Skip to main content

Trans-Synaptic Signalling by Nitric Oxide

  • Chapter
Dendritic Neurotransmitter Release

Abstract

The location, identity and functional properties of the primary molecular components of the NO/cGMP pathway have now been well-characterised. These components are widespread, but not ubiquitous, across the brain, and the downstream effects of activation of this pathway are diverse and often incompletely understood. It is now important to consider the identity of these later stages of the transduction pathway and the way in which different dynamic patterns of NO and cGMP signalling induce such a variety of change in the long- and short-term function of neuronal circuitry. Future studies need to concentrate on the effects of endogenously-released NO and on the application of concentrations of exogenous NO that are physiologically relevant, in order to dissect out the downstream targets of NO signalling that relate to normal function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  • Abu-Soud, H. M., and Hazen, S. L., 2000, Nitric oxide is a physiological substrate for mammalian peroxidases, J. Biol. Chem. 275: 37524.

    PubMed  CAS  Google Scholar 

  • Alderton, W. K., Cooper, C. E., and Knowles, R. G., 2001, Nitric oxide synthases: structure, function and inhibition, Biochem. J. 357: 593.

    PubMed  CAS  Google Scholar 

  • Arancio, O., et al., 2001, Presynaptic role of cGMP-dependent protein kinase during long-lasting potentiation, J. Neurosci. 21: 143.

    PubMed  CAS  Google Scholar 

  • Arancio, O., et al., 1996, Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons, Cell. 87: 1025.

    PubMed  CAS  Google Scholar 

  • Ariano, M. A., et al., 1982, Immunohistochemical localization of guanylate cyclase within neurons of rat brain, PNAS USA 79: 1316.

    PubMed  CAS  Google Scholar 

  • Arnhold, S., et al., 2002, NOS-II is involved in early differentiation of murine cortical, retinal and ES cell-derived neurons-an immunocytochemical and functional approach, Int. J. Dev. Neurosci. 20: 83.

    PubMed  CAS  Google Scholar 

  • Bains, J. S., and Ferguson, A. V., 1997, Nitric oxide depolarizes type II paraventricular nucleus neurons in vitro, Neuroscience 79: 149.

    PubMed  CAS  Google Scholar 

  • Beavo, J. A., 1995, Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms, Physiol. Rev. 75: 725.

    PubMed  CAS  Google Scholar 

  • Bellamy, T. C., and Garthwaite, J., 2001a, “cAMP-specific” phosphodiesterase contributes to cGMP degradation in cerebellar cells exposed to nitric oxide, Mol. Pharmacol. 59: 54.

    PubMed  CAS  Google Scholar 

  • Bellamy, T. C., and Garthwaite, J., 2001b, Sub-second kinetics of the nitric oxide receptor, soluble guanylyl cyclase, in intact cerebellar cells, J. Biol. Chem. 276: 4287.

    PubMed  CAS  Google Scholar 

  • Bellamy, T. C., Griffiths, C., and Garthwaite, J., 2002, Differential sensitivity of guanylyl cyclase and mitochondrial respiration to nitric oxide measured using clamped concentrations, J. Biol. Chem. 277: 31801.

    PubMed  CAS  Google Scholar 

  • Bellamy, T. C., et al., 2000, Rapid desensitization of the nitric oxide receptor, soluble guanylyl cyclase, underlies diversity of cellular cGMP responses, PNAS USA 97: 2928.

    PubMed  CAS  Google Scholar 

  • Bicker, G., 2001, Sources and targets of nitric oxide signalling in insect nervous systems, Cell Tissue Res. 303: 137.

    PubMed  CAS  Google Scholar 

  • Bielefeldt, K., et al., 1999, Nitric oxide enhances slow inactivation of voltage-dependent sodium currents in rat nodose neurons, Neurosci. Lett. 271: 159.

