity along the isofrequency axis of cat primary auditory cortex. Hearing Research 76:188–202.

    Article  PubMed  CAS  Google Scholar 

  • Herrnberger B, Kempf S, and Ehret G (2002) Basic maps of the auditory midbrain. Biological Cybernetics 87:231–240.

    Article  PubMed  Google Scholar 

  • Huang C and Fex J (1986) Tonotopic organization in the inferior colliculus of the rat demonstrated with the 2-deoxyglucose method. Experimental Brain Research 61:506–512.

    Article  CAS  Google Scholar 

  • Irvine DRF (1992) Physiology of the auditory brainstem. In: Popper AN and Fay RR (eds). Springer Handbook of Auditory Research, Volume 2: The Mammalian Auditory Pathway: Neurophysiology. Springer-Verlag, New York, pp. 153–231.

    Google Scholar 

  • Irvine DRF and Gago G (1990) Binaural interaction in high-frequency neurons in inferior colliculus of the cat: effects of variations in sound pressure level on sensitivity to interaural intensity differences. Journal of Neurophysiology 63:570–591.

    PubMed  CAS  Google Scholar 

  • Jackson BS and Relkin EM (1998) A frequency-dependent saturation evident in rate-intensity functions of the chinchilla auditory nerve. Hearing Research 126:75–83.

    Article  PubMed  CAS  Google Scholar 

  • Jen PH-S, Chen QC, and Sun XD (1998) Corticofugal regulation of auditory sensitivity in the bat inferior colliculus. Journal of Comparative Physiology A 183:683–697.

    Article  CAS  Google Scholar 

  • Jen PH-S, Wu FJ, and Chen QC (2002) The effect of two-tone stimulation on responses of two simultaneous recorded neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus. Hearing Research 168:139–149.

    Article  PubMed  Google Scholar 

  • Kelly JB, Glenn L, and Beaver CJ (1991) Sound frequency and binaural response properties of single neurons in rat inferior colliculus. Hearing Research 56:273–280.

    Article  PubMed  CAS  Google Scholar 

  • Kiang NY-S, Watanabe T, Thomas EC, and Clark LF (1965) Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. MIT Press, Cambridge.

    Google Scholar 

  • Kitzes LM (1984) Some physiological consequences of neonatal cochlear destruction in the inferior colliculus of the gerbil, Meriones unguiculatus. Brain Research 306:171–178.

    Article  PubMed  CAS  Google Scholar 

  • Klein DJ, Depireux DA, Simon JZ, and Shamma SA (2000) Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design. Journal of Computational Neuroscience 9:85–111.

    Article  PubMed  CAS  Google Scholar 

  • Kowalski N, Depireux DA, and Shamma SA (1996) Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. Journal of Neurophysiology 76:3503–3523.

    PubMed  CAS  Google Scholar 

  • Kudo M and Nakamura Y (1988) Organization of the lateral lemniscal fibers converging onto the inferior colliculus in the cat: an anatomical review. In: Syka J and Masterton RB (eds). Auditory Pathway: Structure and Function. Plenum Press, New York, pp. 171–183.

    Google Scholar 

  • Le Beau FEN, Rees A, and Malmierca MS (1996) Contribution of GABA-and glycine-mediated inhibition to the monaural temporal response properties of neurons in the inferior colliculus. Journal of Neurophysiology 75:902–919.

    PubMed  Google Scholar 

  • Le Beau FEN, Malmierca MS, and Rees A (2001) Iontophoresis in vivo demonstrates a key role for GABAA and glycinergic inhibition in shaping frequency response areas in the inferior colliculus of the guinea pig. Journal of Neuroscience 21:7303–7312.

    Google Scholar 

  • Leroy SA and Wenstrup JJ (2000) Spectral integration in the inferior colliculus of the mustached bat. Journal of Neuroscience 20:8533–8541.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. Journal of the Acoustical Society of America 63:442–455.

    Article  PubMed  CAS  Google Scholar 

  • Lu Y and Jen PH-S (2001) GABAergic and glycinergic neural inhibition in excitatory frequency tuning of bat inferior collicular neurons. Experimental Brain Research 141:331–339.

    Article  CAS  Google Scholar 

  • Maiwald D (1967) Ein Funktionsschema des Gehörs zur Beschreibung der Erkennbarkeit kleiner Frequenz-und Amplitudenänderungen. Acustica 18:81–92.

