Skip to main content
Book cover

Hypocretins pp 153–168Cite as

Hypocretin/Orexin Actions on Mesopontine Cholinergic Systems Controling Behavioral State

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

12. References

  1. L. de Lecea, T. S. Kilduff, C. Peyron, X. Gao, P. E. Foye, P. E. Danielson, C. Fukuhara, E. L. Battenberg, V. T. Gautvik, F. S. Bartlett, 2nd, W. N. Frankel, A. N. van den Pol, F. E. Bloom, K. M. Gautvik and J. G. Sutcliffe, The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity, Proc Natl Acad Sci U S A. 95, 322–7 (1998).

    Article  PubMed  Google Scholar 

  2. T. Sakurai, A. Amemiya, M. Ishii, I. Matsuzaki, R. M. Chemelli, H. Tanaka, S. C. Williams, J. A. Richarson, G. P. Kozlowski, S. Wilson, J. R. Arch, R. E. Buckingham, A. C. Haynes, S. A. Carr, R. S. Annan, D. E. McNulty, W. S. Liu, J. A. Terrett, N. A. Elshourbagy, D. J. Bergsma and M. Yanagisawa, Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior, Cell. 92, 1 page following 696 (1998).

    Article  PubMed  Google Scholar 

  3. J. G. Sutcliffe and L. de Lecea, The hypocretins: setting the arousal threshold, Nat Rev Neurosci. 3, 339–49 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. T. Sakurai, Orexin: a link between energy homeostasis and adaptive behaviour, Curr Opin Clin Nutr Metab Care. 6, 353–60 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. J. T. Willie, R. M. Chemelli, C. M. Sinton and M. Yanagisawa, To eat or to sleep? Orexin in the regulation of feeding and wakefulness, Annu Rev Neurosci. 24, 429–58 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. M. Mieda and M. Yanagisawa, Sleep, feeding, and neuropeptides: roles of orexins and orexin receptors, Curr Opin Neurobiol. 12, 339–45 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. J. P. Kukkonen, T. Holmqvist, S. Ammoun and K. E. Akerman, Functions of the orexinergic/hypocretinergic system, Am J Physiol Cell Physiol. 283, C1567–91 (2002).

    PubMed  CAS  Google Scholar 

  8. C. Peyron, D. K. Tighe, A. N. van den Pol, L. de Lecea, H. C. Heller, J. G. Sutcliffe and T. S. Kilduff, Neurons containing hypocretin (orexin) project to multiple neuronal systems, J Neurosci. 18, 9996–10015 (1998).

    PubMed  CAS  Google Scholar 

  9. J. N. Marcus, C. J. Aschkenasi, C. E. Lee, R. M. Chemelli, C. B. Saper, M. Yanagisawa and J. K. Elmquist, Differential expression of orexin receptors 1 and 2 in the rat brain, J Comp Neurol. 435, 6–25 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. D. C. Piper, N. Upton, M. I. Smith and A. J. Hunter, The novel brain neuropeptide, orexin-A, modulates the sleep-wake cycle of rats, Eur Journal of Neuroscience. 12, 726–30 (2000).

    Article  CAS  Google Scholar 

  11. M. I. Smith, D. C. Piper, M. S. Duxon and N. Upton, Evidence implicating a role for orexin-1 receptor modulation of paradoxical sleep in the rat, Neurosci Lett. 341, 256–8 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. J. J. Hagan, R. A. Leslie, S. Patel, M. L. Evans, T. A. Wattam, S. Holmes, C. D. Benham, S. G. Taylor, C. Routledge, P. Hemmati, R. P. Munton, T. E. Ashmeade, A. S. Shah, J. P. Hatcher, P. D. Hatcher, D. N. Jones, M. I. Smith, D. C. Piper, A. J. Hunter, R. A. Porter and N. Upton, Orexin A activates locus coeruleus cell firing and increases arousal in the rat, Proceedings of the National Academy of Science (USA). 96, 10911–6 (1999).

    Article  CAS  Google Scholar 

  13. P. Bourgin, S. Huitron-Resendiz, A. D. Spier, V. Fabre, B. Morte, J. R. Criado, J. G. Sutcliffe, S. J. Henriksen and L. de Lecea, Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons, J Neurosci. 20, 7760–5 (2000).

    PubMed  CAS  Google Scholar 

  14. M. Xi, F. R. Morales and M. H. Chase, Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat, Brain Res. 901, 259–64. (2001).

    Article  PubMed  CAS  Google Scholar 

  15. C. C. Shute and P. R. Lewis, The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections, Brain. 90, 497–520 (1967).

    Article  PubMed  CAS  Google Scholar 

  16. M. M. Mesulam, E. J. Mufson, B. H. Wainer and A. I. Levey, Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6), Neuroscience. 10, 1185–201 (1983).