    PubMed  CAS  Google Scholar 

  • Blackshaw, S., et al., 2003, Species, strain and developmental variations in hippocampal neuronal and endothelial nitric oxide synthase clarify discrepancies in nitric oxide-dependent synaptic plasticity, Neuroscience 119: 979.

    PubMed  CAS  Google Scholar 

  • Bon, C. L., and Garthwaite, J., 2003, On the role of nitric oxide in hippocampal long-term potentiation, J. Neurosci. 23: 1941.

    PubMed  CAS  Google Scholar 

  • Bradley, J., et al., 1997, Functional expression of the heteromeric “olfactory” cyclic nucleotide-gated channel in the hippocampus: a potential effector of synaptic plasticity in brain neurons, J. Neurosci. 17: 1993.

    PubMed  CAS  Google Scholar 

  • Brenman, J. E., et al., 1996, Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha 1-syntrophin mediated by PDZ domains, Cell 84: 757.

    PubMed  CAS  Google Scholar 

  • Broillet, M., Randin, O., and Chatton, J., 2001, Photoactivation and calcium sensitivity of the fluorescent NO indicator 4,5-diaminofluorescein (DAF-2): implications for cellular NO imaging, FEBS Lett. 491: 227.

    PubMed  CAS  Google Scholar 

  • Brown, L. A., Key, B. J., and Lovick, T. A., 1999, Bio-imaging of nitric oxide-producing neurones in slices of rat brain using 4,5-diaminofluorescein, J. Neurosci. Meth. 92: 101.

    CAS  Google Scholar 

  • Burette, A., et al., 2002, Synaptic localization of nitric oxide synthase and soluble guanylyl cyclase in the hippocampus, J. Neurosci. 22: 8961.

    PubMed  CAS  Google Scholar 

  • Campello-Costa, P., et al., 2000, Acute blockade of nitric oxide synthesis induces disorganization and amplifies lesion-induced plasticity in the rat retinotectal projection, J. Neurobiol. 44: 371.

    PubMed  CAS  Google Scholar 

  • Casado, M., Isope, P., and Ascher, P., 2002, Involvement of presynaptic N-methyl-D-aspartate receptors in cerebellar long-term depression, Neuron 33: 123.

    PubMed  CAS  Google Scholar 

  • Cheng, A. W., et al., 2003, Nitric oxide acts in a positive feedback loop with BDNF to regulate neural progenitor cell proliferation and differentiation in the mammalian brain, Dev. Biol. 258: 319.

    PubMed  CAS  Google Scholar 

  • Chien, W. L., et al., 2003, Enhancement of long-term potentiation by a potent nitric oxide-guanylyl cyclase activator, 3-(5-hydroxymethyl-2-furyl)-l-benzyl-indazole, Mol. Pharmacol. 63: 1322.

    PubMed  CAS  Google Scholar 

  • Christopherson, K. S., et al., 1999, PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain, J. Biol. Chem. 274: 27467.

    PubMed  CAS  Google Scholar 

  • Clementi, E., and Meldolesi, J., 1997, The cross-talk between nitric oxide and Ca2+: a story with a complex past and a promising future, Trends Pharmacol. Sci. 18: 266.

    PubMed  CAS  Google Scholar 

  • Coffey, M. J., et al., 2001, Catalytic consumption of nitric oxide by 12/15-lipoxygenase: inhibition of monocyte soluble guanylate cyclase activation, PNAS USA 98: 8006.

    PubMed  CAS  Google Scholar 

  • Contestabile, A., 2000, Roles of NMDA receptor activity and nitric oxide production in brain development, Brain Res. Rev. 32: 476.

    PubMed  CAS  Google Scholar 

  • Cudeiro, J., and Rivadulla, C., 1999, Sight and insight—on the physiological role of nitric oxide in the visual system, Trends Neurosci. 22: 109.

    PubMed  CAS  Google Scholar 

  • Cuttle, M. F., et al., 2001, Modulation of a presynaptic hyperpolarization-activated cationic current (I(h)) at an excitatory synaptic terminal in the rat auditory brainstem, J. Physiol. 534: 733.

