Skip to main content

The Developmental Regulation of Wake/Sleep System

  • Chapter
Neuroendocrine Correlates of Sleep/Wakefulness

Abstract

Sleep associated with a high frequency of phasic activities, particularly muscle twitches, dominate the daily life of altricial mammals and human neonates. “Active sleep” is the term that has been used to describe these behavioral phenomena in the neonatal rat, cat and rabbit in comparison to the sleep state without phasic activities, which is called “quiet sleep”.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jouvet-Mounier D, Astic L, Lacote D. Ontogenesis of the states of sleep in rat, cat, and guinea pig during the first postnatal month. Dev Psychobiol 1970; 2:216–39.

    PubMed  CAS  Google Scholar 

  2. McGinty DJ, Stevenson M, Hoppenbrouwers T et al. Polygraphic studies of kitten development: sleep state patterns. Dev Psychobiol 1977; 10:455–69.

    PubMed  CAS  Google Scholar 

  3. Feng P, Ma Y. Clomipramine suppresses postnatal REM sleep without increasing wakefulness: implications for the production of depressive behaviors. Sleep 2002; 25:177–84.

    PubMed  Google Scholar 

  4. Komissarov IV, Talalaenko AN. Nature of the central adreno-and serotonin-sensitive structures participating in the facilitating influence of bioamines on the respiratory reflex from the upper respiratory passages. Biull Eksp Biol Med 1970; 70:52–5.

    PubMed  CAS  Google Scholar 

  5. Vogel GW, Feng P, Kinney GG. Ontogeny of REM sleep in rats: possible implications for endogenous depression. Physiol Behav 2000; 68:453–61.

    PubMed  CAS  Google Scholar 

  6. Feng P, Ma Y, Vogel GW. The critical window of brain development from susceptive to insusceptive. Effects of clomipramine neonatal treatment on sexual behavior. Brain Res Dev Brain Res 2001; 129:107–10.

    PubMed  CAS  Google Scholar 

  7. Kohyama J. A quantitative assessment of the maturation of phasic motor inhibition during REM sleep. J Neurol Sci 1996; 143:150–5.

    PubMed  CAS  Google Scholar 

  8. Dreyfus-Brisac C. Sleep Ontogenesis in early human prematurity from 24 to 27 weeks. Dev Psychol 1968; 1:162–169.

    Google Scholar 

  9. Denenberg VH, Thoman EB. Evidence for a functional role for active (REM) sleep in infancy. Sleep 1981; 4:185–91.

    PubMed  CAS  Google Scholar 

  10. Kilduff TS, Peyron C. The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci 2000; 23:359–65.

    PubMed  CAS  Google Scholar 

  11. Thakkar MM, Ramesh V, Strecker RE et al. Microdialysis perfusion of orexin-A in the basal forebrain increases wakefulness in freely behaving rats. Arch Ital Biol 2001; 139:313–28.

    PubMed  CAS  Google Scholar 

  12. Xi MC, Morales FR, Chase MH. Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat. Brain Res 2001; 901:259–64.

    PubMed  CAS  Google Scholar 

  13. Estabrooke IV, McCarthy MT, Ko E et al. Fos expression in orexin neurons varies with behavioral state. J Neurosci 2001; 21:1656–62.

    PubMed  CAS  Google Scholar 

  14. Peyron C, Tighe DK, van den Pol AN et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 1998; 18:9996–10015.

    PubMed  CAS  Google Scholar 

  15. Zhang JH, Sampogna S, Morales FR et al. Orexin (hypocretin)-like immunoreactivity in the cat hypothalamus: a light and electron microscopic study. Sleep 2001; 24:67–76.

    PubMed  CAS  Google Scholar 

  16. Lin L, Faraco J, Li R et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999; 98:365–76.

    PubMed  CAS  Google Scholar 

  17. Espana RA, Baldo BA, Kelley AE et al. Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience 2001; 106:699–715.

    PubMed  CAS  Google Scholar 

  18. Hobson JA, McCarley RW, Wyzinski PW. Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 1975; 189:55–8.

    PubMed  CAS  Google Scholar 

  19. McGinty DJ, Harper RM. Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 1976; 101:569–75.

    PubMed  CAS  Google Scholar 

  20. Trulson ME, Jacobs BL. Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 1979; 163:135–50.

    PubMed  CAS  Google Scholar 

  21. Aston-Jones G, Akaoka H, Charlety P et al. Serotonin selectively attenuates glutamate-evoked activation of noradrenergic locus coeruleus neurons. J Neurosci 1991; 11:760–9.