    Article  PubMed  CAS  Google Scholar 

  17. K. J. Maloney, L. Mainville and B. E. Jones, c-Fos expression in GABAergic, serotonergic, and other neurons of the pontomedullary reticular formation and raphe after paradoxical sleep deprivation and recovery, J Neurosci. 20, 4669–79 (2000).

    PubMed  CAS  Google Scholar 

  18. D. S. Bredt, P. M. Hwang and S. H. Snyder, Localization of nitric oxide synthase indicating a neural role for nitric oxide, Nature. 347, 768–70 (1990).

    Article  PubMed  CAS  Google Scholar 

  19. S. R. Vincent and H. Kimura, Histochemical mapping of nitric oxide synthase in the rat brain, Neuroscience. 46, 755–84 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. S. R. Vincent, K. Satoh, D. M. Armstrong and H. C. Fibiger, NADPH-Diaphorase: A selective histochemical marker for the cholinergic neurons of the pontine reticular formation, Neuroscience Letters. 43, 31–36 (1983).

    Article  PubMed  CAS  Google Scholar 

  21. C. S. Leonard, E. K. Michaelis and K. M. Mitchell, Activity-dependent nitric oxide concentration dynamics in the laterodorsal tegmental nucleus in vitro, Journal of Neurophysiology. 86, 2159–2172. (2001).

    PubMed  CAS  Google Scholar 

  22. J. A. Williams, S. R. Vincent and P. B. Reiner, Nitric oxide production in rat thalamus changes with behavioral state, local depolarization, and brainstem stimulation, J Neurosci. 17, 420–7 (1997).

    PubMed  CAS  Google Scholar 

  23. B. H. Wainer and M.-M. Mesulam. (1990). Ascending cholinergic pathways in the rat brain. In Brain Cholinergic Systems (Steriade, M. & Biesold, D., eds.), pp. 65–119. Oxford University Press, New York.

    Google Scholar 

  24. A. Mitani, K. Ito, A. E. Hallanger, B. H. Wainer, K. Kataoka and R. W. McCarley, Cholinergic projections from the laterodorsal and pedunculopontine tegmental nuclei to the pontine gigantocellular tegmental field in the cat, Brain Res. 451, 397–402 (1988).

    Article  PubMed  CAS  Google Scholar 

  25. B. E. Jones, Immunohistochemical study of choline acetyltransferase-immunoreactive processes and cells innervating the pontomedullary reticular formation in the rat, J Comp Neurol. 295, 485–514 (1990).

    Article  PubMed  CAS  Google Scholar 

  26. K. Semba, Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat, J Comp Neurol. 330, 543–56 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. K. Semba, P. B. Reiner and H. C. Fibiger, Single cholinergic mesopontine tegmental neurons project to both the pontine reticular formation and the thalamus in the rat, Neuroscience. 38, 643–54 (1990).

    Article  PubMed  CAS  Google Scholar 

  28. S. A. Oakman, P. L. Faris, P. E. Kerr, C. Cozzari and B. K. Hartman, Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area, Journal of Neuroscience. 15, 5859–69. (1995).

    PubMed  CAS  Google Scholar 

  29. S. A. Oakman, P. L. Faris, C. Cozzari and B. K. Hartman, Characterization of the extent of pontomesencephalic cholinergic neurons’ projections to the thalamus: comparison with projections to midbrain dopaminergic groups, Neuroscience. 94, 529–47 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. R. Curro Dossi, D. Pare and M. Steriade, Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thalamocortical neurons to stimulation of mesopontine cholinergic nuclei, J Neurophysiol. 65, 393–406 (1991).

    Google Scholar 

  31. G. L. Forster and C. D. Blaha, Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area, Eur Journal of Neuroscience. 12, 3596–604. (2000).

    Article  CAS  Google Scholar 

  32. C._D. Blaha and P. Winn, Modulation of dopamine efflux in the striatum following cholinergic stimulation of the substantia nigra in intact and pedunculopontine tegmental nucleus-lesioned rats, Journal of Neuroscience. 13, 1035–44 (1993).

    PubMed  CAS  Google Scholar 

  33. M. Steriade and R. W. McCarley. (1990). Brainstem Control of Wakefulness and Sleep, Plenum, New York.

    Google Scholar 

  34. J. J. Quattrochi, A. N. Mamelak, R. D. Madison, J. D. Macklis and J. A. Hobson, Mapping neuronal inputs to REM sleep induction sites with carbachol-fluorescent microspheres, Science. 245, 984–6 (1989).

    Article  PubMed  CAS  Google Scholar 

  35. H. A. Baghdoyan, M. L. Rodrigo-Angulo, R. W. McCarley and J. A. Hobson, Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brainstem regions, Brain Res. 306, 39–52 (1984).