    PubMed  CAS  Google Scholar 

  • de Vente, J., et al., 2001, Localization of cGMP-dependent protein kinase type II in rat brain, Neuroscience 108(1), 27–49.

    PubMed  Google Scholar 

  • de Vente, J., et al., 1998, Distribution of nitric oxide synthase and nitric oxide-receptive, cyclic GMP-producing structures in the rat brain, Neuroscience 87: 207.

    PubMed  Google Scholar 

  • Detre, J. A., et al., 1984, Localization in mammalian brain of G-substrate, a specific substrate for guanosine 3′,5′-cyclic monophosphate-dependent protein kinase, J. Neurosci. 4: 2843.

    PubMed  CAS  Google Scholar 

  • Doreulee, N., et al., 2001, Defective hippocampal mossy fiber long-term potentiation in endothelial nitric oxide synthase knockout mice, Synapse 41: 191.

    PubMed  CAS  Google Scholar 

  • El Husseini, A. E., et al., 1999, Localization of the cGMP-dependent protein kinases in relation to nitric oxide synthase in the brain, J. Chem. Neuroanat. 17: 45.

    PubMed  Google Scholar 

  • Eliasson, M. J., et al, 1997, Neuronal nitric oxide synthase alternatively spliced forms: prominent functional localizations in the brain, PNAS USA 94: 3396.

    PubMed  CAS  Google Scholar 

  • Endo, S., et al., 1999, Molecular identification of human G-substrate, a possible downstream component of the cGMP-dependent protein kinase cascade in cerebellar Purkinje cells, PNAS USA 96: 2467.

    PubMed  CAS  Google Scholar 

  • Fawcett, L., et al., 2000, Molecular cloning and characterization of a distinct human phosphodiesterase gene family: PDE11A, PNAS USA 97: 3702.

    PubMed  CAS  Google Scholar 

  • Franz, O., et al., 2000, Single-cell mRNA expression of HCN1 correlates with a fast gating phenotype of hyperpolarization-activated cyclic nucleotide-gated ion channels (Ih) in central neurons, Eur. J. Neurosci. 12: 2685.

    PubMed  CAS  Google Scholar 

  • Gallo, G., et al., 2002, Transient PKA activity is required for initiation but not maintenance of BDNF-mediated protection from nitric oxide-induced growth-cone collapse, J. Neurosci. 22: 5016.

    PubMed  CAS  Google Scholar 

  • Garthwaite, J., 2000, The physiological roles of nitric oxide in the central nervous system, Nitric Oxide 143: 259.

    CAS  Google Scholar 

  • Garthwaite, J., and Boulton, C. L., 1995, Nitric oxide signaling in the central nervous system, Annu. Rev. Physiol. 57: 683.

    PubMed  CAS  Google Scholar 

  • Gibb, B. J., and Garthwaite, J., 2001, Subunits of the nitric oxide receptor, soluble guanylyl cyclase, expressed in rat brain, Eur. J. Neurosci. 13: 539.

    PubMed  CAS  Google Scholar 

  • Gibb, B. J., Wykes, V., and Garthwaite, J., 2003, Properties of NO-activated guanylyl cyclases expressed in cells, Br. J. Pharmacol. 139: 1032.

    PubMed  CAS  Google Scholar 

  • Griffiths, C., and Garthwaite, J., 2001, The shaping of nitric oxide signals by a cellular sink, J. Physiol. 536: 855.

    PubMed  CAS  Google Scholar 

  • Haug, L. S., et al., 1999, Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic nucleotide-dependent kinases in vitro and in rat cerebellar slices in situ, J. Biol. Chem. 274: 7467.

    PubMed  CAS  Google Scholar 

  • He, Y., Yu, W., and Baas, P. W., 2002, Microtubule reconfiguration during axonal retraction induced by nitric oxide, J. Neurosci. 22: 5982.