    PubMed  CAS  Google Scholar 

  22. Portas CM, Bjorvatn B, Fagerland S et al. On-line detection of extracellular levels of serotonin in dorsal raphe nucleus and frontal cortex over the sleep/wake cycle in the freely moving rat. Neuroscience 1998; 83:807–14.

    PubMed  CAS  Google Scholar 

  23. Blanco-Centurion CA, Salin-Pascual RJ. Extracellular serotonin levels in the medullary reticular formation during normal sleep and after REM sleep deprivation. Brain Res 2001; 923:128–36.

    PubMed  CAS  Google Scholar 

  24. Strecker RE, Thakkar MM, Porkka-Heiskanen T et al. Behavioral state-related changes of extracellular serotonin concentration in the pedunculopontine tegmental nucleus: a microdialysis study in freely moving animals. Sleep Res Online 1999; 2:21–7.

    PubMed  CAS  Google Scholar 

  25. Park SP, Lopez-Rodriguez F, Wilson CL et al. In vivo microdialysis measures of extracellular serotonin in the rat hippocampus during sleep-wakefulness. Brain Res 1999; 833:291–6.

    PubMed  CAS  Google Scholar 

  26. Bjorvatn B, Ursin R. Changes in sleep and wakefulness following 5-HT1A ligands given systemically and locally in different brain regions. Rev Neurosci 1998; 9:265–73.

    PubMed  CAS  Google Scholar 

  27. Sakai K, Crochet S. Role of dorsal raphe neurons in paradoxical sleep generation in the cat: no evidence for a serotonergic mechanism. Eur J Neurosci 2001; 13:103–12.

    PubMed  CAS  Google Scholar 

  28. Jacobs BL. Single unit activity of locus coeruleus neurons in behaving animals. Prog Neurobiol 1986; 27:183–94.

    PubMed  CAS  Google Scholar 

  29. Mileykovskiy BY, Kiyashchenko LI, Kodama T et al. Activation of pontine and medullary motor inhibitory regions reduces discharge in neurons located in the locus coeruleus and the anatomical equivalent of the midbrain locomotor region. J Neurosci 2000; 20:8551–8.

    PubMed  CAS  Google Scholar 

  30. Sakai K, Crochet S. Serotonergic dorsal raphe neurons cease firing by disfacilitation during paradoxical sleep. Neuroreport 2000; 11:3237–41.

    PubMed  CAS  Google Scholar 

  31. Andrade R. Regulation of membrane excitability in the central nervous system by serotonin receptor subtypes. Ann N Y Acad Sci 1998; 861:190–203.

    PubMed  CAS  Google Scholar 

  32. Blier P, Pineyro G, el Mansari M et al. Role of somatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission. Ann N Y Acad Sci 1998; 861:204–16.

    PubMed  CAS  Google Scholar 

  33. Graham D, Langer SZ. Advances in sodium-ion coupled biogenic amine transporters. Life Sci 1992; 51:631–45.

    PubMed  CAS  Google Scholar 

  34. Qian Y, Melikian HE, Rye DB et al. Identification and characterization of antidepressant-sensitive serotonin transporter proteins using site-specific antibodies. J Neurosci 1995; 15:1261–74.

    PubMed  CAS  Google Scholar 

  35. Veasey SC, Fenik P. Pharmacological Characterization of Serotonergic Receptor Activity in the Hypoglossal Nucleus. Am J Respir Crit Care Med 2002.

    Google Scholar 

  36. Scruggs JL, Patel S, Bubser M et al. DOI-Induced activation of the cortex: dependence on 5-HT2A heteroceptors on thalamocortical glutamatergic neurons. J Neurosci 2000; 20:8846–52.

    PubMed  CAS  Google Scholar 

  37. Jakala P, Sirvio J, Koivisto E et al. Modulation of rat neocortical high-voltage spindle activity by 5-HT1/5-HT2 receptor subtype specific drugs. Eur J Pharmacol 1995; 282:39–55.