    Google Scholar 

  • Malmierca MS, Blackstad TW, Osen KK, Karagülle T, and Molowny RL (1993) The central nucleus of the inferior colliculus in rat: a Golgi and computer reconstruction study of neuronal and laminar structure. Journal of Comparative Neurology 333:1–27.

    Article  PubMed  CAS  Google Scholar 

  • Margolis RH and Small AM (1975) The measurement of critical masking bands. Journal of Speech and Hearing Research 18:571–587.

    PubMed  CAS  Google Scholar 

  • Martin RL, Webster WR, and Servière J (1988) The frequency organization of the inferior colliculus of the guinea pig: a (14C)-2-deoxyglucose study. Hearing Research 33:245–256.

    Article  PubMed  CAS  Google Scholar 

  • Meininger V, Pol D, and Derer P (1986) The inferior colliculus of the mouse. A Nissl and Golgi study. Neuroscience 17:1159–1179.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich MM and Reid MD (1974) Representation of the cochlea within the inferior colliculus of the cat. Brain Research 77:397–415.

    Article  PubMed  CAS  Google Scholar 

  • Miller LM, Escabí MA, Read HL, and Schreiner CE (2001) Functional convergence of response properties in the auditory thalamocortical system. Neuron 32:151–160.

    Article  PubMed  CAS  Google Scholar 

  • Miller LM, Escabí MA, Read HL, and Schreiner CE (2002) Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. Journal of Neurophysiology 87:516–527.

    PubMed  Google Scholar 

  • Mittman DH and Wenstrup JJ (1995) Combination-sensitive neurons in the inferior colliculus. Hearing Research 90:185–191.

    Article  Google Scholar 

  • Moore BCJ (1997) An Introduction to the Psychology of Hearing. Academic Press, San Diego.

    Google Scholar 

  • Morest DK and Oliver DL (1984) The neuronal architecture of the inferior colliculus in the cat: defining the functional anatomy of the auditory midbrain. Journal of Comparative Neurology 222:209–236.

    Article  PubMed  CAS  Google Scholar 

  • Nelken I, Rotman Y, and Yosef OB (1999). Responses of auditory-cortex neurons to structural features of natural sounds. Nature 397:154–156.

    Article  PubMed  CAS  Google Scholar 

  • Nienhuys TGW and Clark GM (1979) Critical bands following the selective destruction of cochlear inner and outer hair cells. Acta Otolaryngologica (Stockholm) 88:350–358.

    Article  CAS  Google Scholar 

  • Oliver DL (1987) Projections to the inferior colliculus from the anteroventral cochlear nucleus in the cat: possible substrates for binaural interaction. Journal of Comparative Neurology 264:24–46.

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL and Morest DK (1984) The central nucleus of the inferior colliculus in the cat. Journal of Comparative Neurology 222:237–264.

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL, Kuwada S, Yin TCT, Haberly LB, and Henkel CK (1991) Dendritic and axonal morphology of HRP-injected neurons in the inferior colliculus of the cat. Journal of Comparative Neurology 303:75–100.

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL, Winer JA, Beckius GE, and Saint Marie RL (1994) Morphology of GABAergic neurons in the inferior colliculus of the cat. Journal of Comparative Neurology 340:27–42.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor KN, Barruel P, Hajalilou R, and Sutter ML (1999) Auditory temporal integration in the rhesus macaque. Journal of the Acoustical Society of America 106:954–965.

    Article  PubMed  CAS  Google Scholar 

  • Palmer AR, Winter IM, Jiang D, and James N (1995) Across-frequency integration by neurones in the ventral cochlear nucleus. In: Manley GA, Klump GM, Köppl C, Fastl H, and Oeckinghaus H (eds). Advances in Hearing Research. World Scientific, Singapore, pp. 250–263.

    Google Scholar 

  • Palombi PS and Caspary DM (1996) GABA inputs control discharge rate primarily within frequency receptive fields of inferior colliculus neurons. Journal of Neurophysiology 75:2211–2219.

    PubMed  CAS  Google Scholar 

  • Patterson RD (1974) Auditory filter shape. Journal of the Acoustical Society of America 55:802–809.

    Article  PubMed  CAS  Google Scholar 

  • Patuzzi R (1996) Cochlear micromechanics and macromechanics. In: Dallos P, Popper AN, and Fay RR (eds). Springer Handbook of Auditory Research, Volume 8: The Cochlea. Springer-Verlag, New York, pp. 186–257.