    PubMed  CAS  Google Scholar 

  • Hobbs, A. J., 1997, Soluble guanylate cyclase: the forgotten sibling, Trends Pharmacol. Sci. 18: 484.

    PubMed  CAS  Google Scholar 

  • Hofmann, F., Ammendola, A., and Schlossmann, J., 2000, Rising behind NO: cGMP-dependent protein kinases, J. Cell Sci. 113: 1671.

    PubMed  CAS  Google Scholar 

  • Holscher, C., 1997, Nitric oxide, the enigmatic neuronal messenger: its role in synaptic plasticity, Trends Neurosci. 20: 298.

    PubMed  CAS  Google Scholar 

  • Honda, A., et al., 2001, Spatiotemporal dynamics of guanosine 3′,5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator, PNAS USA 98: 2437.

    PubMed  CAS  Google Scholar 

  • Huang, C. C., Chan, S. H., and Hsu, K. S., 2003, cGMP/protein kinase G-dependent potentiation of glutamatergic transmission induced by nitric oxide in immature rat rostral ventrolateral medulla neurons in vitro, Mol. Pharmacol. 64: 521.

    PubMed  CAS  Google Scholar 

  • Huang, C. C., and Hsu, K. S., 2003, Reexamination of the role of hyperpolarization-activated cation channels in short-and long-term plasticity at hippocampal mossy fiber synapses, Neuropharmacology 44: 968.

    PubMed  CAS  Google Scholar 

  • Huang, P. L., et al., 1993, Targeted disruption of the neuronal nitric oxide synthase gene, Cell 75: 1273.

    PubMed  CAS  Google Scholar 

  • Ingram, S. L., and Williams, J. T., 1996, Modulation of the hyperpolarization-activated current (Ih) by cyclic nucleotides in guinea-pig primary afferent neurons, J. Physiol. 492: 97.

    PubMed  CAS  Google Scholar 

  • Ito, M., 2001, Cerebellar long-term depression: characterization, signal transduction, and functional roles, Physiol. Rev. 81: 1143.

    PubMed  CAS  Google Scholar 

  • Jacoby, S., Sims, R. E., and Hartell, N. A., 2001, Nitric oxide is required for the induction and heterosynaptic spread of long-term potentiation in rat cerebellar slices, J. Physiol. 535: 825.

    PubMed  CAS  Google Scholar 

  • Kantor, D. B., et al., 1996, A role for endothelial NO synthase in LTP revealed by adenovirus-mediated inhibition and rescue, Science. 274: 1744.

    PubMed  CAS  Google Scholar 

  • Kaupp, U. B., and Seifert, R., 2002, Cyclic nucleotide-gated ion channels, Physiol. Rev. 82: 769.

    PubMed  CAS  Google Scholar 

  • Kingston, P. A., Zufall, F., and Barnstable, C. J., 1996, Rat hippocampal neurons express genes for both rod retinal and olfactory cyclic nucleotide-gated channels: novel targets for cAMP/cGMP function, PNAS USA 93: 10440.

    PubMed  CAS  Google Scholar 

  • Kingston, P. A., Zufall, F., and Barnstable, C. J., 1999, Widespread expression of olfactory cyclic nucleotide-gated channel genes in rat brain: implications for neuronal signalling, Synapse 32: 1.

    PubMed  CAS  Google Scholar 

  • Kiss, J. P., 2000, Role of nitric oxide in the regulation of monoaminergic neurotransmission, Brain Res. Bull. 52: 459.

    PubMed  CAS  Google Scholar 

  • Kleppisch, T., et al., 2003, Hippocampal cGMP-dependent protein kinase I supports an age-and protein synthesis-dependent component of long-term potentiation but is not essential for spatial reference and contextual memory, J. Neurosci. 23: 6005.

    PubMed  CAS  Google Scholar 

  • Kloss, S., Furneaux, H., and Mulsch, A., 2003, Post-transcriptional regulation of soluble guanylyl cyclase expression in rat aorta, J. Biol. Chem. 278: 2377.