    PubMed  CAS  Google Scholar 

  38. Hedner T, Lundborg P. Serotoninergic development in the postnatal rat brain. J Neural Transm 1980; 49:257–79.

    PubMed  CAS  Google Scholar 

  39. Cano J, Reinoso-Suarez F. Postnatal development in the serotonin content of brain visual structures. Brain Res 1982; 281:199–201.

    PubMed  CAS  Google Scholar 

  40. Kirby ML, Mattio TG. Developmental changes in serotonin and 5-hydroxyindoleacetic acid concentrations and opiate receptor binding in rat spinal cord following neonatal 5,7-dihydroxytryptamine treatment. Dev Neurosci 1982; 5:394–402.

    PubMed  CAS  Google Scholar 

  41. Uphouse LL, Bondy SC. The maturation of cortical serotonin binding sites. Brain Res 1981; 227:415–7.

    PubMed  CAS  Google Scholar 

  42. Macho L, Kvetnansky R, Culman J et al. Neurotransmitter levels in the hypothalamus during postnatal development of rats. Exp Clin Endocrinol 1986; 88:142–50.

    PubMed  CAS  Google Scholar 

  43. Rind HB, Russo AF, Whittemore SR. Developmental regulation of tryptophan hydroxylase messenger RNA expression and enzyme activity in the raphe and its target fields. Neuroscience 2000; 101:665–77.

    PubMed  CAS  Google Scholar 

  44. Feng P, Ma Y, Vogel GW. Ontogeny of REM rebound in postnatal rats. Sleep 2001; 24:645–53.

    PubMed  CAS  Google Scholar 

  45. Thakkar MM, Winston S, McCarley RW. A1 receptor and adenosinergic homeostatic regulation of sleep-wakefulness: effects of antisense to the A1 receptor in the cholinergic basal forebrain. J Neurosci 2003; 23:4278–87.

    PubMed  CAS  Google Scholar 

  46. Portas CM, Thakkar M, Rainnie DG et al. Role of adenosine in behavioral state modulation: a microdialysis study in the freely moving cat. Neuroscience 1997; 79:225–35.

    PubMed  CAS  Google Scholar 

  47. Thakkar MM, Delgiacco RA, Strecker RE et al. Adenosinergic inhibition of basal forebrain wakefulness-active neurons: a simultaneous unit recording and microdialysis study in freely behaving cats. Neuroscience 2003; 122:1107–13.

    PubMed  CAS  Google Scholar 

  48. Thakkar MM, Winston S, McCarley RW. Orexin neurons of the hypothalamus express adenosine A1 receptors. Brain Res 2002; 944:190–4.

    PubMed  CAS  Google Scholar 

  49. Marks GA, Shaffery JP, Speciale SG et al. Enhancement of rapid eye movement sleep in the rat by actions at A1 and A2a adenosine receptor subtypes with a differential sensitivity to atropine. Neuroscience 2003; 116:913–20.

    PubMed  CAS  Google Scholar 

  50. Mackiewicz M, Nikonova EV, Zimmerman JE et al. Enzymes of adenosine metabolism in the brain: diurnal rhythm and the effect of sleep deprivation. J Neurochem 2003; 85:348–57.

    PubMed  CAS  Google Scholar 

  51. Alanko L, Heiskanen S, Stenberg D et al. Adenosine kinase and 5′-nucleotidase activity after prolonged wakefulness in the cortex and the basal forebrain of rat. Neurochem Int 2003; 42:449–54.

    PubMed  CAS  Google Scholar 

  52. Porkka-Heiskanen T, Alanko L, Kalinchuk A et al. Adenosine and sleep. Sleep Med Rev 2002; 6:321–32.

    PubMed  Google Scholar 

  53. Aden U, Herlenius E, Tang LQ et al. Maternal caffeine intake has minor effects on adenosine receptor ontogeny in the rat brain. Pediatr Res 2000; 48:177–83.

    PubMed  CAS  Google Scholar 

  54. Johansson B, Georgiev V, Fredholm BB. Distribution and postnatal ontogeny of adenosine A2A receptors in rat brain: comparison with dopamine receptors. Neuroscience 1997; 80:1187–207.