    Google Scholar 

  • Peruzzi D, Sivaramakrishnan S, and Oliver DL (2000) Identification of cell types in brain slices of the inferior colliculus. Neuroscience 101:403–416.

    Article  PubMed  CAS  Google Scholar 

  • Pickles JO (1975) Normal critical bands in the cat. Acta Otolaryngologica 80:245–254.

    CAS  Google Scholar 

  • Pickles JO (1979) Psychophysical frequency resolution in the cat as determined by simultaneous masking and its relation to auditory-nerve resolution. Journal of the Acoustical Society of America 66:1725–1732.

    Article  PubMed  CAS  Google Scholar 

  • Plomp R and Levelt WJM (1965) Tonal consonance and critical bandwidth. Journal of the Acoustical Society of America 38:548–560.

    Article  PubMed  CAS  Google Scholar 

  • Pollak GD and Park TJ (1993) The effects of GABAergic inhibition on monaural response properties of neurons in the mustache bat’s inferior colliculus. Hearing Research 65:99–117.

    Article  PubMed  CAS  Google Scholar 

  • Poon PWF, Sun X, Kamada T, and Jen PH-S (1990) Frequency and space representation in the inferior colliculus of the FM bat, Eptesicus fuscus. Experimental Brain Research 79:83–91.

    Article  CAS  Google Scholar 

  • Portfors CV and Wenstrup JJ (2002) Excitatory and facilitatory frequency response areas in the inferior colliculus of the mustached bat. Hearing Research 168:131–138.

    Article  PubMed  Google Scholar 

  • Qiu A, Schreiner CE, and Escabí MA (2003) Gabor analysis of auditory midbrain receptive fields: spectro-temporal and binaural composition. Journal of Neurophysiology 90:456–476.

    PubMed  Google Scholar 

  • Ramachandran R, Davis KA, and May BJ (1999) Single-unit responses in the inferior colliculus of decerebrate cats I. Classification based on frequency response maps. Journal of Neurophysiology 82:152–163.

    PubMed  CAS  Google Scholar 

  • Read HL, Winer JA, and Schreiner CE (2001) Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 98:8042–8047.

    Article  PubMed  CAS  Google Scholar 

  • Rees A (1992) The coding of intensity in the inferior colliculus: onset and sustained responses. In: Cazals Y, Demany L, and Horner K (eds). Auditory Physiology and Perception. Pergamon Press, Oxford, pp. 263–269.

    Google Scholar 

  • Rees A and Palmer AR (1988) Rate-intensity functions and their modification by broadband noise for neurons in the guinea pig inferior colliculus. Journal of the Acoustical Society of America 83:1488–1498.

    Article  PubMed  CAS  Google Scholar 

  • Reetz G and Ehret G (1999) Inputs from three brainstem sources to identified neurons of the mouse inferior colliculus slice. Brain Research 816:527–543.

    Article  PubMed  CAS  Google Scholar 

  • Reimer K (1993) Simultaneous demonstration of Fos-like immunoreactivity and 2-deoxyglucose uptake in the inferior colliculus of the mouse. Brain Research 616:339–343.

    Article  PubMed  CAS  Google Scholar 

  • Rhode WS (1991) Physiological-morphological properties of the cochlear nucleus. In: Altschuler RA, Bobbin RP, Clopton BM, and Hoffman DW (eds). Neurobiology of Hearing: The Central Auditory System. Raven Press, New York, pp. 47–77.

    Google Scholar 

  • Rhode WS and Smith PH (1985) Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers. Hearing Research 18:159–168.

    Article  PubMed  CAS  Google Scholar 

  • Rhode WS and Smith PH (1986) Physiological studies on neurons in the dorsal cochlear nucleus of cat. Journal of Neurophysiology 56:287–307.

    PubMed  CAS  Google Scholar 

  • Romand R and Avan P (1997) Anatomical and functional aspects of the cochlear nucleus. In: Ehret G and Romand R (eds). The Central Auditory System. Oxford University Press, New York, pp. 97–191.

    Google Scholar 

  • Romand R and Ehret G (1990) Development of tonotopy in the inferior colliculus. I. Electrophysiological mapping in house mice. Developmental Brain Research 54:221–234.