    PubMed  Google Scholar 

  • Klyachko, V. A., Ahern, G. P., and Jackson, M. B., 2001, cGMP-mediated facilitation in nerve terminals by enhancement of the spike afterhyperpolarization, Neuron 31: 1015.

    PubMed  CAS  Google Scholar 

  • Koesling, D., 1999, Studying the structure and regulation of soluble guanylyl cyclase, Methods 19: 485.

    PubMed  CAS  Google Scholar 

  • Kojima, H., et al., 1998, Direct evidence of NO production in rat hippocampus and cortex using a new fluorescent indicator: DAF-2 DA, Neuroreport 9: 3345.

    PubMed  CAS  Google Scholar 

  • Kornau, H. C., et al., 1995, Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95, Science 269: 1737.

    PubMed  CAS  Google Scholar 

  • Krekelberg, B., and Taylor, J. G., 1996, Nitric oxide in cortical map formation, J. Chem. Neuroanat. 10: 191.

    PubMed  CAS  Google Scholar 

  • Kuzmiski, J. B., and MacVicar, B. A., 2001, Cyclic nucleotide-gated channels contribute to the cholinergic plateau potential in hippocampal CA1 pyramidal neurons, J. Neurosci. 21: 8707.

    PubMed  CAS  Google Scholar 

  • Launey, T., et al., 2004, Protein phosphatase 2A inhibition induces cerebellar long-term depression and declustering of synaptic AMPA receptor, PNAS USA 101: 676.

    PubMed  CAS  Google Scholar 

  • Leamey, C. A., Ho-Pao, C. L., and Sur, M., 2001, Disruption of retinogeniculate pattern formation by inhibition of soluble guanylyl cyclase, J. Neurosci. 21: 3871.

    PubMed  CAS  Google Scholar 

  • Lev-Ram, V., et al., 1997, Synergies and coincidence requirements between NO, cGMP and Ca2+ in the induction of cerebellar long-term depression, Neuron 18: 1025.

    PubMed  CAS  Google Scholar 

  • Lev-Ram, V., et al., 2003, Reversing cerebellar long-term depression, PNAS USA 100: 15989.

    PubMed  CAS  Google Scholar 

  • Lev-Ram, V., et al., 2002, A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP, PNAS USA 99: 8389.

    PubMed  CAS  Google Scholar 

  • Li, D. P., Chen, S. R., and Pan, H. L., 2002, Nitric oxide inhibits spinally projecting paraventricular neurons through potentiation of presynaptic GABA release, J. Neurophysiol. 88: 2664.

    PubMed  CAS  Google Scholar 

  • Lohmann, S. M., et al., 1997, Distinct and specific functions of cGMP-dependent protein kinases, Trends Biochem. Sci. 22: 307.

    PubMed  CAS  Google Scholar 

  • Lu, Y. F., and Hawkins, R. D., 2002, Ryanodine receptors contribute to cGMP-induced late-phase LTP and CREB phosphorylation in the hippocampus, J. Neurophysiol. 88: 1270.

    PubMed  CAS  Google Scholar 

  • Lucas, K. A., et al., 2000, Guanylyl cyclases and signaling by cyclic GMP, Pharmacol. Rev. 52: 375.

    PubMed  CAS  Google Scholar 

  • Maffei, A., et al., 2003, NO enhances presynaptic currents during cerebellar mossy fiber-granule cell LTP, J. Neurophysiol. 90: 2478.

    PubMed  CAS  Google Scholar 

  • Malinski, T., et al., 1993, Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors, Biochem. Biophys. Res. Commun. 193: 1076.

    PubMed  CAS  Google Scholar 

  • Martinez, S. E., Beavo, J. A., and Hol, W. G., 2002, GAF Domains: Two-Billion-Year-Old Molecular Switches that Bind Cyclic Nucleotides, Mol. Intervent. 2: 317.