    PubMed  CAS  Google Scholar 

  55. Jones SV, Barker JL, Goodman MB et al. Inositol trisphosphate mediates cloned muscarinic receptor-activated conductances in transfected mouse fibroblast A9 L cells. J Physiol 1990; 421:499–519.

    PubMed  CAS  Google Scholar 

  56. Mitani A, Ito K, Hallanger AE, Wainer BH et al. Cholinergic projections from the laterodorsal and pedunculopontine tegmental nuclei to the pontine gigantocellular tegmental field in the cat. Brain Res 1988; 451:397–402.

    PubMed  CAS  Google Scholar 

  57. Semba K, Reiner PB, Fibiger HC. Single cholinergic mesopontine tegmental neurons project to both the pontine reticular formation and the thalamus in the rat. Neuroscience 1990; 38:643–54.

    PubMed  CAS  Google Scholar 

  58. Shiromani PJ, Armstrong DM, Berkowitz A et al. Distribution of choline acetyltransferase immunoreactive somata in the feline brainstem: implications for REM sleep generation. Sleep 1988; 11:1–16.

    PubMed  CAS  Google Scholar 

  59. el Mansari M, Sakai K, Jouvet M. Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats. Exp Brain Res 1989; 76:519–29.

    PubMed  Google Scholar 

  60. Kayama Y, Ohta M, Jodo E. Firing of ‘possibly’ cholinergic neurons in the rat laterodorsal tegmental nucleus during sleep and wakefulness. Brain Res 1992; 569:210–20.

    PubMed  CAS  Google Scholar 

  61. Buccafusco JJ, Wei J, Kraft KL. The effect of the acetylcholine transport blocker vesamicol on central cholinergic pressor neurons. Synapse 1991; 8:301–6.

    PubMed  CAS  Google Scholar 

  62. Prior C, Marshall IG, Parsons SM. The pharmacology of vesamicol: an inhibitor of the vesicular acetylcholine transporter. Gen Pharmacol 1992; 23:1017–22.

    PubMed  CAS  Google Scholar 

  63. Salin-Pascual RJ, Jimenez-Anguiano A. Vesamicol, an acetylcholine uptake blocker in presynaptic vesicles, suppresses rapid eye movement (REM) sleep in the rat. Psychopharmacology (Berl) 1995; 121:485–7.

    PubMed  CAS  Google Scholar 

  64. Capece ML, Lydic R. cAMP and protein kinase A modulate cholinergic rapid eye movement sleep generation. Am J Physiol 1997; 273:R1430–40.

    PubMed  CAS  Google Scholar 

  65. Spiegel AM, Shenker A, Weinstein LS. Receptor-effector coupling by G proteins: implications for normal and abnormal signal transduction. Endocr Rev 1992; 13:536–65.

    PubMed  CAS  Google Scholar 

  66. Felder CC. Muscarinic acetylcholine receptors: signal transduction through multiple effectors. Faseb J 1995; 9:619–25.

    PubMed  CAS  Google Scholar 

  67. Homma Y, Skinner RD, Garcia-Rill E. Effects of pedunculopontine nucleus (PPN) stimulation on caudal pontine reticular formation (PnC) neurons in vitro. J Neurophysiol 2002; 87:3033–47.

    PubMed  Google Scholar 

  68. Roffwarg HP, Muzio JN, Dement WC. Development of the human sleep-dream cycle. Science 1966; 152:604–619.

    PubMed  CAS  Google Scholar 

  69. Hrdina PD, Ghosh PK, Rastogi RB et al. Ontogenic pattern of dopamine, acetylcholine, and acetyl-cholinesterase in the brains of normal and hypothyroid rats. Can J Physiol Pharmacol 1975; 53:709–15.

    PubMed  CAS  Google Scholar 

  70. Ninomiya Y, Koyama Y, Kayama Y. Postnatal development of choline acetyltransferase activity in the rat laterodorsal tegmental nucleus. Neurosci Lett 2001; 308:138–40.

    PubMed  CAS  Google Scholar 

  71. Mechawar N, Watkins KC, Descarries L. Ultrastructural features of the acetylcholine innervation in the developing parietal cortex of rat. J Comp Neurol 2002; 443:250–8.