    Article  PubMed  CAS  Google Scholar 

  • Rose JE, Greenwood DD, Goldberg JM, and Hind JE (1963) Some discharge characteristics of single neurons in the inferior colliculus of the cat. I. Tonotopical organization, relation of spike-counts to tone intensity, and firing patterns of single elements. Journal of Neurophysiology 26:294–320.

    Google Scholar 

  • Roth GL, Aitkin LM, Andersen RA, and Merzenich MM (1978) Some features of the spatial organization of the central nucleus of the inferior colliculus of the cat. Journal of Comparative Neurology 182:661–680.

    Article  PubMed  CAS  Google Scholar 

  • Ryan A and Miller J (1977) Effects of behavioral performance on single-unit firing patterns in inferior colliculus of the rhesus monkey. Journal of Neurophysiology 40:943–956.

    PubMed  CAS  Google Scholar 

  • Sachs MB and Abbas PJ (1974) Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. Journal of the Acoustical Society of America 56:1835–1847.

    Article  PubMed  CAS  Google Scholar 

  • Sachs MB and Kiang NY-S (1968) Two-tone inhibition in auditory-nerve fibers. Journal of the Acoustical Society of America 43:1120–1128.

    Article  PubMed  CAS  Google Scholar 

  • Schafer TH, Gales RS, Shewmaker CA, and Thompson PO (1950) The frequency selectivity of the ear as determined by masking experiments. Journal of the Acoustical Society of America 22:490–496.

    Article  Google Scholar 

  • Scharf B (1970) Critical bands. In: Tobias JV (ed). Foundations of Modern Auditory Theory, Volume I. Academic Press, New York, pp. 159–202.

    Google Scholar 

  • Scharf B (1978) Loudness. In: Carterette EC and Friedman MP (eds). Handbook of Perception, Volume IV: Hearing. Academic Press, New York, pp. 187–242.

    Google Scholar 

  • Schmiedt RA (1982) Boundaries of two-tone rate suppression of cochlear-nerve activity. Hearing Research 7:335–351.

    Article  PubMed  CAS  Google Scholar 

  • Schreiner CE and Calhoun BM (1994) Spectral envelope coding in cat primary auditory cortex: properties of ripple transfer functions. Auditory Neuroscience 1:39–62.

    Google Scholar 

  • Schreiner CE and Langner G (1988) Periodicity coding in the inferior colliculus of the cat: II. Topographical organization. Journal of Neurophysiology 60:1823–1840.

    PubMed  CAS  Google Scholar 

  • Schreiner CE and Langner G (1997) Laminar fine structure of frequency organization in auditory midbrain. Nature 388:383–386.

    Article  PubMed  CAS  Google Scholar 

  • Schuknecht HF (1960) Neuroanatomical correlates of auditory sensitivity and pitch discrimination in the cat. In: Rasmussen GL and Windle WF (eds). Neural Mechanisms of the Auditory and Vestibular Systems. Charles C Thomas, Springfield, pp. 76–90.

    Google Scholar 

  • Semple MN and Aitkin LM (1979) Representation of sound frequency and laterality by units in central nucleus of cat inferior colliculus. Journal of Neurophysiology 42:1626–1639.

    PubMed  CAS  Google Scholar 

  • Semple MN and Kitzes LM (1985) Single-unit responses in the inferior colliculus: different consequences of contralateral and ipsilateral auditory stimulation. Journal of Neurophysiology 53:1467–1482.

    PubMed  CAS  Google Scholar 

  • Servière J, Webster WR, and Calford MB (1984) Iso-frequency labelling revealed by a combined (14C)-2-deoxyglucose, electrophysiological, and horseradish peroxidase study of the inferior colliculus of the cat. Journal of Comparative Neurology 228:463–477.

    Article  PubMed  Google Scholar 

  • Shamma SA, Versnel H, and Kowalski N (1995) Ripple analysis in ferret primary auditory cortex. I. Response characteristics of single units to sinusoidally rippled spectra. Auditory Neuroscience 1:233–254.

    Google Scholar 

  • Sivaramakrishnan S and Oliver DL (2001) Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. Journal of Neuroscience 21:2861–2877.

    PubMed  CAS  Google Scholar 

  • Smith PH (1992) Anatomy and physiology of multipolar cells in the rat inferior collicular cortex using the in vitro brain slice technique. Journal of Neuroscience 12:3700–3715.

    PubMed  CAS  Google Scholar 

  • Smolders JWT, Aertsen AMHJ, and Johannesma PIM (1979) Neural representation of the acoustic biotope. Biological Cybernetics 35:11–20.