    CAS  Google Scholar 

  • Matyash, V., et al., 2001, Nitric oxide signals parallel fiber activity to Bergmann glial cells in the mouse cerebellar slice, Mol. Cell Neurosci. 18: 664.

    PubMed  CAS  Google Scholar 

  • Micheva, K. D., et al., 2003, Retrograde regulation of synaptic vesicle endocytosis and recycling, Nat. Neurosci. 6: 925.

    PubMed  CAS  Google Scholar 

  • Moncada, S., Palmer, R. M., and Higgs, E. A., 1991, Nitric oxide: physiology, pathophysiology, and pharmacology, Pharmacol. Rev. 43: 109.

    PubMed  CAS  Google Scholar 

  • Moreno-Lopez, B., et al., 2004, Nitric oxide is a physiological inhibitor of neurogenesis in the adult mouse subventricular zone and olfactory bulb, J. Neurosci. 24: 85.

    PubMed  CAS  Google Scholar 

  • Mullershausen, F., et al., 2003, Direct activation of PDE5 by cGMP: long-term effects within NO/cGMP signaling, J. Cell Biol. 160: 719.

    PubMed  CAS  Google Scholar 

  • Nelson, R. J., et al., 1997, Effects of nitric oxide on neuroendocrine function and behavior, Front. Neuroendocrinol. 18: 463.

    PubMed  CAS  Google Scholar 

  • Nikonenko, I., Jourdain, P., and Muller, D., 2003, Presynaptic remodeling contributes to activity-dependent synaptogenesis, J. Neurosci. 23: 8498.

    PubMed  CAS  Google Scholar 

  • O’Donnell, V. B., et al., 1999, 15-Lipoxygenase catalytically consumes nitric oxide and impairs activation of guanylate cyclase, J. Biol. Chem. 274: 20083.

    PubMed  CAS  Google Scholar 

  • Packer, M. A., et al., 2003, Nitric oxide negatively regulates mammalian adult neurogenesis, PNAS USA 100: 9566.

    PubMed  CAS  Google Scholar 

  • Pape, H. C., and Mager, R., 1992, Nitric oxide controls oscillatory activity in thalamocortical neurons, Neuron 9:441.

    PubMed  CAS  Google Scholar 

  • Paton, J. F., Kasparov, S., and Paterson, D. J., 2002, Nitric oxide and autonomic control of heart rate: a question of specificity, Trends Neurosci. 25: 626.

    PubMed  CAS  Google Scholar 

  • Polleux, F., Morrow, T., and Ghosh, A., 2000, Semaphorin 3A is a chemoattractant for cortical apical dendrites, Nature 404: 567.

    PubMed  CAS  Google Scholar 

  • Prast, H., and Philippu, A., 2001, Nitric oxide as modulator of neuronal function, Prog. Neurobiol. 64: 51.

    PubMed  CAS  Google Scholar 

  • Reyes-Harde, M., et al., 1999, Induction of hippocampal LTD requires nitric-oxide-stimulated PKG activity and Ca2+ release from cyclic ADP-ribose-sensitive stores, J. Neurophysiol. 82: 1569.

    PubMed  CAS  Google Scholar 

  • Reynolds, T., and Hartell, N. A., 2000, An evaluation of the synapse specificity of long-term depression induced in rat cerebellar slices, J. Physiol. 527: 563.

    PubMed  CAS  Google Scholar 

  • Reynolds, T., and Hartell, N. A., 2001, Roles for nitric oxide and arachidonic acid in the induction of heterosynaptic cerebellar LTD, Neuroreport. 12: 133.

    PubMed  CAS  Google Scholar 

  • Robinson, R. B., and Siegelbaum, S. A., 2003, Hyperpolarization-activated cation currents: from molecules to physiological function, Annu. Rev. Physiol. 65: 453.

    PubMed  CAS  Google Scholar 

  • Roychowdhury, S., et al., 2002, Oxidative stress in glial cultures: detection by DAF-2 fluorescence used as a tool to measure peroxynitrite rather than nitric oxide, Glia 38: 103.