    PubMed  CAS  Google Scholar 

  72. Wall SJ, Yasuda RP, Li M, Ciesla W et al. The ontogeny of m1–m5 muscarinic receptor subtypes in rat forebrain. Brain Res Dev Brain Res 1992; 66:181–5.

    PubMed  CAS  Google Scholar 

  73. Buwalda B, de Groote L, Van der Zee EA et al. Immunocytochemical demonstration of developmental distribution of muscarinic acetylcholine receptors in rat parietal cortex. Brain Res Dev Brain Res 1995; 84:185–91.

    PubMed  CAS  Google Scholar 

  74. van Huizen F, March D, Cynader MS et al. Muscarinic receptor characteristics and regulation in rat cerebral cortex: changes during development, aging and the oestrous cycle. Eur J Neurosci 1994; 6:237–43.

    PubMed  Google Scholar 

  75. Balduini W, Cimino M, Reno F et al. Effects of postnatal or adult chronic acetyl-cholinesterase inhibition on muscarinic receptors, phosphoinositide turnover and m1 mRNA expression. Eur J Pharmacol 1993; 248:281–8.

    PubMed  CAS  Google Scholar 

  76. Frank MG, Page J, Heller HC. The effects of REM sleep-inhibiting drugs in neonatal rats: evidence for a distinction between neonatal active sleep and REM sleep. Brain Res 1997; 778:64–72.

    PubMed  CAS  Google Scholar 

  77. Taheri S, Zeitzer JM, Mignot E. The role of hypocretins (orexins) in sleep regulation and narcolepsy. Annu Rev Neurosci 2002; 25:283–313.

    PubMed  CAS  Google Scholar 

  78. Gottesmann C. The neurochemistry of waking and sleeping mental activity: the disinhibition-dopamine hypothesis. Psychiatry Clin Neurosci 2002; 56: 345–54.

    PubMed  CAS  Google Scholar 

  79. Lancel M, Langebartels A. Gamma-aminobutyric Acid(A) (GABA(A)) agonist 4,5,6, 7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol persistently increases sleep maintenance and intensity during chronic administration to rats. J Pharmacol Exp Ther 2000; 293:1084–90.

    PubMed  CAS  Google Scholar 

  80. Benington JH, Kodali SK, Heller HC. Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation. Brain Res 1995; 692:79–85.

    PubMed  CAS  Google Scholar 

  81. Datta S. Evidence that REM sleep is controlled by the activation of brain stem pedunculopontine tegmental kainate receptor. J Neurophysiol 2002; 87:1790–8.

    PubMed  CAS  Google Scholar 

  82. Vale W, Spiess J, Rivier C et al. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 1981; 213:1394–7.

    PubMed  CAS  Google Scholar 

  83. Laatikainen TJ. Corticotropin-releasing hormone and opioid peptides in reproduction and stress. Ann Med 1991; 23:489–96.

    PubMed  CAS  Google Scholar 

  84. Rivier C, Rivest S. Effect of stress on the activity of the hypothalamic-pituitarygonadal axis: peripheral and central mechanisms. Biol Reprod 1991; 45:523–32.

    PubMed  CAS  Google Scholar 

  85. Webster EL, Grigoriadis DE, De Souza EB. Corticotropin-releasing factor receptors in the brain-pituitary-immune axis. In: McCubbin JA, Kaufmann PJ, Nemeroff CB, eds. Neuropeptides, and Systemic Disease. San Diego: Academic Press, 1991:233–260.

    Google Scholar 

  86. Dunn AJ, Berridge CW. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res Brain Res Rev 1990; 15:71–100.

    PubMed  CAS  Google Scholar 

  87. Owens MJ, Nemeroff CB. Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev 1991; 43:425–73.

    PubMed  CAS  Google Scholar 

  88. Challis J, Sloboda D, Matthews S et al. Fetal hypothalamic-pituitary adrenal (HPA) development and activation as a determinant of the timing of birth, and of postnatal disease. Endocr Res 2000; 26:489–504.

    PubMed  CAS  Google Scholar 

  89. Pihoker C, Cain ST, Nemeroff CB. Postnatal development of regional binding of corticotropin-releasing factor and adenylate cyclase activity in the rat brain. Prog Neuropsychopharmacol Biol Psychiatry 1992; 16:581–6.