    Article  PubMed  CAS  Google Scholar 

  • Snyder RL and Sinex DG (2002) Immediate changes in tuning of inferior colliculus neurons following acute lesions of cat spiral ganglion. Journal of Neurophysiology 87:434–452.

    PubMed  Google Scholar 

  • Snyder RL, Sinex DG, McGee JD, and Walsh EW (2000) Acute spiral ganglion lesions change the tuning and tonotopic organization of cat inferior colliculus neurons. Hearing Research 147:200–220.

    Article  PubMed  CAS  Google Scholar 

  • Spirou GA and Young ED (1991) Organization of dorsal cochlear nucleus type IV unit response maps and their relationship to activation by bandlimited noise. Journal of Neurophysiology 65:1750–1768.

    Google Scholar 

  • Stiebler I (1986) Tone-threshold mapping in the inferior colliculus of the house mouse. Neuroscience Letters 65:336–340.

    Article  PubMed  CAS  Google Scholar 

  • Stiebler I (1987) Frequenzrepräsentation und Schallempfindlichkeit im Colliculus inferior und auditorischen Cortex der Hausmaus (Mus musculus). Konstanzer Dissertationen, Volume 173, Hartung-Gorre, Konstanz.

    Google Scholar 

  • Stiebler I and Ehret G (1985) Inferior colliculus of the house mouse. I. A quantitative study of tonotopic organization, frequency representation and tone-threshold distribution. Journal of Comparative Neurology 238:65–76.

    Article  PubMed  CAS  Google Scholar 

  • Suga N (1964) Single unit activity in cochlear nucleus and inferior colliculus of echolocating bats. Journal of Physiology (London) 172:449–474.

    CAS  Google Scholar 

  • Suga N (1969) Classification of inferior collicular neurons of bats in terms of responses to pure tones, FM sounds and noise bursts. Journal of Physiology (London) 200:555–574.

    CAS  Google Scholar 

  • Suga N (1977) Amplitude-spectrum representation in the Doppler-shifted CF processing area of the auditory cortex of the mustache bat. Science 196:64–67.

    PubMed  CAS  Google Scholar 

  • Suga N and Manabe T (1982) Neural basis of amplitude-spectrum representation in auditory cortex of the mustached bat. Journal of Neurophysiology 47:225–255.

    PubMed  CAS  Google Scholar 

  • Suga N, Gao E, Zhang Y, and Olsen JF (2000) The corticofugal system for hearing: recent progress. Proceedings of the National Academy of Sciences of the United States of America 97:11807–11814.

    Article  PubMed  CAS  Google Scholar 

  • Sutter ML and Schreiner CE (1995) Topography of intensity tuning in cat primary auditory cortex: single-neuron versus multiple-neuron recordings. Journal of Neurophysiology 73:190–204.

    PubMed  CAS  Google Scholar 

  • Syka J, Popelář J, Druga R, and Vlková A (1988) Descending central auditory pathway—structure and function. In: Syka J and Masterton RB (eds). Auditory Pathway. Structure and Function. Plenum Press, New York, pp. 279–292.

    Google Scholar 

  • Syka J, Popelář J, and Kvas˘n˘ák E (2000) Response properties of neurons in the central nucleus and external and dorsal cortices of the inferior colliculus in guinea pig. Experimental Brain Research 133:254–266.

    Article  CAS  Google Scholar 

  • Theunissen FE, Sen K, and Doupe AJ (2000) Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. Journal of Neuroscience 20:2315–2331.

    PubMed  CAS  Google Scholar 

  • Vartanian IA, Egorova MA, and Ehret G (1999) Expression of the main properties of critical bands in the neuronal activity of posterior quadrigemini in mice. Dokladi Biological Sciences 368:437–439 (in Russian).

    Google Scholar 

  • Vater M, Kössl M, and Horn AKE (1992) GAD-and GABA-immunoreactivity in the ascending auditory pathway of horseshoe and mustache bats. Journal of Comparative Neurology 325:183–206.

    Article  PubMed  CAS  Google Scholar 

  • Versnel H and Shamma SA (1998). Spectral-ripple representation of steady-state vowels in primary auditory cortex. Journal of the Acoustical Society of America 103:2502–2514.