    PubMed  Google Scholar 

  • Russwurm, M., Wittau, N., and Koesling, D., 2001, Guanylyl cyclase/PSD-95 interaction: targeting of the nitric oxide-sensitive alpha2betal guanylyl cyclase to synaptic membranes, J. Biol. Chem. 276: 44647.

    PubMed  CAS  Google Scholar 

  • Santoro, B., et al., 2000, Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS, J. Neurosci. 20: 5264.

    PubMed  CAS  Google Scholar 

  • Sattler, R., et al., 1999, Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein, Science 284: 1845.

    PubMed  CAS  Google Scholar 

  • Savchenko, A., Bames, S., and Kramer, R. H., 1997, Cyclic-nucleotide-gated channels mediate synaptic feedback by nitric oxide, Nature 390: 694.

    PubMed  CAS  Google Scholar 

  • Schmidt, H., et al., 2002, cGMP-mediated signaling via cGKIalpha is required for the guidance and connectivity of sensory axons, J. Cell Biol. 159: 489.

    PubMed  CAS  Google Scholar 

  • Schuman, E. M., and Madison, D. V., 1991, A requirement for the intercellular messenger nitric oxide in longterm potentiation, Science 254: 1503.

    PubMed  CAS  Google Scholar 

  • Schuman, E. M., and Madison, D. V., 1994, Locally distributed synaptic potentiation in the hippocampus, Science 263: 532.

    PubMed  CAS  Google Scholar 

  • Shaw, P. J., Charles, S. L., and Salt, T. E., 1999, Actions of 8-bromo-cyclic-GMP on neurones in the rat thalamus in vivo and in vitro, Brain Res. 833: 272.

    PubMed  CAS  Google Scholar 

  • Shibuki, K., and Kimura, S., 1997, Dynamic properties of nitric oxide release from parallel fibres in rat cerebellar slices, J. Physiol. 498: 443.

    PubMed  CAS  Google Scholar 

  • Smith, S. L., and Otis, T. S., 2003, Persistent changes in spontaneous firing of Purkinje neurons triggered by the nitric oxide signaling cascade, J. Neurosci. 23: 367.

    PubMed  CAS  Google Scholar 

  • Soderling, S. H., and Beavo, J. A., 2000, Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions, Curr. Opin. Cell Biol. 12: 174.

    PubMed  CAS  Google Scholar 

  • Son, H., et al., 1996, Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase, Cell 87: 1015.

    PubMed  CAS  Google Scholar 

  • Southam, E., and Garthwaite, J., 1993, The nitric oxide-cyclic GMP signalling pathway in rat brain, Neuropharmacology 32: 1267.

    PubMed  CAS  Google Scholar 

  • Stanton, P. K., et al., 2003, Long-term depression of presynaptic release from the readily releasable vesicle pool induced by NMDA receptor-dependent retrograde nitric oxide, J. Neurosci. 23: 5936.

    PubMed  CAS  Google Scholar 

  • Stefano, G. B., and Ottaviani, E., 2002, The biochemical substrate of nitric oxide signaling is present in primitive non-cognitive organisms, Brain Res. 924: 82.

    PubMed  CAS  Google Scholar 

  • Steinbach, K., Volkmer, H., and Schlosshauer, B., 2002, Semaphorin 3E/collapsin-5 inhibits growing retinal axons, Exp. Cell Res. 279: 52.

    PubMed  CAS  Google Scholar 

  • Stern, J. E., Li, Y., and Zhang, W., 2003, Nitric oxide: a local signalling molecule controlling the activity of pre-autonomic neurones in the paraventricular nucleus of the hypothalamus, Acta Physiol. Scand. 177: 37.

    PubMed  CAS  Google Scholar 

  • Thomas, M. K., Francis, S. H., and Corbin, J. D., 1990, Substrate-and kinase-directed regulation of phosphorylation of a cGMP-binding phosphodiesterase by cGMP, J. Biol. Chem. 265: 14971.