    PubMed  CAS  Google Scholar 

  90. Avishai-Eliner S, Yi SJ, Baram TZ. Developmental profile of messenger RNA for the corticotropin-releasing hormone receptor in the rat limbic system. Brain Res Dev Brain Res 1996; 91:159–63.

    PubMed  CAS  Google Scholar 

  91. Dugovic C, Maccari S, Weibel L et al. High corticosterone levels in prenatally stressed rats predict persistent paradoxical sleep alterations. J Neurosci 1999; 19:8656–64.

    PubMed  CAS  Google Scholar 

  92. Meerlo P, Koehl M, van der Borght K et al. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress. J Neuroendocrinol 2002; 14:397–402.

    PubMed  CAS  Google Scholar 

  93. Hairston IS, Ruby NF, Brooke S et al. Sleep deprivation elevates plasma corticosterone levels in neonatal rats. Neurosci Lett 2001; 315:29–32.

    PubMed  CAS  Google Scholar 

  94. Vogel G, Neill D, Kors D, Hagler M. REM sleep abnormalities in a new animal model of endogenous depression. Neurosci Biobehav Rev 1990; 14:77–83.

    PubMed  CAS  Google Scholar 

  95. Prathiba J, Kumar KB, Karanth KS. Hyperactivity of hypothalamic pituitary axis in neonatal clomipramine model of depression. J Neural Transm 1998; 105:1335–9.

    PubMed  CAS  Google Scholar 

  96. Arborelius L, Owens MJ, Plotsky PM et al. The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 1999; 160:1–12.

    PubMed  CAS  Google Scholar 

  97. Riemann D, Berger M. The effects of total sleep deprivation and subsequent treatment with clomipramine on depressive symptoms and sleep electroencephalography in patients with a major depressive disorder. Acta Psychiatr Scand 1990; 81:24–31.

    PubMed  CAS  Google Scholar 

  98. Marrosu F, Gessa GL, Giagheddu M et al. Corticotropin-releasing factor (CRF) increases paradoxical sleep (PS) rebound in PS-deprived rats. Brain Res 1990; 515:315–8.

    PubMed  CAS  Google Scholar 

  99. Gonzalez MM, Valatx JL. Involvement of stress in the sleep rebound mechanism induced by sleep deprivation in the rat: use of alpha-helical CRH (9–41). Behav Pharmacol 1998; 9:655–62.

    PubMed  CAS  Google Scholar 

  100. Ohgushi A, Bungo T, Shimojo M et al. Relationships between feeding and locomotion behaviors after central administration of CRF in chicks. Physiol Behav 2001; 72:287–9.

    PubMed  CAS  Google Scholar 

  101. Clements S, Schreck CB, Larsen DA et al. Central administration of corticotropin-releasing hormone stimulates locomotor activity in juvenile Chinook salmon (Oncorhynchus tshawytscha). Gen Comp Endocrinol 2002; 125:319–27.

    PubMed  CAS  Google Scholar 

  102. Opp MR. Corticotropin-releasing hormone involvement in stressor-induced alterations in sleep and in the regulation of waking. Adv Neuroimmunol 1995; 5:127–43.

    PubMed  CAS  Google Scholar 

  103. Ordyan NE, Pivina SG, Rakitskaya VV et al. The neonatal glucocorticoid treatment-produced long-term changes of the pituitary-adrenal function and brain corticosteroid receptors in rats. Steroids 2001; 66:883–8.

    PubMed  CAS  Google Scholar 

  104. Levine S. Primary social relationships influence the development of the hypothalamic-pituitary-adrenal axis in the rat. Physiol Behav 2001; 73:255–60.

    PubMed  CAS  Google Scholar 

  105. Pariante CM, Miller AH. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 2001; 49:391–404.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Feng, P. (2006). The Developmental Regulation of Wake/Sleep System. In: Cardinali, D.P., Pandi-Perumal, S.R. (eds) Neuroendocrine Correlates of Sleep/Wakefulness. Springer, Boston, MA. https://doi.org/10.1007/0-387-23692-9_1

Download citation

Publish with us

Policies and ethics