    Article  PubMed  CAS  Google Scholar 

  36. J. W. Gnadt and G. V. Pegram, Cholinergic brainstem mechanisms of REM sleep in the rat, Brain Res. 384, 29–41 (1986).

    Article  PubMed  CAS  Google Scholar 

  37. P. Bourgin, P. Escourrou, C. Gaultier and J. Adrien, Induction of rapid eye movement sleep by carbachol infusion into the pontine reticular formation in the rat, Neuroreport. 6, 532–6 (1995).

    Article  PubMed  CAS  Google Scholar 

  38. J. Velazquez-Moctezuma, P. J. Shiromani and J. C. Gillin, Acetylcholine and acetylcholine receptor subtypes in REM sleep generation, Prog Brain Res. 84, 407–13 (1990).

    Article  PubMed  CAS  Google Scholar 

  39. M. S. Reid, M. Tafti, J. N. Geary, S. Nishino, J. M. Siegel, W. C. Dement and E. Mignot, Cholinergic mechanisms in canine narcolepsy—I. Modulation of cataplexy via local drug administration into the pontine reticular formation, Neuroscience. 59, 511–22 (1994).

    Article  PubMed  CAS  Google Scholar 

  40. M. S. Reid, J. M. Siegel, W. C. Dement and E. Mignot, Cholinergic mechanisms in canine narcolepsy—II. Acetylcholine release in the pontine reticular formation is enhanced during cataplexy, Neuroscience. 59, 523–30 (1994).

    Article  PubMed  CAS  Google Scholar 

  41. R. M. Chemelli, J. T. Willie, C. M. Sinton, J. K. Elmquist, T. Scammell, C. Lee, J. A. Richardson, S. C. Williams, Y. Xiong, Y. Kisanuki, T. E. Fitch, M. Nakazato, R. E. Hammer, C. B. Saper and M. Yanagisawa, Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation, Cell. 98, 437–51 (1999).

    Article  PubMed  CAS  Google Scholar 

  42. L. Lin, J. Faraco, R. Li, H. Kadotani, W. Rogers, X. Lin, X. Qiu, P. J. de Jong, S. Nishino and E. Mignot, The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene, Cell. 98, 365–76 (1999).

    Article  PubMed  CAS  Google Scholar 

  43. S. Burlet, C. J. Tyler and C. S. Leonard, Direct and indirect excitation of laterodorsal tegmental neurons by Hypocretin/Orexin peptides: implications for wakefulness and narcolepsy, J Neurosci. 22, 2862–72 (2002).

    PubMed  CAS  Google Scholar 

  44. C. S. Leonard, S. R. Rao and T. Inoue, Serotonergic inhibition of action potential evoked calcium transients in NOS-containing mesopontine cholinergic neurons, J Neurophysiol. 84, 1558–72 (2000).

    PubMed  CAS  Google Scholar 

  45. K. A. Kohlmeier, T. Inoue and C. S. Leonard, Hypocretin/orexin peptide signaling in the ascending arousal system: elevation of intracellular calcium in the mouse dorsal raphe and laterodorsal tegmentum, J Neurophysiol. 92, 221–35 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. E. K. Lambe and G. K. Aghajanian, Hypocretin (orexin) induces calcium transients in single spines postsynaptic to identified thalamocortical boutons in prefrontal slice, Neuron. 40, 139–50 (2003).

    Article  PubMed  CAS  Google Scholar 

  47. B. Yang, W. K. Samson and A. V. Ferguson, Excitatory effects of orexin-A on nucleus tractus solitarius neurons are mediated by phospholipase C and protein kinase C, J Neurosci. 23, 6215–22 (2003).

    PubMed  CAS  Google Scholar 

  48. A. N. van den Pol, X. B. Gao, K. Obrietan, T. S. Kilduff and A. B. Belousov, Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin, J Neurosci. 18, 7962–71 (1998).

    PubMed  Google Scholar 

  49. D. Nitz and J. Siegel, GABA release in the dorsal raphe nucleus: role in the control of REM sleep, Am J Physiol. 273, R451–5 (1997).

    PubMed  CAS  Google Scholar 

  50. C. J. Tyler, S. Burlet and C. S. Leonard, Hypocretin/Orexin-A (Hcrt/Orx) excites cholinergic laterodorsal tegmental (LDT) neurons by activating a cation current, Soc. Neuroscience Absts. 27, 411.2 (2001).

    Google Scholar 

  51. C. S. Leonard and R. Llinas, Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study, Neuroscience. 59, 309–30 (1994).