    Article  PubMed  CAS  Google Scholar 

  • Viemeister NF (1988) Psychophysical aspects of auditory intensity coding. In: Edelman GM, Gall WE, and Cowan WM (eds). Auditory Function. Neurobiological Bases of Hearing. John Wiley & Sons, New York, pp. 213–241.

    Google Scholar 

  • von Békésy G (1960) Experiments in Hearing. McGraw-Hill, New York.

    Google Scholar 

  • Wagner T (1994) Intrinsic properties of identified neurones in the central nucleus of mouse inferior colliculus. NeuroReport 6:89–93.

    PubMed  CAS  Google Scholar 

  • Wang J, Salvi RJ, and Powers N (1996) Plasticity of response properties of inferior colliculus neurons following acute cochlear damage. Journal of Neurophysiology 75:171–183.

    PubMed  CAS  Google Scholar 

  • Webster WR, Servière J, Crewther D, and Crewther S (1984) Iso-frequency 2-DG contours in the inferior colliculus of the awake monkey. Experimental Brain Research 56:425–437.

    CAS  Google Scholar 

  • Wenstrup JJ, Mittmann DH, and Grose CD (1999) Inputs to combination-sensitive neurons of the inferior colliculus. Journal of Comparative Neurology 409:509–528.

    Article  PubMed  CAS  Google Scholar 

  • Willott JF and Urban GP (1978) Response properties of neurons in nuclei of the mouse inferior colliculus. Journal of Comparative Physiology A 127:175–184.

    Article  Google Scholar 

  • Winer JA, Larue DT, and Pollak GD (1995) GABA and glycine in the central auditory system of the mustache bat: structural substrates for inhibitory neuronal organization. Journal of Comparative Neurology 355:317–353.

    Article  PubMed  CAS  Google Scholar 

  • Winter IM and Palmer AR (1995) Level dependence of cochlear nucleus onset unit responses and facilitation by second tones or broad-band noise. Journal of Neurophysiology 73:141–159.

    PubMed  CAS  Google Scholar 

  • Yan J and Ehret G (2001) Corticofugal reorganization of the midbrain tonotopic map in mice. NeuroReport 12:3313–3316.

    Article  PubMed  CAS  Google Scholar 

  • Yan J and Ehret G (2002) Corticofugal modulation of midbrain sound processing in the house mouse. European Journal of Neuroscience 16:119–128.

    Article  PubMed  Google Scholar 

  • Yang L, Pollak GD, and Resler C (1992) GABAergic circuits sharpen tuning curves and modify response properties in the mustache bat inferior colliculus. Journal of Neurophysiology 68:1760–1774.

    PubMed  CAS  Google Scholar 

  • Young ED, Shofner WP, White JA, Robert JM, and Voigt HF (1988) Response properties of cochlear nucleus neurons in relationship to physiological mechanisms. In: Edelman GM, Gall WE, and Cowan WM (eds). Auditory Function. Neurobiological Bases of Hearing. John Wiley & Sons, New York, pp. 277–312.

    Google Scholar 

  • Zerlin S (1986) Electrophysiological evidence for the critical band in humans. Journal of the Acoustical Society of America 79:1612–1616.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y and Suga N (1997) Corticofugal amplification of subcortical responses to singletone stimuli in the mustached bat. Journal of Neurophysiology 78:3489–3492.

    PubMed  CAS  Google Scholar 

  • Zhou X and Jen PH-S (2000) Corticofugal inhibition compresses all types of rate-intensity functions of inferior collicular neurons in the big brown bat. Brain Research 881:62–68.

    Article  PubMed  CAS  Google Scholar 

  • Zurita P, Villa AEP, de Ribaupierre Y, de Ribaupierre F, and Rouiller EM (1994) Changes of single unit activity in the cat’s auditory cortex associated to different anesthetic conditions. Neuroscience Research 19:303–316.

    Article  PubMed  CAS  Google Scholar 

  • Zwicker E and Feldtkeller R (1967) Das Ohr als Nachrichtenempfänger. Hirzel, Stuttgart.

    Google Scholar 

  • Zwicker E, Flottorp G, and Stevens SS (1957) Critical band width in loudness summation. Journal of the Acoustical Society of America 29:548–557.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ehret, G., Schreiner, C.E. (2005). Spectral and Intensity Coding in the Auditory Midbrain. In: Winer, J.A., Schreiner, C.E. (eds) The Inferior Colliculus. Springer, New York, NY. https://doi.org/10.1007/0-387-27083-3_11

Download citation

Publish with us

Policies and ethics