    PubMed  CAS  Google Scholar 

  • Tsou, K., Snyder, G. L., and Greengard, P., 1993, Nitric oxide/cGMP pathway stimulates phosphorylation of DARPP-32, a dopamine-and cAMP-regulated phosphoprotein, in the substantia nigra, PNAS USA 90: 3462.

    PubMed  CAS  Google Scholar 

  • Vincent, S. R., and Kimura, H., 1992, Histochemical mapping of nitric oxide synthase in the rat brain, Neuroscience 46: 755.

    PubMed  CAS  Google Scholar 

  • Wakatsuki, H., et al., 1998, Layer-specific NO dependence of long-term potentiation and biased NO release in layer V in the rat auditory cortex, J. Physiol. 513: 71.

    PubMed  CAS  Google Scholar 

  • Wall, M. J., 2003, Endogenous nitric oxide modulates GABAergic transmission to granule cells in adult rat cerebellum, Eur. J. Neurosci. 18: 869.

    PubMed  Google Scholar 

  • Wang, X., and Robinson, P. J., 1995, Cyclic GMP-dependent protein kinase substrates in rat brain, J. Neurochem. 65: 595.

    PubMed  CAS  Google Scholar 

  • Wexler, E. M., Stanton, P. K., and Nawy, S., 1998, Nitric oxide depresses GABAA receptor function via coactivation of cGMP-dependent kinase and phosphodiesterase, J. Neurosci. 18: 2342.

    PubMed  CAS  Google Scholar 

  • Wood, J., and Garthwaite, J., 1994, Models of the diffusional spread of nitric oxide: implications for neural nitric oxide signalling and its pharmacological properties, Neuropharmacology 33: 1235.

    PubMed  CAS  Google Scholar 

  • Wu, H. H., et al., 2000, Refinement of the ipsilateral retinocollicular projection is disrupted in double endothelial and neuronal nitric oxide synthase gene knockout mice, Dev. Brain Res. 120: 105.

    CAS  Google Scholar 

  • Wu, H. H., et al., 2001, The role of nitric oxide in development of topographic precision in the retinotectal projection of chick, J. Neurosci. 21: 4318.

    PubMed  CAS  Google Scholar 

  • Wykes, V., Bellamy, T. C., and Garthwaite, J., 2002, Kinetics of nitric oxide-cyclic GMP signalling in CNS cells and its possible regulation by cyclic GMP, J. Neurochem. 83: 37.

    PubMed  CAS  Google Scholar 

  • Yamazaki, M., et al., 2001, Activation of the mitogen-activated protein kinase cascade through nitric oxide synthesis as a mechanism of neuritogenic effect of genipin in PC12h cells, J. Neurochem. 79: 45.

    PubMed  CAS  Google Scholar 

  • Yang, G., and Iadecola, C., 1998, Activation of cerebellar climbing fibers increases cerebellar blood flow: role of glutamate receptors, nitric oxide, and cGMP, Stroke 29: 499.

    PubMed  CAS  Google Scholar 

  • Zabel, U., et al., 2002, Calcium-dependent membrane association sensitizes soluble guanylyl cyclase to nitric oxide, Nat. Cell Biol. 4: 307.

    PubMed  CAS  Google Scholar 

  • Zagotta, W. N., et al., 2003, Structural basis for modulation and agonist specificity of HCN pacemaker channels, Nature 425: 200.

    PubMed  CAS  Google Scholar 

  • Zhang, X., et al., 2002, Interfering with nitric oxide measurements. 4,5-diaminofluorescein reacts with dehydroascorbic acid and ascorbic acid, J. Biol. Chem. 277: 48472.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Hall, C.N., Garthwaite, J. (2005). Trans-Synaptic Signalling by Nitric Oxide. In: Ludwig, M. (eds) Dendritic Neurotransmitter Release. Springer, Boston, MA. https://doi.org/10.1007/0-387-23696-1_19

Download citation

Publish with us

Policies and ethics