    Article  PubMed  CAS  Google Scholar 

  52. J. I. Luebke, R. W. Greene, K. Semba, A. Kamondi, R. W. McCarley and P. B. Reiner, Serotonin hyperpolarizes cholinergic low-threshold burst neurons in the rat laterodorsal tegmental nucleus in vitro, Proc Natl Acad Sci U S A. 89, 743–7 (1992).

    Article  PubMed  CAS  Google Scholar 

  53. T. L. Steininger, B. H. Wainer, R. D. Blakely and D. B. Rye, Serotonergic dorsal raphe nucleus projections to the cholinergic and noncholinergic neurons of the pedunculopontine tegmental region: a light and electron microscopic anterograde tracing and immunohistochemical study, J Comp Neurol. 382, 302–22 (1997).

    Article  PubMed  CAS  Google Scholar 

  54. R. E. Brown, O. A. Sergeeva, K. S. Eriksson and H. L. Haas, Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline), J Neurosci. 22, 8850–9 (2002).

    PubMed  CAS  Google Scholar 

  55. R. J. Liu, A. N. van den Pol and G. K. Aghajanian, Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions, J Neurosci. 22, 9453–64 (2002).

    PubMed  CAS  Google Scholar 

  56. L. I. Kiyashchenko, B. Y. Mileykovskiy, N. Maidment, H. A. Lam, M. F. Wu, J. John, J. Peever and J. M. Siegel, Release of hypocretin (orexin) during waking and sleep states, J Neurosci. 22, 5282–6 (2002).

    PubMed  CAS  Google Scholar 

  57. M. M. Thakkar, R. E. Strecker and R. W. McCarley, Behavioral state control through differential serotonergic inhibition in the mesopontine cholinergic nuclei: a simultaneous unit recording and microdialysis study, J Neurosci. 18, 5490–7. (1998).

    PubMed  CAS  Google Scholar 

  58. M. Wu, Z. Zhang, C. Leranth, C. Xu, A. N. van den Pol and M. Alreja, Hypocretin increases impulse flow in the septohippocampal GABAergic pathway: implications for arousal via a mechanism of hippocampal disinhibition, J Neurosci. 22, 7754–65 (2002).

    PubMed  CAS  Google Scholar 

  59. M. Wu, L. Zaborszky, T. Hajszan, A. N. van den Pol and M. Alreja, Hypocretin/orexin innervation and excitation of identified septohippocampal cholinergic neurons, J Neurosci. 24, 3527–36 (2004).

    Article  PubMed  CAS  Google Scholar 

  60. K. S. Eriksson, O. Sergeeva, R. E. Brown and H. L. Haas, Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus, J Neurosci. 21, 9273–9. (2001).

    PubMed  CAS  Google Scholar 

  61. P. E. Lund, R. Shariatmadari, A. Uustare, M. Detheux, M. Parmentier, J. P. Kukkonen and K. E. Akerman, The orexin OX1 receptor activates a novel Ca2+ influx pathway necessary for coupling to phospholipase C, J Biol Chem. 275, 30806–12 (2000).

    Article  PubMed  CAS  Google Scholar 

  62. D. Smart, J. C. Jerman, S. J. Brough, S. L. Rushton, P. R. Murdock, F. Jewitt, N. A. Elshourbagy, C. E. Ellis, D. N. Middlemiss and F. Brown, Characterization of recombinant human orexin receptor pharmacology in a Chinese hamster ovary cell-line using FLIPR, Br J Pharmacol. 128, 1–3 (1999).

    Article  PubMed  CAS  Google Scholar 

  63. K. A. Kohlmeier, S. Watanabe and C. S. Leonard, Hypocretin/orexin (H/O)-evoked calcium transients in laterodorsal tegmentum (LDT) and dorsal raphe (DR) neurons studied by simultaneous whole cell recording and calcium imaging in mouse brain slices, Soc. Neurosci. Abstracts 30 (2004).

    Google Scholar 

  64. T. S. Kilduff, S. S. Bowersox, K. I. Kaitin, T. L. Baker, R. D. Ciaranello and W. C. Dement, Muscarinic cholinergic receptors and the canine model of narcolepsy, Sleep 9, 102–106 (1986).

    PubMed  CAS  Google Scholar 

  65. S. L. Grupke, M. Kalogiannis and C. S. Leonard, Immunocytochemical evidence for differential regulation of choline acetyl transferase in brainstem of double orexin receptor knockout (DKO) mice, Soc. Neurosci. Abstracts 30 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Leonard, C.S., Tyler, C.J., Burlet, S., Watanabe, S., Kohlmeier, K.A. (2005). Hypocretin/Orexin Actions on Mesopontine Cholinergic Systems Controling Behavioral State. In: de Lecea, L., Sutcliffe, J.G. (eds) Hypocretins. Springer, Boston, MA. https://doi.org/10.1007/0-387-25446-3_10

Download citation

Publish with us

Policies and ethics